Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4342-4355.doi: 10.3864/j.issn.0578-1752.2022.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage

SHEN Qian1,2(),ZHANG SiPing1,LIU RuiHua1,LIU ShaoDong1,CHEN Jing1,GE ChangWei1,MA HuiJuan1,ZHAO XinHua1,YANG GuoZheng2,SONG MeiZhen1(),PANG ChaoYou1()   

  1. 1Institute of Cotton, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
    2College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070
  • Received:2022-07-13 Accepted:2022-08-15 Online:2022-11-16 Published:2022-12-14
  • Contact: MeiZhen SONG,ChaoYou PANG E-mail:shenqian429@126.com;songmzccri@163.com;chypang@163.com

Abstract:

【Objective】 In this study, the purpose was to comprehensively evaluate the cold tolerance of cotton varieties (lines) at seedling emergence stage, establish a reliable evaluation model, screen and identify indicators, and provide a simple and effective evaluation method for the selection and identification of cold-tolerant varieties in cotton.【Method】200 upland cotton varieties (lines) were used to test hypocotyl length, root length and 100-grain weight, etc. under three treatments of constant chilling (CC), diurnal variation of chilling (DVC) and normal conditions. A combination of integrated cold tolerance coefficient difference analysis, frequency analysis, drop analysis, principal component analysis, cluster analysis, and multiple regression analysis were used to classify their cold tolerance types, establish cold tolerance prediction models, and screen evaluation parameters. 【Result】The variation of each parameters at normal conditions were minor fluctuations ranging from 3.12% to 18.89%. The seedling emergence rate was above 85.00%, which had high viability and could be used for subsequent cold tolerance analysis. The variability of each parameter within the accessions increased under chilling stress, ranging from 7.14%-108.33%, and the most variable parameter were root length under CC condition and germination index under DVC condition. Principal component analysis converted the 14 parameters under chilling stress and 100-grain weight measured into six mutually independent composite indicators, representing 74.98% of the total data information. The comprehensive cold tolerance evaluation value (D) was calculated by the affiliation function method and then clustering analysis was performed. 200 cotton varieties (lines) were divided into five categories according to their cold tolerance, with 2 of the group Ⅰ being strongly cold tolerant, 42 of the group Ⅱ being cold tolerant, 69 of the group Ⅲ being medium cold tolerant, 83 of the group Ⅳ being more sensitive, and 4 of the group Ⅴ being sensitive, of which Xinluzhong 16 was the most cold-tolerant material. A multiple regression analysis was applied to establish a prediction model for cold tolerance of cotton at seedling emergence as Y=-4.10+0.58X4+0.40X14+0.32X1+0.22X5 (R2=0.92), and four parameters for cold resistance evaluation were confirmed, namely total length of seedling, emergence rate, and dry weight under CC stress, germination rate under DVC stress. The cold-tolerant varieties (lines) had higher seedling emergence rates of early sowing experiment in the field, which were basically consistent with the results of the indoor results. 【Conclusion】 It is feasible to use CC and DVC stress combined with multivariate statistical analysis to evaluate the cold tolerance of cotton at seeding stage, and total length of seedling, emergence rate, and dry weight under CC stress, germination rate under DVC stress can be used as evaluation parameters.

Key words: Gossypium hirsutum L., seedling emergence stage, cold tolerance, comprehensive evaluation, parameters screening

Fig. 1

Matrix scatter analysis of basic traits of 200 cotton varieties (lines) HGW: 100 grain weight; ER: Emergence rate; HL: Hypocotyl length; RL: Root length; TL: Total length of seedling; GR: Germination rate; GI: Germination index; DW: Dry weight; SS: Soluble sugar content; SAA: Soluble amino acid content. * and ** mean significantly different at the 0.05 and 0.01 probability levels, respectively. The same as below"

Table 1

Statistical analysis on basic traits of 200 cotton varieties (lines)"

指标
Parameter
均值
Mean
中位数
Median
变异系数
Coefficient variation
标准差
Standard deviation
最小值
Minimum
最大值
Maximum
偏度
Skewness
峰度
Kurtosis
百粒重HGW (g) 9.71 9.50 11.12 1.08 7.13 12.98 0.41 0.07
出苗率ER (%) 94.34 95.00 6.53 6.16 85.00 100.00 -0.84 -0.36
下胚轴长度HL (cm) 10.11 10.10 6.82 0.69 8.20 12.68 0.14 0.52
根长RL (cm) 12.14 12.20 10.63 1.29 8.27 15.81 -0.32 0.22
总长TL (cm) 22.24 22.30 7.46 1.66 16.60 26.85 -0.2 0.24
萌发率GR (%) 99.05 100.00 3.12 3.09 60.00 100.00 -6.43 61.68
萌发指数GI 14.72 14.50 18.89 2.78 7.00 20.00 0.11 -0.95
干物重DW (mg/plant) 70.32 69.00 14.60 10.27 46.00 103.90 0.45 -0.07
可溶性糖含量SS (mg·g-1) 49.92 47.45 12.70 6.34 32.14 66.50 0.15 0.035
游离氨基酸含量SAA (mg·g-1) 28.12 27.65 17.99 5.06 14.73 40.30 -0.31 -0.07

Table 2

Difference analysis of germination rate of 20 cotton varieties after chilling treatment for different time"

低温处理
Chilling stress
时间
Time (d)
最小值
Minimum (%)
最大值
Maximum (%)
平均值
Mean
变异系数
Coefficient variation (%)
恒定低温
Constant chilling
1 59.26 99.97 85.89 17.02
3 36.19 98.25 69.81 37.29
5 0.00 68.03 40.77 88.04
7 0.00 15.56 2.84 202.56
9 0.00 24.44 2.19 265.24
昼夜变温
Diurnal variation of chilling
10 13.73 100.00 66.22 47.52
12 20.95 96.30 60.51 50.29
13 0.00 90.04 43.38 107.41
14 0.00 84.44 23.02 126.45
16 0.00 59.26 23.23 123.32

Table 3

Difference analysis of parameters of cotton materials at seedling emergence stage under chilling stress"

CC:恒定低温;DVC:昼夜变温。下同

CC: Constant chilling; DVC: Diurnal variation of chilling. The same as below

指标
Parameter
均值
Mean
中位数
Median
变异系数
Coefficient variation
(%)
标准差
Standard deviation
最小值
Minimum
最大值
Maximum
偏度
Skewness
峰度
Kurtosis
ER-CC 0.66 0.67 21.21 0.14 0.00 0.99 -0.32 -0.25
HL-CC 0.70 0.70 7.14 0.05 0.52 0.83 -0.16 0.43
RL-CC 0.46 0.44 21.74 0.10 0.31 0.94 1.76 4.71
TL-CC 0.58 0.57 10.34 0.06 0.42 0.77 0.57 0.56
WD-CC 0.74 0.74 10.81 0.08 0.56 0.93 0.21 -0.09
SAA-CC 0.85 0.89 23.53 0.20 0.30 1.36 -0.41 -0.35
SS-CC 1.24 1.23 11.29 0.14 0.79 1.95 0.88 3.84
ER-DVC 0.63 0.64 25.40 0.16 0.16 0.96 -0.34 -0.06
HL-DVC 0.78 0.79 7.69 0.06 0.65 0.89 -0.15 0.29
RL-DVC 0.66 0.65 19.70 0.13 0.41 1.12 0.57 1.80
TL-DVC 0.72 0.71 11.11 0.08 0.56 1.00 0.51 1.51
WD-DVC 0.73 0.73 12.33 0.09 0.51 0.92 0.05 -0.05
GI-DVC 0.35 0.32 62.86 0.22 0.00 0.63 2.11 4.38
GR-DVC 0.12 0.08 108.33 0.13 0.02 0.81 0.50 -0.41

Table 4

The cold resistance coefficients of the cotton materials and their distribution in different intervals"

指标
Parameter
0<CTC≤0.2 0.2<CTC≤0.4 0.4<CTC≤0.6 0.6<CTC≤0.8 0.8<CTC≤1.2 1.2<CTC≤1.8
次数
Times
频次
Freq. (%)
次数
Times
频次
Freq. (%)
次数
Times
频次
Freq. (%)
次数
Times
频次
Freq. (%)
次数
Times
频次
Freq. (%)
次数
Times
频次
Freq. (%)
ER-CC 38 19.00 40 20.00 52 26.00 41 20.50 29 14.50 0 0.00
HL-CC 0 0.00 0 0.00 7 3.50 188 94.00 5 2.50 0 0.00
RL-CC 0 0.00 54 27.00 132 66.00 12 6.00 2 1.00 0 0.00
TL-CC 0 0.00 137 68.50 63 31.50 0 0.00 0 0.00 0 0.00
DW-CC 0 0.00 0 0.00 6 3.00 148 74.00 46 23.00 0 0.00
SS-CC 0 0.00 0 0.00 0 0.00 1 0.50 74 37.00 125 62.50
SAA-CC 0 0.00 3 1.50 20 10.00 46 23.00 125 62.50 6 3.00
ER-DVC 2 1.00 13 6.50 68 34.00 90 45.00 27 13.50 0 0.00
HL-DVC 0 0.00 0 0.00 0 0.00 135 67.50 65 32.50 0 0.00
RL-DVC 0 0.00 0 0.00 55 27.50 130 65.00 15 7.50 0 0.00
TL-DVC 0 0.00 0 0.00 6 3.00 177 88.50 17 8.50 0 0.00
DW-DVC 0 0.00 0 0.00 10 5.00 154 77.00 36 18.00 0 0.00
GI-DVC 170 85.00 17 8.50 11 5.50 2 1.00 0 0.00 0 0.00
GR-DVC 46 23.00 87 43.50 43 21.50 23 11.50 1 0.50 0 0.00
CTC:耐冷系数。下同 CTC: Cold tolerance coefficient. The same as below

Fig. 2

Effects of chilling damage on each parameter at seeding stage of cotton"

Table 5

Power vector (PV), characteristic value, contribution rate and cumulative contribution rate of six principal components"

性状
Trait
特征向量Power vector
PV1 PV2 PV3 PV4 PV5 PV6
ER-CC 0.52 0.00 0.11 0.42 0.35 0.05
HL-CC 0.87 0.17 -0.02 -0.04 -0.24 0.09
RL-CC 0.81 0.20 0.01 -0.25 0.045 -0.09
TL-CC 0.94 0.23 -0.02 -0.14 -0.11 0.00
DW-CC 0.69 0.15 0.17 -0.19 -0.08 0.06
SS-CC 0.31 0.10 -0.09 0.56 0.13 -0.07
SAA-CC -0.30 0.07 0.39 -0.27 -0.33 -0.37
ER-DVC -0.10 0.46 -0.25 0.58 -0.24 0.13
HL-DVC -0.10 0.65 -0.25 0.08 -0.15 0.05
RL-DVC -0.23 0.77 -0.36 -0.22 0.07 -0.03
TL-DVC -0.23 0.85 -0.36 -0.21 0.03 -0.01
DW-DVC -0.11 0.28 0.09 -0.17 0.82 -0.13
GI-DVC -0.12 0.50 0.80 0.07 -0.02 0.12
GR-DVC -0.18 0.55 0.73 0.17 -0.02 0.05
HGW -0.15 -0.09 0.04 -0.25 0.06 0.89
特征值 Characteristic value 3.40 2.74 1.76 1.24 1.10 1.01
方差贡献率 Contribution rate (%) 22.65 18.25 11.74 8.26 7.35 6.72
累积贡献率
Cumulative contribution rate (%)
22.65 40.90 52.64 60.90 68.25 74.98

Fig. 3

Cold tolerance evaluation of cotton varieties (lines) based on D value A: Cold tolerance phylogenetic map; B: Geographical distribution of varieties (lines) in five groups. FR: Foreign regions; NEM: Northern early maturity; NW: Northwest inland region; YR: Yellow River region; YZR: Yangtze River region"

Table 6

Prediction model of cold tolerance of cotton varieties (lines)"

X1:恒定低温下出苗率;X4:恒定低温下的棉苗总长;X5:恒定低温下的干物重;X6:恒定低温下的可溶性糖含量;X14:昼夜变温下的萌发率

X1: ER-CC; X4: TL-CC; X5: DW-CC; X6: SS-CC; X14: GR-DVC

多元回归方程
Multiple regression equation
相关系数
r
判定系数
R2
F
F value
P
P value
Y=-3.28+0.80X4 0.80 0.64 342.76 ≤0.001
Y=-3.94+0.82X4+0.42X14 0.90 0.81 409.48 ≤0.001
Y=-3.84+0.71X4+0.41X14+0.31X1 0.94 0.87 506.66 ≤0.001
Y=-4.10+0.58X4+0.40X14+0.32X1+0.22X5 0.96 0.92 537.36 ≤0.001
Y=-5.02+0.54X4+0.39X14+0.29X1+0.23X5+0.17X6 0.97 0.94 654.30 ≤0.001

Fig. 4

The effect of early sowing in the field on the germplasm emergence rate A: Emergence rate in Field; B: Correlation analysis between the comprehensive value of varieties (lines) obtained under indoor conditions and field emergence rate; D: The comprehensive value of each parameter under CC and DVC stress; D-CC: The comprehensive value of each parameter under CC stress; D-DVC: The comprehensive value of each parameter under DVC stress; ER-2021: The emergence rate of the tested material in 2021; ER-2022: The emergence rate of the tested material in 2022; C: Field temperature in 2021; D: Field temperature in 2022; Date (month/day)"

[1] KARGIOTIDOU A, DELI D, GALANOPOULOU D, TSAFTARIS A, FARMAKI T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). Journal of Experimental Botany, 2008, 59: 2043-2056.
doi: 10.1093/jxb/ern065
[2] 范文波, 江煜, 吴普特, 马枫梅, 刘兵. 新疆石河子垦区50年气候变化对棉花种植的影响. 干旱地区农业研究, 2011, 29: 244-248.
FAN W B, JIANG Y, WU P T, MA F M, LIU B. Impacts of climate change on planting proportion of cotton in Shihezi area in the recent 50 years. Agricultural Research in the Arid Areas, 2011, 29: 244-248. (in Chinese)
[3] RUELLAND E, VAULTIER M N, ZACHOWSKI A, VAUGHAN H. Cold signalling and cold acclimation in plants. Advances in Botanical Research, 2009, 49: 35-150.
[4] JOUYBAN Z, HASANZADE R, SHARAFI S. Chilling stress in plants. International Journal of Agriculture and Crop Sciences, 2013, 5(24): 2961-2968.
[5] LAUTERBACH B, KRIEG D R, JIVIDEN G. Fatty acid composition of lipid fractions in germination cotton as affected by temperature. Proceeding, 1999, 1: 564-565.
[6] 王钰静, 谢磊, 李志博, 魏亦农, 林海荣. 低温胁迫对北疆棉花种子萌发的影响及其耐冷性差异评价. 种子, 2014, 5(5): 74-77.
WANG Y J, XIE L, LI Z B, WEI Y N, LIN H R. Effects of low temperature stress to germination of cotton seeds and evaluation of their cold resistance in Northern Xinjiang. Seed, 2014, 5(5): 74-77. (in Chinese)
[7] 毛树春. 中国棉花栽培学. 上海: 上海科学技术出版社, 2013.
MAO S C, Chinese Cotton Cultivation. Shanghai: Shanghai Science and Technology Press, 2013. (in Chinese)
[8] 雷斌, 李进, 段留生, 张鹏忠, 李杰, 谭伟明. 种衣剂对低温处理下棉花胚根及幼苗外部形态和超微结构的影响. 中国农业气象, 2017, 38(4): 248-256.
LEI B, LI J, DUAN L S, ZHANG P Z, LI J, TAN W M. Effect of seed coating agents on external morphology and ultrastructure of cotton radicles and seedlings under low temperature treatments. Chinese Journal of Agrometeorology, 2017, 38(4): 248-256. (in Chinese)
[9] 刘杰, 张春宵, 李淑芳, 郑大浩, 梁烜赫, 王宇, 刘文平, 刘学岩, 曹铁华, 李晓辉. 95份玉米自交系萌发期耐冷性鉴评与遗传基础分析. 分子植物育种, 2021, 19(7): 2391-2401.
LIU J, ZHANG C X, LI S F, ZHENG D H, LIANG X H, WANG Y, LIU W P, LIU X Y, CAO T H, LI X H. Evaluation on chilling tolerance of ninety-five inbred lines at maize germination stage and analysis on genetic basis. Molecular Plant Breeding, 2021, 19(7): 2391-2401. (in Chinese)
[10] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 粒用高粱种质资源耐冷性分析. 种子, 2021, 40(11): 40-45+60.
XU J X, DING Y Q, CAO N, CHENG B, GAO X, ZOU G H, ZHANG L Y. Analysis of cold tolerance of grain sorghum germplasm resources. Seed, 2021, 40(11): 40-45+60. (in Chinese)
[11] 韩德志, 孙如建, 徐江源, 闫晓飞, 贾鸿昌, 柴燊, 刘章雄, 鲁玉清, 孙宾成, 鹿文成, 邱丽娟. 中欧大豆种质资源耐冷性综合评价. 植物遗传资源学报, 2022, 23(5): 1383-1392.
HAN D Z, SUN R J, XU J Y, YAN X F, JIA H C, CHAI S, LIU Z X, LU Y Q, SUN B C, LU W C, QIU L J. Comprehensive Evaluation of Soybean Germplasm Resources Collected from China and Europe under Cold Conditions. Journal of Plant Genetic Resources, 2022, 23(5): 1383-1392. (in Chinese)
[12] 王俊娟. 棉花抗冷性鉴定及相关基因的表达研究[D]. 北京: 中国农业科学院, 2016.
WANG J J. Identification of the chilling resistance of cotton and the expression of cold resistance related genes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[13] 张陇艳, 程功敏, 魏恒玲, 王寒涛, 芦建华, 马峙英, 喻树迅. 陆地棉种子萌发期对低温胁迫的响应及耐冷性鉴定. 中国农业科学, 2021, 54(1): 19-33.
ZHANG L Y, CHENG G M, WEI H L, WANG H T, LU J H, MA Z Y, YU S X. Chilling tolerance identification and response to cold stress of Gossypium hirsutum varieties (lines) during germination stage. Scientia Agricultura Sinica, 2021, 54(1): 19-33. (in Chinese)
[14] 孙存华, 毛健民, 白宝璋, 白岩. 昼夜变温促进小麦幼苗生长的酶学研究. 吉林农业大学学报, 2000, 22(1): 30-33.
SUN C H, MAO J M, BAI B Z, BAI Y. Studies of enzymology on diurnal change of temperature accelerating the rate of wheat seedling growth. Journal of Jilin Agricultural University, 2000, 22(1): 30-33. (in Chinese)
[15] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选. 作物学报, 2021, 47(9): 1753-1767.
doi: 10.3724/SP.J.1006.2021.04182
ZHANG H, JIANG C J, YIN D M, DONG J L, REN J Y, ZHAO X H, ZHONG C, WANG X G, YU H Q. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut. Acta Agronomica Sinica, 2021, 47(9): 1753-1767. (in Chinese)
doi: 10.3724/SP.J.1006.2021.04182
[16] SHIM J, GANNABAN R B, REYES B G D L, ANGELES-SHIM R B. Identification of novel sources of genetic variation for the improvement of cold germination ability in upland cotton(Gossypium hirsutum). Euphytica, 2019, 215(11): 1-16.
doi: 10.1007/s10681-018-2319-8
[17] 徐建伟, 张晨, 曾晓燕, 张小均, 李志博, 魏亦农. 近十年新疆北疆主栽棉花种子低温萌发能力差异评价. 新疆农业科学, 2017, 54(9): 1569-1578.
doi: 10.6048/j.issn.1001-4330.2017.09.001
XU J W, ZHANG C, ZENG X Y, ZHANG X J, LI Z B, WEI Y N. Differential evaluation of low temperature germination ability of main cotton seeds in northern Xinjiang in recent 10 years. Xinjiang Agricultural Sciences, 2017, 54(9): 1569-1578. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2017.09.001
[18] 高利英, 邓永胜, 韩宗福, 孔凡金, 申贵芳, 李汝忠, 尹燕枰. 黄淮棉区棉花品种种子萌发期低温耐受性评价. 棉花学报, 2018, 30(6): 455-463.
GAO L Y, DENG Y S, HAN Z F, KONG F J, SHEN G F, LI R Z, YIN Y P. Evaluation of the low-temperature tolerance of cotton varieties in the Huang-Huai Region during seed germination. Cotton Science, 2018, 30(6): 455-463. (in Chinese)
[19] FALSTER D S, WESTOBY M. Plant height and evolutionary games. Trends in Ecology & Evolution, 2003, 18(7): 337-343.
doi: 10.1016/S0169-5347(03)00061-2
[20] 夏军, 时晓娟, 郝先哲, 李楠楠, 田雨, 李军宏, 罗宏海. 低温对不同基因型棉种萌发过程中酶活性及激素含量的影响. 植物生理学报, 2019, 55(9): 1291-1305.
XIA J, SHI X J, HAO X Z, LI N N, TIAN Y, LI J H, LUO H H. Effects of low temperature on enzyme activity and hormone content in germination of different genotypes of cotton seeds. Plant Physiology Journal, 2019, 55(9): 1291-1305. (in Chinese)
[21] ZHANG H, ZHAO Y, ZHU J K. Thriving under Stress: How plants balance growth and the stress response. Developmental Cell, 2020, 55(5): 529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694
[22] ZHU J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029
[23] ZHANG W, XU W, ZHANG H, LIU X, CUI X, LI S, SONG L, ZHU Y, CHEN X, CHEN H. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theoretical and Applied Genetics, 2021, 134(5): 1329-1341.
doi: 10.1007/s00122-021-03774-6 pmid: 33507340
[24] 于奇, 曹亮, 金喜军, 邹京南, 王孟雪, 张明聪, 任春元, 张玉先. 低温胁迫下褪黑素对大豆种子萌发的影响. 大豆科学, 2019, 38(1): 56-62.
YU Q, CAO L, JIN X J, ZOU J N, WANG M X, ZHANG M C, REN C Y, ZHANG Y X. Effects of melatonin on seed germination of soybean under low temperature stress. Soybean Science, 2019, 38(1): 56-62. (in Chinese)
[25] 盖志佳, 张敬涛, 刘婧琦, 蔡丽君, 杜佳兴, 陈磊. 耐低温大豆品种(系)的筛选与研究. 中国种业, 2018(6): 57-60.
GAI Z J, ZHANG J T, LIU J Q, CAI L J, DU J X, CHEN L. Screening and research on low temperature resistant soybean varieties (lines). China Seed Industry, 2018(6): 57-60. (in Chinese)
[26] 于雅雯, 余国新, 魏敬周. 供给侧改革背景下新疆棉花生产布局空间变化及影响因素分析. 干旱区资源与环境, 2019, 33(5): 74-80.
YU Y W, YU G X, WEI J Z. Analysis of spatial distribution and influencing factors of cotton production lay-out in Xinjiang under the backdrop of supply side reform. Journal of Arid Land Resources and Environment, 2019, 33(5): 74-80. (in Chinese)
[27] MARTÍNEZ-BERDEJA A, STITZER M C, TAYLOR M A, OKADA M, EZCURRA E, RUNCIE D E, SCHMITT J. Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA, 2020, 117: 2526-2534.
[28] LV Y, GUO Z L, LI X K, YE H Y, XIONG L Z. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Plant, Cell & Environment, 2016, 39: 556-570.
[29] INOSTROZA L, BHAKTA M, ACUÑA H, VÁSQUEZ C, IBÁÑEZ J, TAPIA G, MEI W, KIRST M, RESENDE M, MUNOZ P. Understanding the complexity of cold tolerance in white clover using temperature gradient locations and a GWAS approach. Plant Genome, 2018, 11: 3835.
[30] 王伟平, 宋子超, 薄凯亮, 董邵云, 魏爽, 苗晗, 李锦斌, 张圣平, 顾兴芳. 黄瓜核心种质幼苗耐低温性评价及GWAS分析. 植物遗传资源学报, 2019, 20(6): 1606-1612.
WANG W P, SONG Z C, BO K L, DONG S Y, WEI S, MIAO H, LI J B, ZHANG S P, GU X F. Evaluation and genome-wide association study (GWAS) of low-temperature tolerance at seedling stage in cucumber core germplasm. Journal of Plant Genetic Resources, 2019, 20(6): 1606-1612. (in Chinese)
[1] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[2] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[3] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[4] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[5] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[6] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[7] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[8] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[9] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[10] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[11] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[12] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
[13] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
[14] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[15] ZHANG QiKai,XING ZhenLong,WU ShengYong,XU RuiRui,LEI ZhongRen. Response of Liriomyza trifolii to Cold Acclimation and Differences of Cold Tolerance Among Different Populations [J]. Scientia Agricultura Sinica, 2021, 54(13): 2781-2788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!