Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 390-402.doi: 10.3864/j.issn.0578-1752.2022.02.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Fissure Development of Three Japonica Rice Grain during Water Desorption

SHAO XiaoLong(),XU Wen,WANG Xiao,YANG XiaoJing,SHEN Fei,LIU Qin   

  1. College of Food Science and Engineering, Nanjing University of Finance and Economics/The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023
  • Received:2021-05-28 Accepted:2021-08-10 Online:2022-01-16 Published:2022-01-26

Abstract:

【Objective】 Based on the explanation of food moisture adsorption/desorption, were used to detect fissures and moisture in japonica rice. The aim of this study was to investigate the change of grain kernel fissures and to summarize the development law for the fissures in grain kernels. 【Method】Three japonica rice, Ruanyu, Huaidao 5 and Nanjing 5055 were investigated. The japonica rice kernels with fissures and the degree of fissures were detected by X-ray imaging technology. The microstructure of fissures in Nanjing 5055 was observed by scanning electron microscope. Water characteristics in three japonica rice grains were measured by LF-NMR technology. The relationship between kernel fissure and water characteristics was analyzed. 【Result】 A model based on the low-field nuclear magnetic data accurately predicted the moisture content of three japonica rice. The number of fissures increased with increasing the degree of water desorption of the grains. The percentage of fissure kernel for the rice varieties Ruanyu, Huaidao 5, and Nanjing 5055 increased significantly when the moisture content was lower than 14.96%, 15.21%, and 17.84%, respectively. The percentage of fissure kernel decreased with moisture content in paddy rice kernels. The microstructure of starch and cell on the internal fracture surface of cracked kernels were very different from that of the control sample. The water desorption led to the production of starch granules and cell fracture surfaces, and this fracture surface was the initial fissure. When the number of fissures continued to increase, the initial fissures developed into observable fissures. These fissures were developed from slight level to moderate and even severe level. The water desorption led to the shortening of the transverse relaxation time T21 and T22 of the grain kernel. The content of “bounded water” decreased, whereas the content of “free water” initially decreased and then increased. There was a migration and transformation of water molecules between the bounded and free water. Therefore, in addition to the decrease of moisture content, the molecular mobility of each water component decreased, and the decrease of “bound water” content was also an important feature of water change in the process of water desorption of paddy rice. Correlation analysis between fissures and moisture showed that fissures changes were related to changes in the transverse relaxation time of each water component and “bound water” content, but not related to the “free water” content. 【Conclusion】This study proposed a method to classify grain kernel into four types based on the number and types of cracks. The change of crack type in the process of water decomposition was closely related to water distribution. The migration and transformation of grain moisture, especially the decrease of bound water, were the important factors affecting the changes of grain fissures.

Key words: Japonica rice, moisture desorption, fissure, X-ray imaging, nuclear magnetic resonance, scanning electron microscope

Fig. 1

Four types of fissure in paddy rice kernels by X-ray images A: Intact kernel; B: Slightly fissure kernel; C: Moderately fissure kernel; D: Severe fissure kernel"

Fig. 2

Changes of fissure in paddy rice kernels during moisture desorption"

Fig. 3

Microstructure of fissure in Nanjing 5055 during moisture desorption at the cell level A, B, C, D, E, F, G, H represented microstructure of fissure in Nanjing 5055 at the cell level and their moisture content was 25.59%, 22.39%, 20.09%, 17.84%, 15.18%, 12.01%, 10.28%, and 8.06%, respectively"

Fig. 4

Microstructure of fissure in Nanjing 5055 during moisture desorption at the starch granule level A, B, C, D, E, F, G, H represented microstructure of fissure in Nanjing 5055 at the starch granule level and their moisture content was 25.59%, 22.39%, 20.09%, 17.84%, 15.18%, 12.01%, 10.28%, and 8.06%, respectively"

Fig. 5

Weighed initial transverse relaxation strength for paddy rice kernels as a function of moisture content A: Ruanyu; B: Huaidao 5; C: Nanjing 5055"

Fig. 6

The inversion spectrum of normalization LF-NMR signal intensity for one gram of paddy rice kernels during moisture desorption and transverse relaxation time T2 A: Ruanyu; B: Huaidao 5; C: Nanjing 5055. MC: Moisture content"

Table 1

Transverse relaxation time T2 for paddy rice kernels during moisture desorption"

水分含量
Moisture content (%)
‘软玉’Ruanyu ‘淮稻5号’Huaidao 5 ‘南粳5055’Nanjing 5055
T21 (ms) T22 (ms) T21 (ms) T22 (ms) T21 (ms) T22 (ms)
25 2.42±0.13a 138.49±0.00a 2.31±0.12a 135.45±6.78a 2.36±0.00a 132.41±8.32a
22 1.71±0.09b 123.29±0.00b 1.67±0.00b 123.29±0.00bc 1.83±0.09b 126.33±6.79ab
20 1.67±0.00b 123.29±0.00b 1.49±0.00c 132.41±8.33ab 1.52±0.08c 117.87±7.41bc
18 1.32±0.00c 117.87±7.41bc 1.42±0.09c 123.29±0.00bc 1.32±0.00d 117.87±7.41bc
15 1.07±0.06d 112.46±6.05cd 1.05±0.00d 117.87±7.41cd 1.10±0.07e 115.16±7.41c
12 0.91±0.46e 107.34±5.39de 0.93±0.00e 112.46±6.05cde 0.93±0.00f 107.34±5.38cd
10 0.76±0.04f 100.38±9.61ef 0.74±0.00f 110.05±9.05de 0.76±0.04g 102.79±10.26d
8 0.74±0.00f 96.68±10.12f 0.66±0.00g 103.08±13.87e 0.74±0.00g 97.97±8.06d

Table 2

The correlation between fissure data and transverse relaxation parameters of paddy rice kernels"

品种
Variety
水分
含量
MC
横向弛
豫时间
T21
横向弛
豫时间
T22
峰面积
A21
峰面积
A22
峰比例
P21
峰比例
P22
裂纹率
The percentage
of fissured kernel
轻度
裂纹率 SL-PFK
中度
裂纹率 MO-PFK
重度
裂纹率 SE-PFK
品种 Variety 1
水分含量
MC
0.012 1
横向弛豫
时间 T21
-0.003 0.967** 1
横向弛豫
时间 T22
0.004 0.830** 0.802** 1
峰面积 A21 -0.025 0.997** 0.964** 0.824** 1
峰面积 A22 0.057 -0.139 -0.050 -0.335** -0.123 1
峰比例 P21 -0.021 -0.913** -0.959** -0.726** -0.903** -0.025 1
峰比例 P22 0.020 0.913** 0.959** 0.726** 0.903** 0.024 -1.000** 1
裂纹率
The percentage
of fissured
kernel (PFK)
0.068 -0.929** -0.864** -0.743** -0.932** 0.107 0.793** -0.793** 1
轻微裂纹率
SL-PFK
-0.100 -0.847** -0.789** -0.628** -0.840** -0.025 0.751** -0.750** 0.850** 1
中度裂纹率 MO-PFK 0.043 -0.877** -0.831** -0.719** -0.883** 0.101 0.780** -0.780** 0.946** 0.727** 1
重度裂纹率
SE-PFK
0.231* -0.766** -0.703** -0.648** -0.777** 0.210* 0.605** -0.604** 0.886** 0.528** 0.854** 1
[1] 李阳. 稻谷吸附解吸和玻璃化转变对裂纹的影响研究[D]. 吉林: 吉林大学, 2016.
LI Y. The research of the effection of adsorption and desorption and glass transition of rough rice to fissures[D]. Jilin: Jilin University, 2016. (in Chinese)
[2] ZHANG Q, YANG W Q, HOWARD L, EARP C F. Tracing fissure information by scanning electron microscopy characterization of naturally fissured surfaces of rice kernels. Transactions of the ASAE, 2003, 46(6):1583-1588.
doi: 10.13031/2013.15619
[3] BUGGENHOUT J, BRIJS K, CELUS I, DELCOUR J A. The breakage susceptibility of raw and parboiled rice: A review. Journal of Food Engineering, 2013, 117(3):304-315.
doi: 10.1016/j.jfoodeng.2013.03.009
[4] BANASZEK M M, SIEBENMORGEN T J. Moisture adsorption rates of rough rice. Transactions of the ASAE, 1990, 33(4):1257-1262.
doi: 10.13031/2013.31465
[5] LAN Y, KUNZE O R. Moisture adsorption rates by different forms of rice. Transactions of the ASAE, 1996, 39(3):1035-1038.
doi: 10.13031/2013.27593
[6] 杨国峰. 稻谷裂纹产生机理的探讨. 食品科学, 2004, 25(10):384-387.
YANG G F. A summary of mechanism about fissure formation in rice kernel. Food Science, 2004, 25(10):384-387. (in Chinese)
[7] KONDŌ MANTARŌ, OKAMURA TAMOTSU. Untersuchungen der verschiedenen Reiskörner geringerer Qualität. IV. Der durch die Feuchtigkeitszunahme verursachte Querriss (Doware) des Reiskornes. Berichte Des Ohara Instituts Für Landwirtschaftliche Forschungen, 1930, 4:429-446. (in Japanese)
[8] SHIMIZU N, HAQUE M A, ANDERSSON M, KIMURA T. Measurement and fissuring of rice kernels during quasi-moisture sorption by image analysis. Journal of Cereal Science, 2008, 48(1):98-103.
doi: 10.1016/j.jcs.2007.08.009
[9] BORISJUK, ROLLETSCHEK, NEUBERGER. Surveying the plant's world by magnetic resonance imaging. The Plant Journal, 2012, 70(1):129-146.
doi: 10.1111/j.1365-313X.2012.04927.x
[10] 杨慧萍, 李冬珅, 乔琳, 苏安祥, 胡婉君. 基于低场核磁研究稻谷吸附/解吸过程水分分布变化. 中国粮油学报, 2016, 31(12):6-11.
YANG H P, LI D S, QIAO L, SU A X, HU W J. The change of water distribution in the process of adsorption /desorption in japonica by LF-NMR. Journal of the Chinese Cereals and Oils Association, 2016, 31(12):6-11. (in Chinese)
[11] 邵小龙, 汪楠, 时小转, 沈飞, 宋伟, 张强. 水稻生长过程中籽粒水分状态和横向弛豫特性分析. 中国农业科学, 2017, 50(2):240-249.
SHAO X L, WANG N, SHI X Z, SHEN F, SONG W, ZHANG Q. Analysis of moisture state and transverse relaxation characteristics of grains during the growth process of rice. Scientia Agricultura Sinica, 2017, 50(2):240-249. (in Chinese)
[12] 汪楠, 邵小龙, 时小转, 沈飞, 宋伟. 稻谷低温低湿干燥特性与水分迁移分析. 食品工业科技, 2017, 38(5):114-119.
WANG N, SHAO X L, SHI X Z, SHEN F, SONG W. Analysis of drying characteristics and moisture migration for paddy rice under low temperatures and low relative humidities. Science and Technology of Food Industry, 2017, 38(5):114-119. (in Chinese)
[13] 李东, 谭书明, 陈昌勇, 邓毅, 张程榕, 王建明. LF-NMR对稻谷干燥过程中水分状态变化的研究. 中国粮油学报, 2016, 31(7):1-5.
LI D, TAN S M, CHEN C Y, DENG Y, ZHANG C R, WANG J M. LF-NMR study on variations of different moisture states during the process of rice drying. Journal of the Chinese Cereals and Oils Association, 2016, 31(7):1-5. (in Chinese)
[14] 郑先哲, 周修理, 夏吉庆. 干燥条件对稻谷加工品质影响的研究. 东北农业大学学报, 2001, 32(1):48-52.
ZHENG X Z, ZHOU X L, XIA J Q. The study on drying condition influcing paddy mill quality. Journal of Northeast Agricultural University, 2001, 32(1):48-52. (in Chinese)
[15] 张习军, 熊善柏, 赵思明. 微波处理对稻谷品质的影响. 中国农业科学, 2009, 42(1):224-229.
ZHANG X J, XIONG S B, ZHAO S M. Effect of microwave on paddy quality. Scientia Agricultura Sinica, 2009, 42(1):224-229. (in Chinese)
[16] 万忠民, 马佳佳, 鞠兴荣, 许进田, 张荣广. 流化床和薄层热风干燥对稻谷品质的影响. 食品科学, 2014, 35(6):6-11.
WAN Z M, MA J J, JU X R, XU J T, ZHANG R G. Effect of fluidized-bed drying and thin layer-hot-air drying on the quality of rice. Food Science, 2014, 35(6):6-11. (in Chinese)
[17] 吴中华, 刘兵, 王丹丹, 康宁, 赵丽娟. 稻谷干燥缓苏特性与裂纹产生规律研究. 农业机械学报, 2018, 49(5):368-374.
WU Z H, LIU B, WANG D D, KANG N, ZHAO L J. Drying- tempering characteristics and fissuring law of paddy rice kernel. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5):368-374. (in Chinese)
[18] 夏宝林, 杨国峰, 刘强, 闻韬. 不同缓苏条件对稻谷爆腰率影响的研究. 粮食储藏, 2013, 42(5):44-48.
XIA B L, YANG G F, LIU Q, WEN T. The influence of different tempering condition on fissure ratio of rice. Grain Storage, 2013, 42(5):44-48. (in Chinese)
[19] HOGAN J T, LARKIN R A, MACMASTERS M M. Cereal Quality Measurement, X-Ray and photomicrographic examination of rice. Journal of Agricultural and Food Chemistry, 1954, 2(24):1235-1239.
doi: 10.1021/jf60044a007
[20] MENEZES N L D, CICERO S M, VILLELA F A, BORTOLOTTO P B. Using X rays to evaluate fissures in rice seeds dried artificially. Revista Brasileira De Sementes, 2012, 34(1):70-77.
doi: 10.1590/S0101-31222012000100009
[21] ODEK Z R, PRAKASH B, SIEBENMORGEN T J. X-Ray detection of fissures in rough rice kernels. Applied Engineering in Agriculture, 2017, 33(5):721-728.
doi: 10.13031/aea.12369
[22] 郑华东, 刘木华, 吴彦红, 黎静. 基于计算机视觉的大米裂纹检测研究. 农业工程学报, 2006, 22(7):129-133.
ZHENG H D, LIU M H, WU Y H, LI J. Rice fissure detection using computer vision. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(7):129-133. (in Chinese)
[23] MARCONE M F, WANG S, ALBABISH W, NIE S P, SOMNARAIN D, HILL A. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Research International, 2013, 51(2):729-747.
doi: 10.1016/j.foodres.2012.12.046
[24] 邵小龙, 李云飞. 用低场核磁研究烫漂对甜玉米水分布和状态影响. 农业工程学报, 2009, 25(10):302-306.
SHAO X L, LI Y F. Effects of blanching on water distribution and water status in sweet corn investigated by using MRI and NMR. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(10):302-306. (in Chinese)
[25] 宋平, 杨涛, 王成, 潘大宇, 任鹏. 利用低场核磁共振分析水稻种子浸泡过程中的水分变化. 农业工程学报, 2015, 31(15):279-284.
SONG P, YANG T, WANG C, PAN D Y, REN P. Analysis of moisture changes during rice seed soaking process using low-field NMR. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15):279-284. (in Chinese)
[26] 袁建, 赵腾, 丁超, 邢常瑞, 张斌, 陈尚兵, 何荣, 鞠兴荣. 微波处理对稻谷品质及脂肪酶活性的影响. 中国农业科学, 2018, 51(21):4131-4142.
YUAN J, ZHAO T, DING C, XING C R, ZHANG B, CHEN S B, HE R, JU X R. Effects of microwave treatments on rice quality and lipase activity. Scientia Agricultura Sinica, 2018, 51(21):4131-4142. (in Chinese)
[27] SHAO X L, XU W, XU S H, XING C R, DING C, LIU Q. Time-Domain NMR applied to Sitophilus zeamais motschulsky/wheat detection. Journal of Agricultural and Food Chemistry, 2019, 67:12565-12575.
doi: 10.1021/acs.jafc.9b04007
[28] 邵小龙, 宋伟, 李云飞. 粮油食品低场核磁共振检测技术研究进展. 中国粮油学报, 2013, 28(7):114-118.
SHAO X L, SONG W, LI Y F. Research process of low-field nuclear magnetic resonance (LF-NMR) detection technology in grain and oil food. Journal of the Chinese Cereals and Oils Association, 2013, 28(07):114-118. (in Chinese)
[29] COURTOIS F, FAESSEL M, BONAZZI C. Assessing breakage and cracks of parboiled rice kernels by image analysis techniques. Food Control, 2010, 21(4):567-572.
doi: 10.1016/j.foodcont.2009.08.006
[30] KUNZE O R. Moisture adsorption influences on rice. Journal of Food Process Engineering, 1977, 1(2):167-181.
[31] KUNZE O R, PRASAD S. Grain Fissuring Potentials in Harvesting and Drying of Rice. Transactions of the ASAE, 1978, 21(2):361-366.
doi: 10.13031/2013.35304
[1] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[2] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
[3] MA HuiZhen,CHEN XinYi,WANG ZhiJie,ZHU Ying,JIANG WeiQin,REN GaoLei,MA ZhongTao,WEI HaiYan,ZHANG HongCheng,LIU GuoDong. Analysis on Appearance and Cooking Taste Quality Characteristics of Some High Quality Japonica Rice in China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1338-1353.
[4] XU FangFu,BIAN JinLong,HAN Chao,CHEN ZhiQing,LIU GuoDong,XING ZhiPeng,HU YaJie,WEI HaiYan,ZHANG HongCheng. Temperature and Light Adaptability of High-Quality Japonica Rice and Optimum Seeding Date in Huaibei Region [J]. Scientia Agricultura Sinica, 2021, 54(7): 1365-1381.
[5] JIANG WeiQin,HU Qun,YU Hang,MA HuiZhen,REN GaoLei,MA ZhongTao,ZHU Ying,WEI HaiYan,ZHANG HongCheng,LIU GuoDong,HU YaJie,GUO BaoWei. Effect of One-Time Basal Application of the Mixed Controlled-Release Nitrogen Fertilizer in Japonica Rice with Good Taste Quality [J]. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396.
[6] YAO YiWen,DAI QuanHou,GAN YiXian,GAO RuXue,YAN YouJin,WANG YuHong. Effects of Rainfall Intensity and Underground Hole (Fracture) Gap on Nutrient Loss in Karst Sloping Farmland [J]. Scientia Agricultura Sinica, 2021, 54(1): 140-151.
[7] YIN Min,LIU ShaoWen,CHU Guang,XU ChunMei,WANG DanYing,ZHANG XiuFu,CHEN Song. Differences in Yield and Growth Traits of Different Japonica Varieties in the Double Cropping Late Season in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2020, 53(5): 890-903.
[8] WANG Jia,WANG Pan,FAN Huan,LIU YingHong. Comparison of Metabolic Profile Between Diapause-Destined and Non-Diapause-Destined Pupae of Bactrocera minax [J]. Scientia Agricultura Sinica, 2019, 52(6): 1021-1031.
[9] LI ShuaiLan,SHEN Xiao,ZOU ZhengRong. Effect of Petroleum Ether Extract from Solidago canadensis on Liver of Pomacea canaliculata [J]. Scientia Agricultura Sinica, 2019, 52(15): 2624-2635.
[10] SHAO XiaoLong, WANG Nan, SHI XiaoZhuan, SHEN Fei, SONG Wei, ZHANG Qiang. Analysis of Moisture State and Transverse Relaxation Characteristics of Grains During the Growth Process of Rice [J]. Scientia Agricultura Sinica, 2017, 50(2): 240-249.
[11] YANG Luo-miao, SUN Jian, ZHAO Hong-wei, WANG Jing-guo, LIU Hua-long, ZOU De-tang. QTL Analysis of Heading Date and Yield Traits in Japonica Rice Under Cold Water Stress in Different Years [J]. Scientia Agricultura Sinica, 2016, 49(18): 3489-3503.
[12] WANG Jin-qiu, HE Yi-zhong, XU Kun-yang, LUO Yi, SHENG Ling, LUO Tao, LIU Huan, CHENG Yun-jiang. Characterization of Mature Fruit Surface Waxes of Three Cultivated Citrus Species [J]. Scientia Agricultura Sinica, 2016, 49(10): 1936-1945.
[13] SONG Wei, LI Dong-shen, QIAO Lin, SU An-xiang, HU Wan-jun. Quantitative Analysis of T2 Peak Area and the MRI Images of Japonica Rice with Different Moisture Contents [J]. Scientia Agricultura Sinica, 2015, 48(22): 4529-4538.
[14] SUN Yu-hang, XU Chu-chu, LI Chang-sheng, XIA Cheng, XU Chuang, WU Ling, ZHANG Hong-you. 1H NMR-based Serum Metabolomics Analysis of Dairy Cows with Milk Fever [J]. Scientia Agricultura Sinica, 2015, 48(2): 362-369.
[15] YAN Zhi-Qiang-1, XU Hai-1, MA Zuo-Bin-1, 2 , GAO Dong-Chang-1, XU Zheng-Jin-1. Differential Response of Floret Opening to Exo-Methyl Jasmonate Between Subsp.Indica and Subsp. Japonica in Rice [J]. Scientia Agricultura Sinica, 2014, 47(13): 2529-2540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!