Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4891-4903.doi: 10.3864/j.issn.0578-1752.2020.23.014

• SPECIAL FOCUS: FERTILIZER REDUCTIONISM IN WHEAT PRODUCTION • Previous Articles     Next Articles

Requirement of Nitrogen, Phosphorus and Potassium and Potential of Reducing Fertilizer Application of Spring Wheat in Yellow River Irrigation Area of Ningxia

WANG XiNa1,YU JinMing1,TAN JunLi2(),ZHANG JiaQun1,WEI ZhaoQing1,WANG ZhaoHui3   

  1. 1School of Agriculture, Ningxia University, Yinchuan 750021
    2 School of Civil and Hydraulic Engineering, Yinchuan 750021
    3College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2020-07-04 Accepted:2020-09-21 Online:2020-12-01 Published:2020-12-09
  • Contact: JunLi TAN E-mail:Tanjl@nxu.edu.cn

Abstract:

【Objective】The aim of this study was to clarify fertilization and requirement of nitrogen (N), phosphorus (P) and potassium (K) in spring wheat production in Yellow River Irrigation Area of Ningxia (NYRIA), so as to provide a theoretical guide for rational fertilizer reduction and application. 【Method】Based on the investigation of farmers’ fertilizer application and field fertilization experiments, farmers’ yield levels and N, P, K fertilizer application of spring wheat were analyzed, and the grain yield, yield components, and N, P, K nutrient requirement were investigated. 【Result】The average spring wheat yield of farmers was (6 985±867) kg·hm -2 in NYRIA, and the percentage of high yield farmers was 82.7%. With the increase of yield, the excessive amount of N and P was decreased, and the application rates of K was insufficient. On average, the application rates of N, P and K were 294, 162 and 49 kg·hm -2, respectively, with 97.1% of farmers over applied N by 69-114 kg·hm -2, and 20.5% of farmers over applied P by 18-42 kg·hm -2, while K inputs were generally insufficient with an amount of 30-51 kg·hm -2. The N fertilization experiment showed that shoot biomass, grain yield, harvest index and grain number per ear all increased significantly at N rates of 120-240 kg·hm -2, and all reached the highest at the application of N 180 kg·hm -2. At the same time, the amount of N, P, and K absorbed by the grain also reached to the maximum value of 168.2, 23.9, and 23.2 kg·hm -2, respectively. Nitrogen application showed no significant effect on N harvest index, the average of which was 56.5%, and tended to increase P harvest index but decrease K harvest index. Nitrogen requirement reached to 45.8 kg·Mg -1 at N rate of 180 kg·hm -2, being 19.6% higher than that of no N application. P requirement decreased from 6.0 kg·Mg -1 at no N application to 5.3 kg·Mg -1 at N rate of 240 kg·hm -2, while K requirement increased from 42.6 to 49.7 kg·Mg -1. The P experiment showed that shoot biomass and grain number per ear decreased significantly with the increase of P rates, while 1 000 grain weight and harvest index increased significantly, so there was no significant difference in grain yield over P rates. Moreover, P application improved N uptake and harvest index, being 28.6% and 27.9% higher respectively than that of no P application. Also, P fertilizer could promote P to transfer to grain because that P uptake and P harvest index were increased by 15.9% and 15.2%, respectively. However, it showed no significant effect on N and P requirement, but decreased K requirement from 68.1 kg·Mg -1 at no P application to 49.7 kg·Mg -1 at P2O5 rate of 120 kg·hm -2. The K experiment showed that the application of K had no significant effects on biomass, grain yield, harvest index, ears per hectare, and the content of N, P and K in grain. While the high K fertilizer application of 75 kg·hm -2 significantly reduced the number of grains per ear, but increased 1 000 grain weight and harvest index of N, P and K. Grain number per ear decreased by 9.1%, 1 000 grain weight increased by 7.6%, and harvest indexes of N, P and K were 57.2%, 73.5% and 7.3%, respectively. When applying 60 kg·hm -2 of K2O, the demand for N, P and K reached the highest, which was 55.3, 5.5 and 57.6 kg·Mg -1, respectively, while the demand for N and K were both significantly reduced by 20.6% and 13.7% at K2O rate of 75 kg·hm -2. It was concluded that proper application of K could increase the demand of N and K, while over application of K could reduce the demand of N and K. 【Conclusion】Reducing N fertilizer, regulating P fertilizer and properly adding K fertilizer input were still the key for spring wheat fertilization in NYRIA. The N requirement of spring wheat was ranged 38.3-57.2 kg·Mg -1, and could increase by applying the moderate amount of N, P and K fertilizer. The demand for P of spring wheat was 5.1-6.0 kg·Mg -1, which tends to increase with N rates and is not influenced by P and K amount. The K requirement of spring wheat was within 42.6-68.1 kg·Mg -1, which seems to increase with N rates and decrease with P rates, and also is reduced by high amount of K application. The suitable recommended application of N fertilizer was 120-180 kg·hm -2, which was 25%-60% lower compared with N application of farmers. Application of P fertilizer at 48-96 kg·hm -2 was more conducive to stabilize the yield of spring wheat and promote the transfer of N and P to the grain, which was reduced by 40.7%-70.3% compared with the average application of farmers. When the application of K fertilizer was 0-30 kg·hm -2, it was more benefit to stabilize the yield and increase the grain quality.

Key words: spring wheat, N, P, K, harvest index, absorption, requirement, Yellow River Irrigation Area of Ningxia

Fig. 1

Precipitation, average highest temperature and average lowest temperature per month of Yongning County in 2018"

Table 1

Experimental treatments and fertilization amount"

试验名称
Experiment
处理名称
Treatment
施肥量Fertilization amount (kg·hm-2)
N P2O5 K2O
氮肥用量试验
N rate experiment
N0 0 120 75
N1 60 120 75
N2 120 120 75
N3 180 120 75
N4 240 120 75
磷肥用量试验
P2O5 rate experiment
P0 240 0 75
P1 240 48 75
P2 240 96 75
P3 240 120 75
钾肥用量试验
K2O rate experiment
K0 240 120 0
K1 240 120 30
K2 240 120 60
K3 240 120 75

Table 2

Grading standard of N, P, and K fertilizer rates for spring wheat in the Yellow River Irrigation Region of Ningxia"

养分
Nutrient
施肥等级Fertilization grade (kg·hm-2)
很低Very low 偏低Low 适中Middle 偏高High 很高Very high
N <90 90-180 180-225 225-375 >375
P2O5 <60 60-120 120-180 180-200 >200
K2O <60 60-80 80-100 100-120 >120

Table 3

Yield levels of spring wheat and N, P, and K fertilizer application of farmers"

指标
Index
产量等级Yield grade (kg·hm-2) 平均值
Average value

Very low
<4500
偏低
Low 4500-5250

Middle
5250-6000
偏高
High
6000-7500

Very high
>7500
产量
Grain yield
农户比例Farmers’ ratio (%) 2.06 6.17 9.05 57.61 25.10 /
平均产量Average yield (kg·hm-2) 4264±480 5156±184 5824±240 7116±382 7775±161 6985±867
施肥量
Fertilization amount
(kg·hm-2)
N 392±84 281±79 342±86 291±43 277±31 294±54
P2O5 228±51 205±58 183±61 158±40 146±34 162±46
K2O 63±17 102±59 81±36 47±35 30±23 49±39
过量施肥量
Over fertilization amount (kg·hm-2)
N 212-167 101-56 162-117 111-66 97-52 114-69
P2O5 108-48 85-25 63-3 38--22 26--34 42--18
K2O -17--38 23-2 2--19 -33--54 -49--70 -30--51
过量施肥农户占总农户比例
Proportion of farmers with
over fertilization in total farmers (%)
N 100 73.3 95.5 99.4 98.4 97.1
P2O5 100 60.0 40.9 14.4 4.9 20.2
K2O 0 40.0 22.7 9.4 1.6 11.5

Table 4

Biomass, grain yield and its components of spring wheat and concentrations of N, P and K in grain at different N rates"

处理代码Treatment 施氮量
N rate
(kg·hm-2)
生物量
Biomass
(kg·hm-2)
籽粒产量
Grain yield (kg·hm-2)
收获指数
Harvest Index (%)
公顷穗数
Ears per hectare
(×104·hm-2)
穗粒数
Number of grains per ear
千粒重
1000 grains weight
(g)
籽粒含氮量
N concentration in grain (g·kg-1)
籽粒含磷量
P concentration in grain (g·kg-1)
籽粒含钾量 K concentration in grain (g·kg-1)
N0 0 14803±3620b 4375±1201b 29.4±0.01b 433±40a 26.4±4.0b 48.9±2.4a 21.61±1.0a 4.13±0.2a 3.67±0.3a
N1 60 15274±1661b 4537±478b 29.7±0.01b 443±34a 26.4±2.9b 50.4±2.8a 23.14±0.7a 3.97±0.2a 3.56±0.3a
N2 120 18735±3986a 5668±1055a 30.4±0.02ab 461±81a 31.1±3.6a 49.2±1.7a 21.99±2.1a 3.55±0.8a 3.67±0.2a
N3 180 20411±1879a 6331±955a 30.9±0.02a 483±37a 31.8±3.9a 48.9±1.8a 25.65±9.0a 3.78±0.1a 3.67±0.1a
N4 240 17712±3650ab 5474±957a 31.0±0.01a 469±87a 30.0±2.9a 50.9±3.3a 25.35±3.1a 3.93±0.3a 3.61±0.2a

Table 5

The uptake, demand, harvest index of N, P and K for spring wheat grain at different N rates"

处理代码Treatment 施氮量
N rates
(kg·hm-2)
籽粒吸氮量
N uptake by grain
(kg·hm-2)
氮收获指数
N harvest index
(%)
氮需求量
N demand (kg·Mg-1)
籽粒吸磷量
P uptake by grain
(kg·hm-2)
磷收获指数
P harvest index
(%)
磷需求量
P demand (kg·Mg-1)
籽粒吸钾量
K uptake by grain
(kg·hm-2)
钾收获指数
K harvest index
(%)
钾需求量
K demand (kg·Mg-1)
N0 0 95.3±29.6b 56.8±4.0a 38.3±2.6b 17.9±4.3b 68.2±3.6ab 6.0±0.6a 16.0±4.0b 8.6±1.4a 42.6±7.6d
N1 60 105.1±13.3ab 55.2±7.8a 42.0±7.5ab 18.1±2.6b 68.3±1.7ab 5.8±0.2ab 16.3±3.0b 8.1±0.5ab 44.0±5.6cd
N2 120 126.1±33.7ab 55.2±7.8a 40.3±8.3ab 20.7±7.7ab 67.1±10.3b 5.4±0.7b 20.9±4.3a 7.8±1.1ab 47.2±6.2ab
N3 180 168.2±86.7a 57.9±9.0a 45.8±8.4a 23.9±3.7a 71.2±1.8ab 5.3±0.2b 23.2±3.7a 8.1±1.3ab 45.4±7.9bc
N4 240 137.6±18.0ab 57.2±10.4a 43.9±2.7ab 21.3±2.3ab 73.5±3.6a 5.3±0.6b 19.8±4.4ab 7.3±0.7b 49.7±7.2a

Table 6

Biomass, grain yield and its components of spring wheat and concentrations of N, P and K in grain at different P2O5 rates"

处理代码Treatment 施磷量
P2O5 rate
(kg·hm-2)
生物量
Biomass
(kg·hm-2)
籽粒产量
Grain yield (kg·hm-2)
收获指数
Harvest index (%)
公顷穗数Ears per hectare
(×104·hm-2)
穗粒数
Number of grains per ear
千粒重
1000 grains weight
(g)
籽粒含氮
N concentration in grain (g·kg-1)
籽粒含磷量
P concentration in grain
(g·kg-1)
籽粒含钾量
K concentration in grain
(g·kg-1)
P0 0 21452±3126a 5361±894a 25.2±0.04b 472±17a 32.4±1.0ab 47.4±2.5b 20.82±2.6b 3.46±0.9a 4.09±0.4a
P1 48 18870±2608ab 5746±967a 30.4±0.01a 456±31a 34.8±5.4a 45.8±1.0b 25.22±3.9a 3.84±0.1a 3.84±0.1ab
P2 96 18550±403ab 5203±498a 28.1±0.03ab 424±25a 35.0±0.9a 49.6±1.9a 27.40±6.1a 3.71±0.1a 3.65±0.1b
P3 120 17712±3650b 5474±957a 31.0±0.01a 469±87a 30.0±2.8b 50.9±3.3a 25.35±3.1a 3.93±0.3a 3.61±0.2b

Table 7

The uptake, demand, harvest index of N, P and K for spring wheat grain at different P2O5 rates"

处理代码Treatment 施磷量
P2O5 rate (kg·hm-2)
籽粒吸氮量
N uptake by grain
(kg·hm-2)
氮收获指数
N harvest index
(%)
氮需求量
N demand (kg·Mg-1)
籽粒吸磷量
P uptake by grain
( kg·hm-2)
磷收获指数
P harvest index
(%)
磷需求量
P demand
(kg·Mg-1)
籽粒吸钾量
K uptake by grain
( kg·hm-2)
钾收获指数
K harvest index
(%)
钾需求量
K demand (kg·Mg-1)
P0 0 110.1±4.1b 42.6±8.1b 48.2±10.3a 18.0±2.3b 62.9±2.9b 5.3±1.3a 22.2±6.2a 6.1±2.2a 68.1±22.4a
P1 48 145.1±31.8a 54.2±7.4a 46.6±4.3a 22.0±2.9a 75.1±2.3a 5.1±0.3a 22.1±3.6a 7.6±0.9a 50.7±4.9b
P2 96 142.2±32.0ab 52.0±6.3a 52.5±11.0a 19.3±2.3ab 68.8±4.1ab 5.4±0.2a 19.0±2.4a 6.2±1.1a 58.9±9.6ab
P3 120 137.6±18.0ab 57.2±10.4a 43.9±2.7a 21.3±2.3a 73.5±3.6a 5.3±0.6a 19.8±4.4a 7.3±0.7a 49.7±7.2b

Table 8

Biomass, grain yield and its components of spring wheat and concentrations of N, P and K in grain at different K2O rates"

处理代码Treatment 施钾量
K2O rate (kg·hm-2)
生物量
Biomass (kg·hm-2)
籽粒产量
Grain yield (kg·hm-2)
收获指数
Harvest index (%)
公顷穗数Ears per hectare
(×104·hm-2)
穗粒数
Number of grains per ear
千粒重
1000 grains weight
(g)
籽粒含氮量
N concentration in grain (g·kg-1)
籽粒含磷量P concentration in grain (g·kg-1) 籽粒含钾量
K concentration in grain (g·kg-1)
K0 0 19820±145a 5900±253a 29.8±0.01a 465±74a 33.0±3.1a 47.3±1.2ab 23.73±1.7a 3.86±0.3a 3.80±0.0a
K1 30 19241±2220a 5600±753a 29.1±0.01a 465±70a 31.5±1.2ab 47.0±0.3ab 23.99±5.0a 3.84±0.2a 3.67±0.1a
K2 60 18416±5133a 5435±1425a 29.6±0.01a 451±81a 31.6±3.7ab 46.4±4.1b 24.37±1.5a 3.81±0.2a 3.69±0.2a
K3 75 17712±3650a 5474±957a 31.0±0.01a 469±87a 30.0±2.8b 50.9±3.3a 25.35±3.1a 3.93±0.3a 3.61±0.2a

Table 9

The uptake, demand, harvest index of N, P and K for spring wheat grain at different K2O rates"

处理代码Treatment 施钾量
K2O rate (kg·hm-2
籽粒吸氮量
N uptake by grain
(kg·hm-2
氮收获指数
N harvest index
(%)
氮需求量
N demand
(kg·Mg-1)
籽粒吸磷量
P uptake by grain
(kg·hm-2)
磷收获指数
P harvest index
(%)
磷需求量
P demand
(kg·Mg-1)
籽粒吸钾量
K uptake by grain
(kg·hm-2)
钾收获指数
K harvest index
(%)
钾需求量
K demand
(kg·Mg-1)
K0 0 139.8±5.9a 50.2±4.4ab 47.2±6.9ab 22.8±2.3a 72.1±2.9a 5.4±0.4a 22.4±1.1a 6.8±0.5ab 56.0±4.1a
K1 30 132.8±20.5a 49.0±9.4ab 48.4±3.3ab 21.4±1.8a 72.2±1.9a 5.3±0.2a 20.5±2.0a 6.6±0.4ab 55.7±4.3a
K2 60 131.6±31.4a 43.8±11.5b 55.3±13.3a 20.7±5.3a 69.5±3.4b 5.5±0.1a 20.1±5.5a 6.4±0.1b 57.6±3.6a
K3 75 137.6±18.0a 57.2±10.4a 43.9±2.7b 21.3±2.8a 73.5±3.6a 5.3±0.6a 19.8±4.4a 7.3±0.7a 49.7±7.2b
[1] 何文寿 . 宁夏植物营养与肥料研究现状与展望. 农业科学研究, 2013,34(1):54-60.
HE W S . Research advances and prospects of plant nutrition and fertilizers in Ningxia. Journal of Agriculture Sciences, 2013,34(1):54-60. (in Chinese)
[2] 赵营, 郭鑫年, 赵护兵, 王朝辉 . 宁夏引黄灌区春小麦施肥现状与评价. 麦类作物学报, 2014,34(9):1274-1280.
ZHAO Y, GUO X N, ZHAO H B, WANG Z H . Evaluation on present situation of fertilization in spring wheat in the Yellow River irrigation region of Ningxia. Journal of Triticeae Crops, 2014,34(9):1274-1280. (in Chinese)
[3] 王旭, 李贞宇, 马文奇, 张福锁 . 中国主要生态区小麦施肥增产效应分析. 中国农业科学, 2010,43(12):2469-2476.
WANG X, LI Z Y, MA W Q, ZHANG F S . Effects of fertilization on yield increase of wheat in different agro-ecological regions of China. Scientia Agricultura Sinica, 2010,43(12):2469-2476. (in Chinese)
[4] 田生昌, 马建军, 叶陆明 . 宁夏平罗春小麦氮、磷、钾肥肥效及适宜用量. 宁夏大学学报(自然科学版), 2012,33(4):396-399.
TIAN S C, MA J J, YE L M . Spring wheat N-P-K fertilizer efficiency and the appropriate amount for Pingluo in Ningxia. Journal of Ningxia University (Natural Science Edition), 2012,33(4):396-399. (in Chinese)
[5] 李志宏, 王兴仁, 张福锁 . 我国北方地区几种主要作物氮营养诊断及追肥推荐研究1. 几种主要作物氮磷施用量的研究. 植物营养与肥料学报, 1997,3(3):262-267.
doi: 10.11674/zwyf.1997.0311
LI Z H, WANG X R, ZHANG F S . Nitrogen nutritional diagnosis and recommendation as topdressing fertilizer N for several crops in north China I. Recommendation of nitrogen and phosphate fertilizer for several crops in north China. Plant Nutrition and Fertilizer Science, 1997,3(3):262-267. (in Chinese)
doi: 10.11674/zwyf.1997.0311
[6] 杨开静, 王凤新, 宋娜, 马丹, 卢亚静, 郭利君 . 滴灌条件下不同N、K肥施用量对春小麦生长和产量的影响. 中国农学通报, 2014,30(12):187-192.
YANG K J, WANG F X, SONG N, MA D, LU Y J, GUO L J . Effect of different application rates of N and K Fertilizers on the growth and yield of spring wheat under drip irrigation. Chinese Agricultural Science Bulletin, 2014,30(12):187-192. (in Chinese)
[7] 党根友, 魏亦勤, 郭强, 樊明, 裘敏, 沈强云 . 施钾对中低肥力灌淤土春小麦产量及品质的影响. 西北农业学报, 2010,19(12):35-40.
DANG G Y, WEI Y Q, GUO Q, FAN M, QIU M, SHEN Q Y . Effect of potassium on yield and quality of spring wheat in irrigation-silted soil. Acta Agriculturae Boreali-occidentalis Sinica, 2010,19(12):35-40. (in Chinese)
[8] 郑国琴, 何文寿, 郭瑞英 . 春小麦高产高蛋白氮磷钾锌肥用量及配比研究. 干旱地区农业研究, 2006,24(6):17-20.
ZHENG G Q, HE W S, GUO R Y . Rational application rates of nitrogen, phosphorus, potassium, zinc fertilizers and their combining proportion in spring wheat with both high grain yield and high protein contents. Agricultural Research in the Arid Areas, 2006,24(6):17-20. (in Chinese)
[9] 何文寿, 何进勤, 郭瑞英 . 宁夏引黄灌区春小麦不同生育期吸收氮、磷、钾养分的特点. 植物营养与肥料学报, 2006,12(6):789-796.
doi: 10.11674/zwyf.2006.0606
HE W S, HE J Q, GUO R Y . Characteristics of N, P and K uptake at different growth stages of spring wheat in irrigating region of Ningxia. Plant Nutrition and Fertilizer Science, 2006,12(6):789-796. (in Chinese)
doi: 10.11674/zwyf.2006.0606
[10] 赵营, 周涛, 郭鑫年, 梁锦秀, 吴霞, 冀宏杰, 张维理 . 优化施肥对春小麦产量、氮素利用及氮平衡的影响. 干旱地区农业研究, 2011,29(6):119-124.
ZHAO Y, ZHOU T, GUO X N, LIANG J X, WU X, JI H J, ZHANG W L . Effect of optimum fertilization on spring wheat yield, N utilization and apparent N balance. Agricultural Research in the Arid Areas, 2011,29(6):119-124. (in Chinese)
[11] 车升国, 袁亮, 李燕婷, 林治安, 沈兵, 胡树文, 赵秉强 . 我国主要麦区小麦氮素吸收及其产量效应. 植物营养与肥料学报, 2016,22(2):287-295.
CHE S G, YUAN L, LI Y T, LIN Z A, SHEN B, HU S W, ZHAO B Q . N uptake and yield response of wheat in main wheat production regions of China. Journal of Plant Nutrition and Fertilizers, 2016,22(2):287-295. (in Chinese)
[12] 车升国, 袁亮, 李燕婷, 林治安, 李燕青, 赵秉强, 沈兵 . 我国主要麦区小麦产量形成对磷素的需求. 植物营养与肥料学报, 2016,22(4):869-876.
CHE S G, YUAN L, LI Y T, LIN Z A, LI Y Q, ZHAO B Q, SHEN B . Phosphorous requirement for yield formation of wheat in main wheat production regions of China. Journal of Plant Nutrition and Fertilizers, 2016,22(4):869-876. (in Chinese)
[13] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣 . 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018,51(14):2722-2734.
doi: 10.3864/j.issn.0578-1752.2018.14.010
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X . Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018,51(14):2722-2734. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.010
[14] 宁夏回族自治区农业技术推广总站. 2018年度宁夏回族自治区耕地质量监测报告[Z], 2018.
Ningxia Hui Autonomous Region Agricultural Technology Extension Station. 2018 Ningxia Hui Autonomous Region cultivated land quality inspection report[Z], 2018. (in Chinese)
[15] 马玉兰 . 宁夏测土配方施肥技术. 银川: 宁夏人民出版社, 2008: 173-280.
MA Y L . Formula Fertilization by Soil Testing in Ningxia. Yinchuan: Ningxia People’s Press, 2008: 173-280. (in Chinese)
[16] 高传东 . 氮肥施用对小麦产量和品质的影响[D]. 北京: 中国农业科学院研究生院, 2011.
GAO C D . Effect of Nitrogen fertilizer on wheat yield and quality[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[17] 闻磊, 张富仓, 邹海洋, 陆军胜, 郭金金, 薛占琪 . 水分亏缺和施氮对春小麦生长和水氮利用的影响. 麦类作物学报, 2019,39(4):478-486.
WEN L, ZHANG F C, ZOU H Y, LU J S, GUO J J, XUE Z Q . Effective of water deficit and nitrogen rate on the growth, water and nitrogen use of spring wheat. Journal of Triticeae Crops, 2019,39(4):478-486. (in Chinese)
[18] 杨君林, 马忠明, 张立勤, 王智琦, 连彩云, 薛亮 . 施氮量对河西绿洲灌区垄作春小麦土壤水氮动态及吸收利用的影响. 麦类作物学报, 2015,35(9):1262-1268.
YANG J L, MA Z M, ZHANG L Q, WANG Z Q, LIAN C Y, XUE L . Effect to nitrogen fertilizer rate on soil water-nitrogen dynamics and absorption and utilization of ridge culture spring wheat in Hexi Oasis Irrigation District. Journal of Triticeae Crops, 2015,35(9):1262-1268. (in Chinese)
[19] 张爱平, 刘汝亮, 李友宏, 杨世琦, 杨淑静, 杨正礼 . 施用磷肥对春小麦产量与吸氮特性及土体中硝态氮累积的影响. 干旱地区农业研究, 2009,27(5):30-34.
ZHANG A P, LIU R L, LI Y H, YANG S Q, YANG S J, YANG Z L . Effects of P fertilizer application on yield of spring wheat and characteristics of N absorption and NO3--N accumulation in soil profile. Agricultural Research in the Arid Areas, 2009,27(5):30-34. (in Chinese)
[20] 宋勤璟, 贾永红, 刘孝成, 张金汕, 吴薇, 祖丽胡玛尔·阿卜杜热依木, 吴娜尔·努尔丹汗, 石书兵 . 施磷量对春小麦产量及种子活力的影响. 中国农学通报, 2017,33(4):8-14.
SONG Q J, JIA Y H, LIU X C, ZHANG J S, WU W, ZULIHUMAER ABUDUREYIMU, WUNAER NUERDANHAN, SHI S B . Different phosphate application amounts affecting yield and seed vigor of spring wheat. Chinese Agricultural Science Bulletin, 2017,33(4):8-14. (in Chinese)
[21] 宋勤璟, 贾永红, 张金汕, 刘孝成, 吴薇, 李玉龙, 温浩然, 石书兵 . 施磷量对春小麦干物质积累、分配及产量的影响. 新疆农业科学, 2016,53(11):1988-1998.
SONG Q J, JIA Y H, ZHANG J S, LIU X C, WU W, LI Y L, WEN H R, SHI S B . Effect of different phosphate application on accumulation and partitioning of dry matter and yield of spring wheat. Xinjiang Agricultural Sciences, 2016,53(11):1988-1998. (in Chinese)
[22] 何文寿 . 宁夏春小麦磷素利用效率的基因型差异研究. 干旱地区农业研究, 2003,21(2):1-6.
HE W S . Genotypic differences in phosphorus utilization efficiency among spring wheat varieties in Ningxia. Agricultural Research in the Arid Areas, 2003,21(2):1-6. (in Chinese)
[23] LIU X B, ZHANG Q Y, JIN J, WANG G H, HERBERT S J . Fertilization management for improving quality properties of spring wheat in northeast China. Agricultural Sciences in China, 2005,4(3):207-213.
[24] 刘克礼, 高聚林, 张永平, 刘瑞香, 刘景辉 . 春小麦氮、磷、钾三要素利用率的研究. 麦类作物学报, 2003,23(3):103-106.
doi: 10.7606/j.issn.1009-1041.2003.03.099
LIU K L, GAO J L, ZHANG Y P, LIU R X, LIU J H . Study on N, P, and K utilization ratio of spring wheat. Journal of Triticeae Crops, 2003,23(3):103-106. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.03.099
[25] 刘克礼, 高聚林, 刘瑞香, 张永平, 刘景辉 . 春小麦氮素吸收、积累与分配规律的研究. 麦类作物学报, 2003,23(3):97-102.
doi: 10.7606/j.issn.1009-1041.2003.03.098
LIU K L, GAO J L, LIU R X, ZHANG Y P, LIU J H . Rules of N assimilation, accumulation and distribution of spring wheat. Journal of Triticeae Crops, 2003,23(3):97-102. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.03.098
[26] 李玉影, 吴英, 刘双权, 金继运, 黄绍文, 何萍 . 钾对春小麦产量及品质的影响. 土壤肥料, 2002(2):33-35.
LI Y Y, WU Y, LIU S Q, JIN J Y, HUANG S W, HE P . Effect of potassium on grain yield and quality of spring wheat. Soil and Fertilizer, 2002(2):33-35. (in Chinese)
[27] 高聚林, 刘克礼, 张永平, 刘瑞香, 刘景辉 . 春小麦磷素吸收、 积累与分配规律的研究. 麦类作物学报, 2003,23(3):107-112.
doi: 10.7606/j.issn.1009-1041.2003.03.100
GAO J L, LIU K L, ZHANG Y P, LIU R X, LIU J H . Study on principle of P assimilation, accumulation and distribution of spring wheat. Journal of Triticeae Crops, 2003,23(3):107-112. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.03.100
[28] 高聚林, 刘克礼, 张永平, 刘瑞香, 刘景辉 . 春小麦钾素吸收、积累与分配规律的研究. 麦类作物学报, 2003,23(3):113-118.
doi: 10.7606/j.issn.1009-1041.2003.03.101
GAO J L, LIU K L, ZHANG Y P, LIU R X, LIU J H . Principle of K assimilation, accumulation and distribution of spring wheat. Journal of Triticeae Crops, 2003,23(3):113-118. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.03.101
[29] YUE S C, MENG Q F, ZHAO R F, YE Y L, ZHANG F S, CUI Z L, CHEN X P . Change in nitrogen requirement with increasing grain yield for winter wheat. Agronomy Journal, 2012,104(6):1687-1693.
doi: 10.2134/agronj2012.0232
[30] TENG W, DENG Y, CHEN X P, XU X F, CHEN R Y, LV Y, ZHAO Y Y, ZHAO X Q, HE X, LI B, TONG Y P, ZHANG F S, LI Z S . Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany, 2013,64(5):1403-1411.
doi: 10.1093/jxb/ert023 pmid: 23382547
[31] ZHAN A, ZOU C Q, YE Y L, LIU Z H, CUI Z L, CHEN X P . Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Field Crops Research, 2016,191:13-19.
doi: 10.1016/j.fcr.2016.04.001
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[3] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[4] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[5] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[6] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[7] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[8] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[9] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[10] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[11] LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry [J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
[12] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[13] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[14] YANG GaiQing, WANG LinFeng, LI WenQing, ZHU HeShui, FU Tong, LIAN HongXia, ZHANG LiYang, TENG ZhanWei, ZHANG LiJie, REN Hong, XU XinYing, LIU XinHe, WEI YuXuan, GAO TengYun. Study on Milk Quality Based on Circadian Rhythm [J]. Scientia Agricultura Sinica, 2023, 56(2): 379-390.
[15] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!