Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1082-1094.doi: 10.3864/j.issn.0578-1752.2022.06.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton

WANG XiuXiu1,2(),XING AiShuang2,YANG Ru2,HE ShouPu2,JIA YinHua2,PAN ZhaoE2,WANG LiRu2,DU XiongMing2(),SONG XianLiang1()   

  1. 1Agronomy College, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271000, Shandong
    2Cotton Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2021-10-26 Accepted:2021-11-19 Online:2022-03-16 Published:2022-03-25
  • Contact: XiongMing DU,XianLiang SONG E-mail:18854889975@163.com;dxm630723@163.com;songxl999@163.com

Abstract:

【Objective】To analyze the fiber quality, yield, and early maturity of Upland cotton germplasm, screen the evaluation indicators comprehensively, establish a reliable evaluation model, and provide theoretical support for developing new Upland cotton varieties.【Method】 A total of 630 Upland cotton accessions selected from various sources were used to investigate 17 traits in 8 environments in three major cotton-growing regions in China. The best linear unbiased prediction (BLUP) was estimated for phenotypic traits by utilizing R package “lme4” and used for further analysis, including correlation analysis, principal component analysis, affiliation function method, cluster analysis and stepwise regression to evaluate population characteristics.【Result】This upland cotton population had high genetic diversity with a diversity index ranging from 1.961 to 2.084, and significant regional specificity existed. The boll number, fiber elongation, spinning consistent index, and short fiber index of this population had considerable variation, while that of fiber length, fiber strength, and growth period traits was lower. Correlation analysis showed significant or highly significant correlations among most traits, and there was a strong correlation among some fiber quality traits. The 17 traits were converted into 6 independent composite indices through principal component analysis with a contribution range of 5.860%-31.044% and a cumulative contribution of 82.642%. Principal component analysis can classify the fiber quality traits, yield traits and agronomic traits in this upland cotton population. The comprehensive evaluation value (F value) of phenotypes was calculated using the affiliation function method, the phenotypes of 17 traits were all significantly correlated with F values. The result demonstrated that the accessions with high F values (mean value of 0.668) had significantly higher yield traits (boll number, boll weight, lint percentage, and seed index), fiber quality traits (fiber length, fiber length uniformity, fiber strength, spinning consistent index, and short fiber index), plant height and fertility traits than those with low F values (mean value of 0.396). Regression equations for eight traits (boll number, boll open date, boll weight, flowering date, lint percentage, plant height, sympodial brand node, and spinning consistent index) as independent variables were established using stepwise regression. Based on the F value, the 630 germplasm were clustered into four categories, the first category was the high-quality fiber type, containing 118 accessions; the second category was the high-yield type, comprising 250 accessions; the third category was the early-maturing type, comprising 51 accessions; the characteristics of the fourth category was between the second and third categories. Finally, 23 better fiber quality and 135 high-yield germplasms were selected for breeding and production.【Conclusion】The phenotypic traits of Upland cotton are geographically specific; it is feasible to use multivariate statistical analysis to comprehensively evaluate Upland cotton germplasm; the whole population can be classified into four categories (high-quality, high-yield, early maturity and other types).

Key words: Gossypium hirsutum Linn., germplasm resources, principal component analysis, cluster analysis, comprehensive evaluation

Table 1

Descriptive indicators of 17 phenotypic traits of nature population in upland cotton"

性状
Traits
最小值
Minimum
最大值
Maximum
均值
Mean
标准差
Standard deviation
方差
Variance
偏度
Skewness
峰度
Kurtosis
变异系数
Coefficient of variation (%)
上四分之一位数
Q1
下四分之一位数
Q3
多样性
指数
H'
吐絮期BOD 124.903 143.797 133.870 2.720 7.396 0.026 1.315 2.031 132.462 135.382 2.019
开花期FD 66.619 76.051 72.190 1.386 1.922 -0.500 0.528 1.920 71.271 73.117 2.053
株高PH 56.812 87.718 72.638 4.348 18.909 -0.048 0.555 5.986 69.935 75.487 2.070
果枝节位SBN 5.904 7.770 6.456 0.174 0.030 0.431 4.774 2.699 6.354 6.572 2.044
铃数BN 9.142 18.224 12.678 1.287 1.658 0.221 0.567 10.156 11.795 13.482 2.068
单铃重BW 3.889 6.623 5.372 0.434 0.188 -0.140 0.259 8.076 5.101 5.658 2.068
果枝数FBN 10.442 11.919 11.207 0.216 0.047 -0.098 0.557 1.926 11.071 11.337 2.049
衣分LP 19.397 42.836 34.727 2.917 8.508 -0.244 1.149 8.400 32.876 36.614 2.056
子指SI 9.209 15.392 11.883 1.089 1.186 0.265 -0.056 9.164 11.078 12.567 2.077
伸长率FE 6.972 13.468 9.456 1.034 1.070 0.094 0.161 10.936 8.809 10.130 2.077
纤维长度FL 23.212 34.985 29.607 1.875 3.516 0.414 0.362 6.334 28.409 30.524 2.037
纤维整齐度FLU 79.915 87.204 84.649 0.958 0.918 -0.536 1.803 1.132 84.138 85.240 2.030
纤维强度FS 24.410 37.517 29.462 1.986 3.945 0.919 0.772 6.742 28.128 30.345 1.962
成熟度MAT 0.821 0.868 0.847 0.008 0.000 -0.186 -0.019 0.965 0.841 0.852 2.084
马克隆值MIC 3.587 5.676 4.580 0.336 0.113 -0.309 0.192 7.337 4.377 4.806 2.012
纺纱均匀性指数SCI 80.190 179.508 136.565 14.856 220.706 0.477 0.593 10.878 127.338 143.745 2.016
短绒率SFI 3.244 10.985 5.144 0.751 0.564 0.698 7.195 14.603 4.788 5.559 1.961

Table 2

Differences in phenotypic traits of germplasm from different areas"

性状
Traits
非洲
Africa
亚洲其他国家
Other Asian countries
欧洲
Europe
南美洲
South America
美国与墨西哥
America and Mexico
前苏联
Former Soviet Union
澳大利亚
Australia
长江流域
Yangtze River valley
黄河流域
Yellow River valley
中国北部
North China
F
F value
铃数BN 12.481 12.748 12.385 12.547 12.765 12.232 12.715 12.952 12.973 12.189 2.739**
吐絮期BOD 135.057 133.945 131.852 135.532 134.625 132.153 135.892 134.270 133.643 131.067 16.555**
单铃重BW 5.433 5.461 5.288 5.544 5.483 5.375 5.381 5.258 5.316 5.176 4.319**
果枝数FBN 11.168 11.150 11.251 11.056 11.169 11.313 10.982 11.289 11.218 11.214 9.959**
开花期FD 72.913 72.448 71.328 72.476 72.609 71.294 73.132 72.065 72.426 71.024 12.766**
伸长率FE 9.875 9.913 9.885 9.931 9.560 9.968 9.587 8.516 9.809 9.056 21.971**
纤维长度FL 29.682 29.065 28.604 29.293 28.880 28.058 30.144 31.814 29.134 30.530 47.759**
纤维整齐度FLU 84.842 84.362 84.162 84.535 84.381 83.993 84.828 85.487 84.593 85.174 22.611**
纤维强度FS 29.282 28.932 28.260 29.027 28.941 28.171 29.586 31.695 28.736 30.409 37.642**
衣分LP 34.606 34.400 34.923 35.008 34.041 34.568 35.348 34.760 35.785 35.262 2.522**
成熟度MAT 0.844 0.845 0.847 0.845 0.847 0.847 0.845 0.847 0.846 0.849 1.408
马克隆值MIC 4.583 4.634 4.754 4.666 4.654 4.792 4.539 4.256 4.662 4.544 23.278**
株高PH 75.503 73.274 70.924 71.410 71.764 73.994 72.160 72.182 72.707 75.281 5.403**
果枝节位SBN 6.532 6.491 6.355 6.493 6.464 6.377 6.563 6.459 6.484 6.405 4.724**
纺纱均匀性指数SCI 137.087 132.173 127.293 133.401 131.791 124.857 139.234 154.121 132.454 143.795 46.108**
短绒率SFI 5.065 5.390 5.574 5.269 5.395 5.420 5.148 4.443 5.331 4.663 24.228**
子指SI 11.677 11.583 11.526 12.004 12.136 11.832 11.515 12.349 11.574 11.194 7.084**

Table 3

The correlation analysis of 17 phenotypic traits of nature population in upland cotton"

性状
Traits
铃数
BN
吐絮期
BOD
单铃重
BW
果枝数
FBN
开花期
FD
伸长率
FE
纤维
长度
FL
纤维整
齐度
FLU
纤维
强度
FS
衣分
LP
成熟度
MAT
马克
隆值
MIC
株高
PH
果枝
节位
SBN
纺纱均
匀性指
数SCI
短绒率
SFI
吐絮期
BOD
-0.110**
单铃重
BW
-0.067 0.140**
果枝数
FBN
0.373** -0.389** -0.306**
开花期
FD
0.145** 0.727** 0.125** -0.305**
伸长率
FE
0.042 0.059 0.105** -0.129** 0.261**
纤维长度
FL
0.053 0.160** -0.115** 0.014 -0.009 -0.503**
纤维整
齐度
FLU
0.089* 0.162** -0.026 -0.006 0.048 -0.338**
纤维强度
FS
-0.021 0.057 -0.131** 0.094* -0.165** -0.624** 0.806** 0.753**
衣分LP 0.331** -0.108** 0.092* 0.052 0.052 0.127** -0.028 0.151** -0.051
成熟度
MAT
0.061 -0.227** -0.009 0.223** -0.293** -0.580** -0.133** -0.110** 0.205** 0.154**
马克隆值
MIC
0.084* -0.210** 0.111** 0.108** -0.073 0.333** -0.710** -.0528** -0.458** 0.290** 0.545**
株高PH 0.093* 0.183** 0.074 0.104** 0.292** 0.164** -0.005 0.036 -0.053 0.071 -0.089* 0.055
果枝节位
SBN
0.066 0.544** 0.145** -0.245** 0.652** 0.166** 0.099* 0.149** -0.027 0.087* -0.248** -0.125** 0.342**
纺纱均匀
性指数
SCI
0.008 0.154** -0.104** 0.012 -0.036 -0.533** 0.957** 0.907** 0.903** -0.043 -0.100* -0.714** -0.023 0.085*
短绒率
SFI
-0.035 -0.036 0.085* -0.080* 0.107** 0.331** -0.809** -0.845** -0.782** -0.038 0.045 0.441** -0.06 -0.016 -0.842**
子指SI -0.299** 0.218** 0.468** -0.187** -0.081* -0.290** 0.251** 0.191** 0.303** -0.465** -0.021 -0.312** -0.148** -0.034 0.302** -0.196**

Table 4

Power vector (PV), eigenvalues (E), contribution rate (CR) and cumulative contribution rate (CCR) of first six principal components based on 17 phenotypic traits"

性状
Traits
特征向量1
PV1
特征向量2
PV2
特征向量3
PV3
特征向量4
PV4
特征向量5
PV5
特征向量6
PV6
铃数BN -0.011 -0.055 0.464 0.044 0.051 0.231
吐絮期BOD 0.076 0.448 -0.038 0.186 -0.274 -0.146
单铃重BW -0.038 0.175 -0.223 0.432 0.520 0.354
果枝数FBN 0.002 -0.311 0.282 -0.116 -0.236 0.486
开花期FD -0.021 0.475 0.172 0.130 -0.218 -0.095
伸长率FE -0.252 0.245 0.120 -0.314 0.349 0.100
纤维长度FL 0.416 0.018 0.075 -0.052 0.034 -0.023
纤维整齐度FLU 0.387 0.045 0.162 0.034 0.203 -0.040
纤维强度FS 0.390 -0.119 0.019 0.138 -0.070 -0.038
衣分LP -0.046 -0.037 0.447 0.251 0.460 -0.291
成熟度MAT -0.030 -0.344 0.019 0.593 -0.266 -0.119
马克隆值MIC -0.313 -0.145 0.116 0.364 0.039 -0.039
株高PH -0.015 0.195 0.269 0.105 -0.189 0.554
果枝节位SBN 0.033 0.427 0.184 0.164 -0.161 -0.006
纺纱均匀性指数SCI 0.432 0.003 0.047 -0.022 0.035 -0.025
短绒率SFI -0.372 0.042 -0.124 0.004 -0.163 -0.057
子指SI 0.163 0.070 -0.490 0.196 0.075 0.359
特征值 E 5.278 3.030 2.119 1.492 1.134 0.996
方差贡献率 CR (%) 31.044 17.823 12.466 8.778 6.671 5.860
累积贡献率 CCR (%) 31.044 48.868 61.334 70.112 76.782 82.642

Table 5

Means of materials phenotype with high F value (top 5%) and low F value (top 5%) and correlation coefficients between comprehensive value (F-value) and 17 phenotypic traits"

性状
Traits
F值高
F-low
F值低
F-high
相关系数
Correlation coefficient value
铃数BN 11.904b 12.969a 0.212**
吐絮期BOD 130.071b 136.304a 0.473**
单铃重BW 4.967b 5.363a 0.217**
果枝数FBN 11.289 11.222 -0.108**
开花期FD 70.201b 73.078a 0.426**
伸长率FE 9.657a 8.544b -0.206**
纤维长度FL 26.516b 32.531a 0.765**
纤维整齐度FLU 82.727b 85.848a 0.822**
纤维强度FS 27.406b 32.232a 0.616**
衣分LP 32.373 33.142 0.191**
成熟度MAT 0.853a 0.845b -0.217**
马克隆值MIC 4.984a 4.173b -0.511**
株高PH 69.548b 75.688a 0.350**
果枝节位SBN 6.205b 6.595a 0.519**
纺纱均匀性指数SCI 112.010b 159.429a 0.774**
短绒率SFI 6.276a 4.010b -0.706**
子指SI 11.476b 12.535a 0.228**
表型综合值F 0.369 0.638 1.000

Table 6

Mean values of 17 traits in different group"

性状 Traits Ⅰ-Ⅰ Ⅰ-Ⅱ Ⅱ-Ⅰ Ⅱ-Ⅱ Ⅲ-Ⅰ Ⅲ-Ⅱ Ⅳ-Ⅰ Ⅳ-Ⅱ
吐絮期BOD 136.086 134.776 134.509 134.637 132.304 129.857 133.732 132.636
开花期FD 73.251 72.305 72.611 72.595 70.863 70.090 72.315 71.615
株高PH 76.395 74.229 72.808 73.280 68.375 69.644 72.609 70.685
果枝节位SBN 6.639 6.502 6.508 6.512 6.245 6.202 6.456 6.352
铃数BN 13.006 12.742 12.838 13.052 11.657 12.226 12.662 12.093
单铃重BW 5.377 5.366 5.408 5.466 4.660 5.131 5.414 5.311
果枝数FBN 11.248 11.218 11.159 11.188 11.239 11.325 11.191 11.235
衣分LP 33.439 34.805 35.203 35.641 30.920 33.310 34.944 33.732
子指SI 12.383 12.324 11.787 11.978 10.982 11.641 11.695 11.720
伸长率FE 8.622 8.804 9.740 9.492 9.713 9.558 9.709 9.531
纤维长度FL 32.382 31.702 29.524 30.306 25.405 27.080 28.952 28.215
纤维整齐度FLU 85.901 85.651 84.713 85.105 81.457 83.282 84.338 83.868
纤维强度FS 32.203 31.640 29.281 29.964 26.539 27.743 28.501 28.314
成熟度MAT 0.844 0.846 0.845 0.846 0.854 0.852 0.846 0.849
马克隆值MIC 4.185 4.317 4.590 4.530 5.030 4.915 4.659 4.717
纺纱均匀性指数SCI 159.334 153.906 136.109 141.881 101.329 117.271 130.397 125.746
短绒率SFI 4.031 4.353 5.211 4.912 7.486 5.788 5.417 5.640
表型综合值 F 0.644 0.602 0.542 0.569 0.312 0.401 0.513 0.464

Fig. 1

Clusters of 630 accessions based on F value"

[1] 喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友. 中国棉花高产育种研究进展. 中国农业科学, 2016,49(18):3465-3476.
YU S X, FAN S L, WANG H T, WEI H L, PANG C Y. Research progress on high-yield cotton breeding in China. Scientia Agricultura Sinica, 2016,49(18):3465-3476. (in Chinese)
[2] 喻树迅, 魏晓文, 赵新华. 中国棉花生产与科技发展. 棉花学报, 2000(6):327-329.
YU S X, WEI X W, ZHAO X H. China's cotton production and technological development. Cotton Science, 2000(6):327-329. (in Chinese)
[3] 杜雄明, 孙君灵, 周忠丽, 贾银华, 潘兆娥, 何守朴, 庞保印, 王立如. 棉花资源收集、保存、评价与利用现状及未来. 植物遗传资源学报, 2012,13(2):163-168.
DU X M, SUN J L, ZHOU Z L, JIA Y H, PAN Z E, HE S P, PANG B Y, WANG L R. Current status and future of cotton resource collection, conservation, evaluation andutilization. Journal of Plant Genetic Resources, 2012,13(2):163-168. (in Chinese)
[4] 杨旭, 刘飞, 张宇, 成玉富, 薛林宝, 陈学好. 利用SSR标记研究茄子种质资源遗传多样性. 基因组学与应用生物学, 2016,35(12):3450-3457.
YANG X, LIU F, ZHANG Y, CHENG Y F, XUE L B, CHEN X H. Using SSR markers to study the genetic diversity of eggplant germplasm resources. Genomics and Applied Biology, 2016,35(12):3450-3457. (in Chinese)
[5] 周忠丽, 杜雄明, 刘国强, 程德荣, 孙君灵, 石玉真. 陆地棉优良种质综合评价. 植物遗传资源科学, 2002(2):13-18.
ZHOU Z L, DU X M, LIU G Q, CHENG D R, SUN J L, SHI Y Z. Comprehensive evaluation of the excellent germplasm of upland cotton. Plant Genetic Resources Science, 2002(2):13-18. (in Chinese)
[6] 李慧琴, 于娅, 王鹏, 刘记, 胡伟, 鲁丽丽, 秦文强. 270份陆地棉种质资源农艺性状与品质性状的遗传多样性分析. 植物遗传资源学报, 2019,20(4):903-910.
LI H Q, YU Y, WANG P, LIU J, HU W, LU L L, QIN W Q. Genetic diversity analysis of agronomic and quality traits of 270 upland cotton germplasm resources. Journal of Plant Genetic Resources, 2019,20(4):903-910. (in Chinese)
[7] 代攀虹, 孙君灵, 何守朴, 王立如, 贾银华, 潘兆娥, 庞保印, 杜雄明, 王谧. 陆地棉核心种质表型性状遗传多样性分析及综合评价. 中国农业科学, 2016,49(19):3694-3708.
DAI P H, SUN J L, HE S P, WANG L R, JIA Y H, PAN Z E, PANG B Y, DU X M, WANG M. Genetic diversity analysis and comprehensive evaluation of phenotypic traits of upland cotton core collection. Scientia Agricultura Sinica, 2016,49(19):3694-3708. (in Chinese)
[8] 王俊铎, 龚照龙, 梁亚军, 艾先涛, 郭江平, 莫明, 李雪源, 郑巨云. 200份陆地棉种质资源农艺性状遗传多样性分析. 新疆农业科学, 2020,57(9):1623-1629.
doi: 10.6048/j.issn.1001-4330.2020.09.007
WANG J D, GONG Z L, LIANG Y J, AI X T, GUO J P, MO M, LI X Y, ZHENG J Y. Genetic diversity analysis of agronomic traits in 200 upland cotton germplasm resources. Xinjiang Agricultural Sciences, 2020,57(9):1623-1629. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2020.09.007
[9] 葛浩, 胡道武, 何守朴, 李洪戈, 王晓阳, 庞保印, 陈全家, 杜雄明. 376份陆地棉棉铃早期性状的多样性分析. 分子植物育种, 2021: 1-18. [2021-11-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20210406.1014.004.html.
GE H, HU D W, HE S P, LI H G, WANG X Y, PANG B Y, CHEN Q J, DU X M. Diversity analysis of early traits of 376 upland cotton bolls. Molecular Plant Breeding, 2021: 1-18.[2021-11-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20210406.1014.004.html.(in Chinese)
[10] 杨涛, 黄雅婕, 李生梅, 任丹, 崔进鑫, 庞博, 于爽, 高文伟. 海岛棉种质资源表型性状的遗传多样性分析及综合评价. 中国农业科学, 2021,54(12):2499-2509.
YANG T, HUANG Y J, LI S M, REN D, CUI J X, PANG B, YU S, GAO W W. Genetic diversity analysis and comprehensive evaluation of phenotypic traits of island cotton germplasm resources. Scientia Agricultura Sinica, 2021,54(12):2499-2509. (in Chinese)
[11] 刘方, 王春英, 王玉红, 高伟, 周忠丽, 蔡小彦, 王星星, 王坤波. 103份亚洲棉表型多样性分析. 植物遗传资源学报, 2014,15(3):491-497.
LIU F, WANG C Y, WANGY H, GAO W, ZHOU Z L, CAI X Y, WANG X X, WANG K B. Phenotypic diversity analysis of 103 Asian cottons. Journal of Plant Genetic Resources, 2014,15(3):491-497. (in Chinese)
[12] 何守朴. 外源渐渗对栽培陆地棉群体分化和纤维品质的影响[D]. 武汉: 华中农业大学, 2020.
HE S P. The effect of exogenous infiltration on the differentiation and fiber quality of cultivated upland cotton[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[13] 杜雄明, 周忠丽, 刘国强. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.
DU X M, ZHOU Z L, LIU G Q. Descriptor and Data Standard for Cotton (Gossypium Spp). Beijing: China Agriculture Press, 2005. (in Chinese)
[14] KEYLOCK C J. Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy. Oikos, 2005,109(1):203-207.
doi: 10.1111/oik.2005.109.issue-1
[15] 胡标林, 万勇, 李霞, 雷建国, 罗向东, 严文贵, 谢建坤. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012,38(5):829-839.
doi: 10.3724/SP.J.1006.2012.00829
HU B L, WAN Y, LI X, LEI J G, LUO X D, YAN W G, XIE J K. Genetic diversity analysis and comprehensive evaluation of phenotypic traits in rice core collections. Acta Agronomica Sinica, 2012,38(5):829-839. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00829
[16] YUAN Y C, XING H X, ZENG W G, XU J L, MAO L L, WANG L Y, FENG W, TAO J C, WANG H R, ZHANG H J, WANG Q K, ZHANG G H, SONG X L, SUN X Z. Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L. at the germination stage. BMC Plant Biology, 2019,19:394.
doi: 10.1186/s12870-019-1989-2
[17] 梁森苗, 张淑文, 郑锡良, 任海英, 朱婷婷, 戚行江. 杨梅生长指标与果实品质间的相关性分析. 核农学报, 2019,33(4):751-758.
LIANG S M, ZHANG S W, ZHENG X L, REN H Y, ZHU T T, QI X J. Correlation analysis between bayberry growth indicators and fruit quality. Journal of Nuclear Agricultural Sciences, 2019,33(4):751-758. (in Chinese)
[18] 王恩军, 陈垣, 韩多红, 蔡子平, 张芬琴, 张勇. 菘蓝农艺性状与药材产量的相关和通径分析. 核农学报, 2018,32(2):399-406.
WANG E J, CHEN Y, HAN D H, CAI Z P, ZHANG F Q, ZHANG Y. Correlation and path analysis of agronomic traits and medicinal material yield of Isatis indigotica. Journal of Nuclear Agricultural Sciences, 2018,32(2):399-406. (in Chinese)
[19] 王慧敏, 彭振英, 李新国, 万书波, 张智猛, 丁红, 高文伟. 67个花生品种主要农艺性状的变异及相关性分析. 山东农业科学, 2019,51(9):91-96.
WANG H M, PENG Z Y, LI X G, WAN S B, ZHANG Z M, DING H, GAO W W. Variation and correlation analysis of main agronomic characters of 67 peanut varieties. Shandong Agricultural Sciences, 2019,51(9):91-96. (in Chinese)
[20] 刘剑光, 赵君, 徐剑文, 吴巧娟, 肖松华. 200份陆地棉种质资源的遗传多样性分析. 江苏农业科学, 2021,49(14):66-69.
LIU J G, ZHAO J, XU J W, WU Q J, XIAO S H. Genetic diversity analysis on 200 upland cotton germplasm resources. Jiangsu Agricultural Sciences, 2021,49(14):66-69. (in Chinese)
[21] 王天友, 王有武, 曹新川, 刘春艳, 秦宁, 何良荣. 南疆陆地棉种质资源表型性状遗传多样性分析. 种子, 2020,39(4):5-11.
WANG T Y, WANG Y W, CAO X C, LIU C Y, QIN N, HE L R. Analysis of genetic diversity of phenotypic traits of upland cotton germplasm resources in Southern Xinjiang. Seed, 2020,39(4):5-11. (in Chinese)
[22] 王辉, 王天友, 曹新川, 刘春艳, 张凤娇, 何良荣. 南疆陆地棉种质资源遗传多样性及群体结构分析. 分子植物育种, 2021: 1-27.[2021-11-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20210520.0954.002.html.
WANG H, WANG T Y, CAO X C, LIU C Y, ZHANG F J, HE L R. Analysis of genetic diversity and population structure of upland cotton germplasm resources in Southern Xinjiang. Molecular Plant Breeding, 2021: 1-27.[2021-11-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20210520.0954.002.html.(in Chinese)
[23] 刘娜, 高文伟. 陆地棉耐盐表型数据的遗传多样性研究 种子, 2019, 38(11): 57-62+67.
LIU N, GAO W W. Study on genetic diversity of salt tolerance phenotype data in upland cotton. Seed, 2019, 38(11): 57-62+67. (in Chinese)
[24] 钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析[D]. 南京: 南京农业大学, 2009.
QIAN N. Association analysis between genetic diversity of upland cotton and breeding target trait genes (QTL)[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[25] 陈伟. 主成份分析法用于评价需注意的若干问题. 人类工效学, 2002(1):30-33.
CHEN W. The principal component analysis method is used to evaluate several problems that need attention. Human Ergonomics, 2002(1):30-33. (in Chinese)
[26] 李艳红, 聂俊, 郑锦荣, 谭德龙, 张长远, 史亮亮, 谢玉明. 华南地区樱桃番茄表型性状遗传多样性分析及综合评价. 园艺学报, 2021,48(9):1717-1730.
LI Y H, NIE J, ZHENG J R, TAN D L, ZHANG C Y, SHI L L, XIE Y M. Analysis and comprehensive evaluation of the genetic diversity of the phenotypic characters of cherry tomato in South China. Acta Horticulture, 2021,48(9):1717-1730. (in Chinese)
[27] 唐凤, 李瑶, 王永琪, 张树振, 张永超, 张博. 22份野生披碱草属种质农艺性状遗传多样性分析及综合评价. 种子, 2021,40(6):44-51.
TANG F, LI Y, WANG Y Q, ZHANG S Z, ZHANG Y C, ZHANG B. Genetic diversity analysis and comprehensive evaluation of agronomic traits of 22 wild Elymus spp. germplasm. Seed, 2021,40(6):44-51. (in Chinese)
[28] FANG-CHI H, KRITCHEVSKY S B, LIU Y M, ALKA K, NEWMAN A B, PERRY S E, MARJOLEIN V, MACRO V, HARRIS T B, NICKLAS B J. Association between inflammatory components and physical function in the health, aging, and body composition study: A principal component analysis approach. Journal of Gerontology, 2009,64(5):581-589.
[29] 贾瑞玲, 赵小琴, 南铭, 陈富, 刘彦明, 魏立平, 刘军秀, 马宁. 64份苦荞种质资源农艺性状遗传多样性分析与综合评价. 作物杂志, 2021(3):19-27.
JIA R L, ZHAO X Q, NAN M, CHEN F, LIU Y M, WEI L P, LIU J X, MA N. Analysis and comprehensive evaluation of genetic diversity of agronomic traits of 64 Tartary Buckwheat germplasm resources. Crops, 2021(3):19-27. (in Chinese)
[30] 钱玉源, 刘祎, 崔淑芳, 王广恩, 张曦, 金卫平, 李俊兰. 基于表型的棉花种质资源遗传多样性分析及核心种质的抽提. 华北农学报, 2019,34(S1):29-35.
QIAN Y Y, LIU Y, CUI S F, WANG G E, ZHANG X, JIN W P, LI J L. Phenotype-based analysis of genetic diversity of cotton germplasm resources and extraction of core collections. Journal of North China Agriculture, 2019,34(S1):29-35. (in Chinese)
[31] 董承光, 王娟, 周小凤, 马晓梅, 李生秀, 余渝, 李保成. 基于表型性状的陆地棉种质资源遗传多样性分析. 植物遗传资源学报, 2016,17(3):438-446.
DONG C G, WANG J, ZHOU X F, MA X M, LI S X, YU Y, LI B C. Analysis of genetic diversity of upland cotton germplasm resources based on phenotypic traits. Journal of Plant Genetic Resources, 2016,17(3):438-446. (in Chinese)
[32] 孔清泉, 杨兆光, 吴振江, 谢业涛, 李强, 肖远龙. 陆地棉92份种质资源主要性状的遗传多样性分析. 棉花科学, 2020,42(3):33-40.
KONG Q Q, YANG Z G, WU Z J, XIE Y T, LI Q, XIAO Y L. Analysis of genetic diversity of main characters of 92 upland cotton germplasm resources. Cotton Science, 2020,42(3):33-40. (in Chinese)
[33] 尹会会, 李秋芝, 李海涛, 王士红, 李彤, 商娜, 张晗, 杨中旭. 134份国外陆地棉种质主要农艺性状与纤维品质性状的遗传多样性分析. 植物遗传资源学报, 2017,18(6):1105-1115.
YIN H H, LI Q Z, LI H T, WANG S H, LI T, SHANG N, ZHANG H, YANG Z X. Analysis of genetic diversity of 134 foreign upland cotton germplasm main agronomic traits and fiber quality traits. Journal of Plant Genetic Resources, 2017,18(6):1105-1115. (in Chinese)
[34] 刘翔宇, 赵龙, 巴哈尔古丽·先木西, 彭华, 阿不都热衣木·玉拉音. 新疆陆地棉种质资源的综合评价. 中国农业科学, 2017,50(24):4679-4692.
LIU X Y, ZHAO L, BAHAERGULI·X M X, PENG H, ABUDUREYIMU·Y L Y. Comprehensive evaluation of upland cotton germplasm resources in Xinjiang. Scientia Agricultura Sinica, 2017,50(24):4679-4692. (in Chinese)
[35] 邓艳凤, 肖水平, 王涛, 杨绍群, 杨秀, 刘新稳. 早熟棉12份新品系主要性状的分析与综合评价. 棉花科学, 2020,42(4):14-20.
DENG Y F, XIAO S P, WANG T, YANG S Q, YANG X, LIU X W. Analysis and comprehensive evaluation of main characters of 12 new lines of early maturing cotton. Cotton Science, 2020,42(4):14-20. (in Chinese)
[36] 戴茂华, 刘丽英, 唐长波, 吕德智, 吴振良. 冀中南棉花新品种产量性状与品质性状的综合评价分析. 江西农业学报, 2015,27(4):4-7.
DAI M H, LIU L Y, TANG C B, LÜ D Z, WU Z L. Comprehensive evaluation and analysis of yield and quality traits of new cotton varieties in central and southern Hebei. Jiangxi Journal of Agriculture, 2015,27(4):4-7. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[3] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[4] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[5] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[8] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[9] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[10] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[11] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[12] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[13] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[14] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
[15] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!