Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 357-367.doi: 10.3864/j.issn.0578-1752.2023.02.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes

XU Qian(),WANG Han,MA Sai,HU QiuHui,MA Ning,SU AnXiang,LI Chen,MA GaoXing()   

  1. College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023
  • Received:2022-03-31 Accepted:2022-06-24 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】In the present study, the investigation on the basic physicochemical properties of Pleurotus eryngii polysaccharide (PEP) and its related effects on diffusion and adsorption of glucose were conducted. PEP mimetic digestion products (D-PEP) were prepared using an in vitro stimulated digestion model to explore the effects of PEP and D-PEP on the digestive enzymes activities associated with glucose metabolism, as well as the interaction between PEP/D-PEP and α-glucosidase. 【Method】Firstly, the basic physicochemical properties of PEP were detected based on the methods in previous studies. Then the inhibitory effects of PEP/D-PEP on α-amylase and α-glucosidase activities were evaluated by DNS method and 4-Nitrophenyl α-D-glucopyranoside (PNPG) method, respectively. Finally, the relationship between PEP/D-PEP and α-glucosidase was studied with the utilization of the fluorescence spectroscopy technique. 【Result】 PEP displayed great potential on the solubility, swelling property, water and oil holding capacities, and favorable inhibition on glucose diffusion and adsorption. Moreover, PEP had obvious inhibitory effects on maltase and α-glucosidase, while it did not suppress the activity of α-amylase. Specifically, PEP with its concentration of 4 mg·mL-1 exhibited (77.20±2.71)% inhibition ratio on maltase activity, while (78.91±0.51)% inhibition ratio on α-glucosidase activity. However, the digestion product D-PEP showed significant inhibition on the activities of all these three enzymes, with 4 mg·mL-1 of D-PEP inhibiting α-amylase, maltase, and α-glucosidase by (84.08±1.79)%, (20.58±1.20)%, and (95.58±0.12)%, respectively. The outcomes of fluorescence spectroscopy showed that the endogenous fluorescence of α-glucosidase was gradually decreased along with the increasing of the PEP/D-PEP concentration, and the quenching of the endogenous fluorescence of α-glucosidase by PEP/D-PEP was mainly static quenching, with the number of binding sites greater than or equal to 1. 【Conclusion】In summary, D-PEP not only inhibited maltase and α-glucosidase activities but also showed great potential inhibition effects on α-amylase activity compared with PEP. Herein, D-PEP displayed stronger inhibitory effect on amylase and could be considered affect glucose metabolism to a certain degree.

Key words: Pleurotus eryngii polysaccharides, digestion product, α -glucosidase, fluorescence quenching

Table 1

The water solubility, swelling, water and oil holding capability of PEP"

溶解性
Water solubility (%)
溶胀性
Swelling capacity (mL·g-1)
持水力
Water-holding capacity (g·g-1)
持油力
Oil-holding capacity (g·g-1)
PEP 87.66±0.37 1.80±0.09 4.64±0.19 5.02±0.03

Table 2

The adsorption capacity of PEP to glucose"

葡萄糖浓度Glucose concentration (μmol·g-1)
5 50 100 150 200
PEP 10 mg·mL-1 19.04±2.16a 61.62±15.21a 163.91±28.25a 44.27±22.35a 27.88±5.06a
瓜尔豆胶Guar gum 10 mg·mL-1 36.93±4.05b 181.72±14.01b 427.52±32.07b 316.45±13.39b 32.31±5.41a

Table 3

Diffusion capacity of glucose in different concentrations of PEP solution"

时间
Time (min)
空白
Blank control
PEP (mg·mL-1) 瓜尔豆胶
Guar gum (10 mg·mL-1)
1 5 10 15
10 15.18±0.73a 14.74±0.38ab 14.51±0.15ab 14.38±0.10b 14.45±0.09ab 14.56±0.08ab
20 22.62±3.36a 20.36±0.03a 17.18±0.33b 16.69±0.39b 14.69±0.62b 14.97±0.16b
30 31.16±2.32a 26.04±2.71b 23.21±1.42bc 22.11±1.41c 18.33±0.99d 16.44±0.76d
45 41.42±2.55a 36.10±2.91b 32.20±1.18c 33.13±1.64bc 24.91±1.76d 20.25±0.61e
60 51.64±1.93a 46.50±3.52b 40.94±1.18c 38.12±0.86c 31.51±1.54d 24.59±1.96e
90 66.00±2.07a 63.63±4.15a 56.17±0.84b 48.98±0.85c 41.02±0.75d 31.15±2.01e
120 79.08±3.67a 73.85±3.71a 63.04±3.95b 59.17±1.70b 46.76±6.73c 38.33±3.67d
180 90.10±3.65a 85.37±1.12a 74.36±0.29b 66.91±2.77c 56.54±5.47d 48.20±3.39e
300 100.00±3.22a 92.74±3.79a 82.15±1.24b 79.30±3.36bc 71.69±7.20cd 64.01±1.95d

Table 4

Inhibitory effect of PEP and D-PEP on α-amylase activity"

浓度Concentration (mg·mL-1) PEP D-PEP 浓度Concentration (mg·mL-1) 阿卡波糖Acarbose
0.1 6.64±1.28a 4.72±1.22g 0.02 21.41±1.97g
0.2 -1.30±0.94b 15.24±1.52f 0.04 32.80±1.22f
0.4 -2.56±1.85bc 31.95±0.51e 0.06 42.01±0.90e
0.6 -5.17±2.06c 37.22±2.90d 0.1 48.20±0.39d
0.8 -9.97±0.82d 48.5±0.20c 0.2 51.09±0.67d
1 -20.23±2.23e 47.06±0.28c 0.6 66.47±2.77c
2 -20.43±0.66e 67.79±1.87b 1 72.31±0.50b
4 -19.81±3.38e 84.08±1.79a 4 93.74±2.30a

Table 5

Inhibitory effect of PEP and D-PEP on maltase activity"

浓度Concentration (mg·mL-1) PEP D-PEP 浓度Concentration (mg·mL-1) 阿卡波糖Acarbose
0.1 -10.04±0.37f 7.89±0.37d 0.005 13.44±0.31f
0.2 -5.72±2.89e 5.26±0.59e 0.02 46.23±0.12e
0.4 11.11±1.86d 9.68±0.74d 0.04 58.84±0.13d
0.6 16.95±2.00c 13.82±0.39c 0.06 67.62±1.64c
0.8 17.81±0.43c 14.08±2.06c 0.1 89.69±1.46b
1 19.83±0.82c 18.12±0.33b 0.2 92.13±2.27ab
2 32.82±2.93b 19.73±0.64ab 0.4 92.51±0.59a
4 77.20±2.71a 20.58±1.20a 0.6 93.48±1.32a

Table 6

Inhibitory effect of PEP and D-PEP on α-glucosidase activity"

浓度Concentration (mg·mL-1) PEP D-PEP 浓度Concentration (mg·mL-1) 阿卡波糖Acarbose
0.1 5.3±1.91g 44.73±0.92h 0.005 32.66± 0.89f
0.2 10.74±1.98f 58.86±0.83g 0.01 61.98±1.79e
0.4 27.84±3.08e 67.67±1.19f 0.02 78.19±0.94d
0.6 35.90±0.15d 78.45±0.69e 0.04 89.93±0.13c
0.8 42.61±0.48c 81.42±0.82d 0.06 91.92±0.01b
1 44.44±0.72c 84.18±0.61c 0.1 99.12±0.07a
2 65.96±0.67b 91.23±0.19b 0.2 99.45±0.06a
4 78.91±0.51a 95.58±0.12a 0.4 99.79±0.03a

Fig. 1

Effects of PEP (A) and D-PEP (B) on α- glucosidase fluorescence spectra"

Fig. 2

Stern-Volmer curve (A), natural logarithm plot (B), log plot (C) of PEP and D-PEP pairs for α-glucosidase"

Table 7

Fluorescence quenching constant of PEP/D-PEP interaction with α -glucosidase"

KSV (L·mol-1) Kq (L·mol-1·s-1) n
PEP 5.99×102 5.99×1010 1.24
D-PEP 1.01×103 1.01×1011 1.54
[1] HYDER M S, DUTTA S D. Mushroom-derived polysaccharides as antitumor and anticancer agent: A concise review. Biocatalysis and Agricultural Biotechnology, 2021, 35: 102085. doi: 10.1016/j.bcab.2021.102085.
doi: 10.1016/j.bcab.2021.102085
[2] SYNYTSYA A, MÍČKOVÁ K, SYNYTSYA A, JABLONSKÝ I, SPĚVÁČEK J, ERBAN V, KOVÁŘÍKOVÁ E, ČOPÍKOVÁ J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers, 2009, 76(4): 548-556. doi: 10.1016/j.carbpol.2008.11.021.
doi: 10.1016/j.carbpol.2008.11.021
[3] ZHANG C, SONG X L, CUI W J, YANG Q H. Antioxidant and anti-ageing effects of enzymatic polysaccharide from Pleurotus eryngii residue. International Journal of Biological Macromolecules, 2021, 173: 341-350. doi: 10.1016/j.ijbiomac.2021.01.030.
doi: 10.1016/j.ijbiomac.2021.01.030
[4] XU N, GAO Z, ZHANG J J, JING H J, LI S S, REN Z Z, WANG S X, JIA L. Hepatoprotection of enzymatic-extractable mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. Carbohydr Polym, 2017, 157: 196-206. doi: 10.1016/j.carbpol.2016.09.082.
doi: 10.1016/j.carbpol.2016.09.082
[5] KHURSHEED R, SINGH S K, WADHWA S, GULATI M, AWASTHI A. Therapeutic potential of mushrooms in diabetes mellitus: role of polysaccharides. International Journal of Biological Macromolecules, 2020, 164: 1194-1205. doi: 10.1016/j.ijbiomac.2020.07.145.
doi: S0141-8130(20)33908-8 pmid: 32693144
[6] LI S Q, SHAH N P. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275. Food Chemistry, 2014, 165: 262-270. doi: 10.1016/j.foodchem.2014.05.110.
doi: 10.1016/j.foodchem.2014.05.110
[7] ABREU H, ZAVADINACK M, SMIDERLE F R, CIPRIANI T R, CORDEIRO L M C, IACOMINI M. Polysaccharides from Pleurotus eryngii: Selective extraction methodologies and their modulatory effects on THP-1 macrophages. Carbohydrate Polymers, 2021, 252: 117177. doi: 10.1016/j.carbpol.2020.117177.
doi: 10.1016/j.carbpol.2020.117177
[8] CHAIYAMA V, KEAWSOMPONG S, LEBLANC J G, DE MORENO DE LEBLANC A, CHATEL J M, CHANPUT W. Action modes of the immune modulating activities of crude mushroom polysaccharide from Phallus atrovolvatus. Bioactive Carbohydrates and Dietary Fibre, 2020, 23: 100216. doi: 10.1016/j.bcdf.2020.100216.
doi: 10.1016/j.bcdf.2020.100216
[9] 陈玥彤, 张闪闪, 李文意, 于文浩, 赵晓芳, 刘婷婷. 黑木耳多糖的磷酸化修饰、结构表征及体外降糖活性. 食品科学, 2022, 43(8): 29-35.
CHEN Y T, ZHANG S S, LI W Y, YU W H, ZHAO X F, LIU T T. Structural characterization and hypoglycemic effect in vitro of phosphorylated Auricularia auriculata polysaccharide. Food Science, 2022, 43(8): 29-35. (in Chinese)
[10] 汪梦雯. 灵芝、香菇和茯茶多糖的提取、结构表征及降糖活性研究[D]. 西安: 陕西科技大学, 2021.
WANG M W. Optimization of extraction technology and biological activity of polysaccharides from Ganoderma lucidum, Lentinus edodes and Fu brick tea[D]. Xi’an: Shaanxi University of Science and Technology, 2021. (in Chinese)
[11] MAO Y, MAO J, MENG X Y. Extraction optimization and bioactivity of exopolysaccharides from Agaricus bisporus. Carbohydrate Polymers, 2013, 92(2): 1602-1607. doi: 10.1016/j.carbpol.2012.11.017.
doi: 10.1016/j.carbpol.2012.11.017
[12] ZHENG X M, SUN H Q, WU L R, KONG X R, SONG Q Y, ZHU Z Y. Structural characterization and inhibition on α-glucosidase of the polysaccharides from fruiting bodies and mycelia of Pleurotus eryngii. International Journal of Biological Macromolecules, 2020, 156: 1512-1519. doi: 10.1016/j.ijbiomac.2019.11.199.
doi: 10.1016/j.ijbiomac.2019.11.199
[13] 张国锁, 张淑红, 张运峰, 申书侃, 范永山. 杏鲍菇多糖对糖尿病小鼠的降血糖作用. 中国食用菌, 2019, 38(1): 38-40, 57.
ZHANG G S, ZHANG S H, ZHANG Y F, SHEN S K, FAN Y S. Hypoglycemic effect of Pleurotus eryngii polysaccharides on diabetic mice. Edible Fungi of China, 2019, 38(1): 38-40, 57. (in Chinese)
[14] AZEEM U, SHRI R, DHINGRA G S. In vitro and in vivo antihyperglycemic activities of medicinal mushrooms (Agaricomycetes) from India. International Journal of Medicinal Mushrooms, 2021, 23(2): 29-41. doi: 10.1615/intjmedmushrooms.2021037630.
doi: 10.1615/intjmedmushrooms.2021037630
[15] FENG H, ZHANG S J, WAN J M F, GUI L F, RUAN M C, LI N, ZHANG H Y, LIU Z G, WANG H L. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice. Carbohydr Polym, 2018, 200: 144-153. doi: 10.1016/j.carbpol.2018.07.086.
doi: 10.1016/j.carbpol.2018.07.086
[16] WANG C, GAO X D, SANTHANAM R K, CHEN Z Q, CHEN Y, XU L L, WANG C L, FERRI N, CHEN H X. Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, ɑ-amylase, ɑ-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells. Food and Chemical Toxicology, 2018, 116: 335-345. doi: 10.1016/j.fct.2018.04.047.
doi: 10.1016/j.fct.2018.04.047
[17] MA G X, XU Q, DU H J, MUINDE KIMATU B, SU A X, YANG W J, HU Q H, XIAO H. Characterization of polysaccharide from Pleurotus eryngii during simulated gastrointestinal digestion and fermentation. Food Chemistry, 2022, 370: 131303. doi: 10.1016/j.foodchem.2021.131303.
doi: 10.1016/j.foodchem.2021.131303
[18] LI B, YANG W, NIE Y Y, KANG F F, GOFF H D, CUI S W. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 2019, 94: 48-56. doi: 10.1016/j.foodhyd.2019.02.042.
doi: 10.1016/j.foodhyd.2019.02.042
[19] WANG T L, LIANG X H, RAN J J, SUN J L, JIAO Z G, MO H Z. Response surface methodology for optimisation of soluble dietary fibre extraction from sweet potato residue modified by steam explosion. International Journal of Food Science & Technology, 2017, 52(3): 741-747. doi: 10.1111/ijfs.13329.
doi: 10.1111/ijfs.13329
[20] KUREK M A, KARP S, WYRWISZ J, NIU Y G. Physicochemical properties of dietary fibers extracted from gluten-free sources: Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocolloids, 2018, 85: 321-330. doi: 10.1016/j.foodhyd.2018.07.021.
doi: 10.1016/j.foodhyd.2018.07.021
[21] NSOR-ATINDANA J, DOUGLAS GOFF H, LIU W, CHEN M S, ZHONG F. The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Carbohydrate Polymers, 2018, 200: 436-445. doi: 10.1016/j.carbpol.2018.07.088.
doi: 10.1016/j.carbpol.2018.07.088
[22] XU Y Q, NIU X J, LIU N Y, GAO Y K, WANG L B, XU G, LI X G, YANG Y. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits. Food Chemistry, 2018, 243: 26-35. doi: 10.1016/j.foodchem.2017.09.107.
doi: 10.1016/j.foodchem.2017.09.107
[23] LI Y F, ZHANG X M, WANG R H, HAN L, HUANG W, SHI H, WANG B H, LI Z Q, ZOU S L. Altering the inhibitory kinetics and molecular conformation of maltase by Tangzhiqing (TZQ), a natural α-glucosidase inhibitor. BMC Complementary Medicine and Therapies, 2020, 20(1): 350. doi: 10.1186/s12906-020-03156-3.
doi: 10.1186/s12906-020-03156-3 pmid: 33208112
[24] QIN G Y X, XU W, LIU J Q, ZHAO L Y, CHEN G T. Purification, characterization and hypoglycemic activity of glycoproteins obtained from pea (Pisum sativum L.). Food Science and Human Wellness, 2021, 10(3): 297-307. doi: 10.1016/j.fshw.2021.02.021.
doi: 10.1016/j.fshw.2021.02.021
[25] WU L R, SUN H Q, HAO Y L, ZHENG X M, SONG Q Y, DAI S H, ZHU Z Y. Chemical structure and inhibition on α-glucosidase of the polysaccharides from Cordyceps militaris with different developmental stages. International Journal of Biological Macromolecules, 2020, 148: 722-736. doi: 10.1016/j.ijbiomac.2020.01.178.
doi: 10.1016/j.ijbiomac.2020.01.178
[26] LV Q Q, CAO J J, LIU R, CHEN H Q. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chemistry, 2021, 341: 128218. doi: 10.1016/j.foodchem.2020.128218.
doi: 10.1016/j.foodchem.2020.128218
[27] FERRER-GALLEGO R, GONÇALVES R, RIVAS-GONZALO J C, ESCRIBANO-BAILÓN M T, DE FREITAS V. Interaction of phenolic compounds with bovine serum albumin (BSA) and α-amylase and their relationship to astringency perception. Food Chemistry, 2012, 135(2): 651-658. doi: 10.1016/j.foodchem.2012.04.123.
doi: 10.1016/j.foodchem.2012.04.123
[28] ZHAO M M, BAI J W, BU X Y, YIN Y T, WANG L B, YANG Y, XU Y Q. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydrate Polymers, 2021, 259: 117729. doi: 10.1016/j.carbpol.2021.117729.
doi: 10.1016/j.carbpol.2021.117729
[29] ZHANG M Q, YANG R J, YU S H, ZHAO W. A novel ɑ-glucosidase inhibitor polysaccharide from Sargassum fusiforme. International Journal of Food Science and Technology, 2022, 57(1): 67-77. doi: 10.1111/ijfs.151.
doi: 10.1111/ijfs.151
[30] WANG M T, SHI J Y, WANG L, HU Y Q, YE X Q, LIU D H, CHEN J C. Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic ɑ-amylase. International Journal of Biological Macromolecules, 2018, 120: 2589-2596. doi: 10.1016/j.ijbiomac.2018.09.035.
doi: 10.1016/j.ijbiomac.2018.09.035
[31] MAITY P, SEN I K, CHAKRABORTY I, MONDAL S, BAR H, BHANJA S K, MANDAL S, MAITY G N. Biologically active polysaccharide from edible mushrooms: A review. International Journal of Biological Macromolecules, 2021, 172: 408-417. doi: 10.1016/j.ijbiomac.2021.01.081.
doi: 10.1016/j.ijbiomac.2021.01.081 pmid: 33465360
[32] LEONG Y K, YANG F C, CHANG J S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydrate Polymers, 2021, 251: 117006. doi: 10.1016/j.carbpol.2020.117006.
doi: 10.1016/j.carbpol.2020.117006
[33] PALANISAMY M, ALDARS-GARCíA L, GIL-RAMíREZ A, RUIZ-RODRíGUEZ A, MARíN F R, REGLERO G, SOLER-RIVAS C. Pressurized water extraction of β-glucan enriched fractions with bile acids-binding capacities obtained from edible mushrooms. Biotechnology Progress, 2014, 30(2): 391-400. doi: 10.1002/btpr.1865.
doi: 10.1002/btpr.1865
[34] ALZORQI I, SUDHEER S, LU T J, MANICKAM S. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom, characteristic properties and antioxidant activity. Ultrasonics Sonochemistry, 2017, 35: 531-540. doi: 10.1016/j.ultsonch.2016.04.017.
doi: 10.1016/j.ultsonch.2016.04.017
[35] LUNN J, BUTTRISS J L. Carbohydrates and dietary fibre. Nutrition Bulletin, 2007, 32(1): 21-64. doi: 10.1111/j.1467-3010.2007.00616.x.
doi: 10.1111/j.1467-3010.2007.00616.x
[36] YANG B K, KIM G N, JEONG Y T, JEONG H, MEHTA P, SONG C H. Hypoglycemic effects of exo-biopolymers produced by five different medicinal mushrooms in STZ-induced diabetic rats. Mycobiology, 2008, 36(1): 45-49. doi: 10.4489/MYCO.2008.36.1.045.
doi: 10.4489/MYCO.2008.36.1.045
[37] 黄才欢, 欧仕益, 张宁, 李亚菲, 赵谋明. 膳食纤维吸附脂肪、胆固醇和胆酸盐的研究. 食品科技, 2006(5): 133-136.
HUANG C H, OU S Y, ZHANG N, LI Y F, ZHAO M M. Research on the adsorption capacity of dietary fiber complexes for fat, cholesterol and bile acid in vitro. Food Science and Technology, 2006(5): 133-136. (in Chinese)
[38] HU J L, NIE S P, XIE M Y. Antidiabetic mechanism of dietary polysaccharides based on their gastrointestinal functions. Journal of Agricultural and Food Chemistry, 2018, 66(19): 4781-4786. doi: 10.1021/acs.jafc.7b05410.
doi: 10.1021/acs.jafc.7b05410
[39] LIU Y T, LI Y W, KE Y, LI C, ZHANG Z Q, WU Y L, HU B, LIU A P, LUO Q Y, WU W J. In vitro saliva-gastrointestinal digestion and fecal fermentation of Oudemansiella radicata polysaccharides reveal its digestion profile and effect on the modulation of the gut microbiota. Carbohydrate Polymers, 2021, 251: 117041. doi: 10.1016/j.carbpol.2020.117041.
doi: 10.1016/j.carbpol.2020.117041
[40] REN S C, WAN Y, ZHU X A, LIU Z L, ZHAO W H, XIE D D, WANG S L. Influence of gardenia yellow on in vitro slow starch digestion and its action mechanism. Royal Society of Chemistry, 2022, 12(11): 6738-6747. doi: 10.1039/d1ra08276k.
doi: 10.1039/d1ra08276k
[41] CHI G X, QI Y F, LI J, WANG L, HU J J. Polyoxomolybdates as α-glucosidase inhibitors: Kinetic and molecular modeling studies. Journal of Inorganic Biochemistry, 2019, 193: 173-179. doi: 10.1016/j.jinorgbio.2019.02.001.
doi: S0162-0134(18)30588-9 pmid: 30776576
[42] INOCENTE CAMONES M A, JURADO TEIXEIRA B, RAMOS LLICA E, ALVARADO CHáVEZ B, FUERTES RUITON C, CÁRDENAS MONTOYA L, RIVERA CASTILLO B. In vitro hypoglycemic activity of polysaccharides digested from Nostoc sphaericum Vaucher ex Bornet & Flahault (cushuro). Horizonte Médico (Lima), 2019, 19(1): 26-31. doi: 10.24265/horizmed.2019.v19n1.05.
doi: 10.24265/horizmed.2019.v19n1.05
[43] JIA Y N, XUE Z H, WANG Y J, LU Y P, LI R L, LI N N, WANG Q R, ZHANG M, CHEN H X. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydrate Polymers, 2021, 252: 117185. doi: 10.1016/j.carbpol.2020.117185.
doi: 10.1016/j.carbpol.2020.117185
[44] CAO X Y, XIA Y, LIU D, HE Y L, MU T, HUO Y P, LIU J L. Inhibitory effects of Lentinus edodes mycelia polysaccharide on α-glucosidase, glycation activity and high glucose-induced cell damage. Carbohydrate Polymers, 2020, 246: 116659. doi: 10.1016/j.carbpol.2020.116659.
doi: 10.1016/j.carbpol.2020.116659
[45] 陈成. 五味子多糖提取工艺优化及其对α-葡萄糖苷酶抑制活性分析. 食品工业科技, 2022, 43(7): 248-254. doi: 10.13386/j.issn1002-0306.2021090146.
doi: 10.13386/j.issn1002-0306.2021090146
CHEN C. Optimization of extraction process of Schisandra chinensis polysaccharide and analysis of its inhibitory activity against α- glucosidase. Science and Technology of Food Industry, 2022, 43(7): 248-254. doi: 10.13386/j.issn1002-0306.2021090146. (in Chinese)
doi: 10.13386/j.issn1002-0306.2021090146
[46] 任顺成, 万毅, 李林政, 潘天义. 栀子黄对淀粉消化酶的抑制动力学及相互作用研究. 中国食品学报, 2021, 21(9): 38-47.
REN S C, WAN Y, LI L Z, PAN T Y. Studies on the inhibition kinetics and interaction mechanism of Gardenia yellowon starch digestive enzyme. Journal of Chinese Institute of Food Science and Technology, 2021, 21(9): 38-47. (in Chinese)
[47] 杨丽珍. 荔枝壳多酚抑制α-葡萄糖苷酶和α-淀粉酶的作用及其机制研究[D]. 广州: 华南农业大学, 2017.
YANG L Z. Inhibitory effect of phenolics from litchi pericarp on α-glycosidase and α-amylase and their underling mechanism[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese)
[48] 杜沁岭, 杨芳, 徐文, 缪婷, 曹俊杰, 贾冬英. 银耳多糖对淀粉消化酶的抑制作用及其机理研究. 食品工业科技, 2022, 43(2): 120-125. doi: 10.13386/j.issn1002-0306.2021060084.
doi: 10.13386/j.issn1002-0306.2021060084
DU Q L, YANG F, XU W, MIAO T, CAO J J, JIA D Y. Inhibitory effect of Tremella fuciformis polysaccharide on starch digestive enzymes and its action mechanism. Science and Technology of Food Industry, 2022, 43(2): 120-125. doi: 10.13386/j.issn1002-0306.2021060084. (in Chinese)
doi: 10.13386/j.issn1002-0306.2021060084
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!