Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4322-4332.doi: 10.3864/j.issn.0578-1752.2020.21.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Breeding and Characteristics of a New Male Sterile Line of Maize, Jinyu1A

ZHANG HuanHuan1(),CUI GuiMei2(),WANG ChangBiao1,WANG XiaoQing1,HAO YaoShan1,DU JianZhong1,WANG YiXue1,SUN Yi1()   

  1. 1College of Life Sciences, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031
    2The Seed Industry Limited Company of Shanxi Dafeng, Taiyuan 030031
  • Received:2019-12-14 Accepted:2020-03-07 Online:2020-11-01 Published:2020-11-11
  • Contact: Yi SUN E-mail:frank.red@163.com;guimeicui@126.com;sunyi692003@163.com

Abstract:

【Objective】The study was aimed to determine the type of the male sterile line of maize, Jinyu1A, by molecular biology and cytology approaches, identify restoring and maintaining relationships of maize germplasm resources to the sterile line, and to test its general combining ability (GCA) and specific combining ability (SCA).【Method】The stability of sterility of Jinyu1A was investigated at 4 locations (Ledong, Jinzhong, Xinzhou and Yuncheng) for successive 3 years. Tassel, anther and pollen grains of Jinyu1A was observed and compared with Zheng58. F1 pollen grains of Jinyu1A×Chang7-2 were observed by I2-KI staining. The sterility type of Jinyu1A was identified by specific PCR. Jinyu1A was used as the female parent and test-crossed with 158 maize inbred lines. The fertility of F1 plants was investigated to screen for the suitable restorer and maintainer lines. The fertility of F2 and BC1 population plants was investigated. The grain yield general combining ability and specific combining ability of Jinyu1A were estimated by analyzing the data of its F1 hybrids.【Result】The sterility characters of Jinyu1A were stable in the 4 locations for the 3 years. The appearance of tassel of Jinyu1A was similar to that of Zheng58, but its glumes were closed, anthers were withered and could not exert out of the glumes, and I2-KI staining showed that the pollen of Jinyu1A was completely sterile. The microscopical observation on the pollen grains of F1 hybrid plants of Jinyu1A and Chang7-2 showed that 64.4% of the pollen grains could be stained dark by I2-KI and 35.6% pollen grains were aborted, which indicated that the sterile line belonged to S-type cytoplasmic sterile lines. The cytoplasm of Jinyu1A and Chang7-2 were identified as S-type male sterile type by specific PCR. The nuclear genome of Chang7-2 carries restorer genes, which concealed the phenotype of cytoplasmic male sterility. The specific primers suggested by ZHENG et al. were more applicable for categorizing maize cytoplasm sterile types. Among 158 inbred lines test-crossed with Jinyu1A as female parent, 96 maintainers, 47 restorers, and 15 semi-restorers were identified. There were 3.1%-8.7% sterile plants in F2 populations derived from fertile F1 plants of crosses between Jinyu1A and the restorer lines, which indicated that there were minor effect restorer genes in the restorer lines. There was no significant difference in the grain yields of the hybrids between each of Jinyu1A and Zheng58 as females and other 10 inbred lines as males, respectively. However, the F1 combining ability analysis of these hybrids showed that the general combining ability of Jinyu1A was slightly higher than that of Zheng58.【Conclusion】Jinyu1A was a S-type cytoplasmic male sterile line with stable male sterile characters and completely aborted pollen grains. There are a certain amount of restorer and maintainer type breeding stocks for Jinyu1A in the present maize germplasm resources. F1 plants of its hybrid with Chang7-2 could produce normal panicles and disperse fertile pollen. The existence of minor effect restorer gene(s) made the pollen dyeability shift to the direction of fertility, which led to the emergence of a few fertile plants in F2 populations. There was no significant difference in the grain yield between the hybrids with Jinyu1A and Zheng58 each as female parents test-crossed with the same male parents. The general combining ability of Jinyu1A was slightly higher than that of Zheng58, indicating that it could be used in the breeding programs for selecting new maize hybrids and male sterile lines.

Key words: maize, male sterility, restorer gene, combining ability

Table 1

Maize CMS specific primers"

引物名称
Primer name
序列
Sequence (5’-3’)
产物大小
Product size (bp)
参考文献
Reference
CMST-F CATGAAATGGGTGAAGTCTCTTTC 440 [16]
CMST-R AAGAGAAAGGGAGACTTTGGTCCC
CMSC-F AGCATCATCCACATTCGCTAG 398
CMSC-R AGCATCATCCACATTCGCTAG
CMSS-F CAACTTATTACGAGGCTGATGC 799
CMSS-R AGTTCGTCCCATATACCCGTAC
CMST-1 GTCGTGTCCTGGTAGCCT 435 [17]
CMST-2 CCTCCTTCATTCCGTTGT
CMSC-1 TGAAAGGGTGGTGGAATA 698
CMSC-2 GAGCCAAAGTAATGAGAAAA
CMSS-1 GATGCTATGCTAAGCGAGAT 885
CMSS-2 CCGCTAACCCACTCTTCT

Fig. 1

Comparison of tassels and pollen between Jinyu1A and Zheng58 1: Tassels; 2: Anthers; 3: Pollen of Jinyu1A; 4: Pollen of Zheng58. A: Jinyu1A; B: Zheng58"

Fig. 2

F1 plants’ pollen of Jinyu1A×Chang7-2 and Zheng58×Chang7-2 stained with I2-KI A: F1 pollen of Jinyu1A×Chang7-2; B: F1 pollen of Zheng58×Chang7-2"

Fig. 3

PCR identification for specificity of Jinyu1A M: Marker 2000; 1-3: B73 (negative control); 4-6: JnA (positive control); 7-9: Jinyu1A; 10-12: Chang7-2 (cytoplasm source of Jinyu1A); 13-15: Zheng58 (maintainer of Jinyu1A)"

Table 2

Male sterile plants in the F2 and BC1 populations"

年份
Year
群体
Population
总株数
Total No.
不育株
Sterile plant
可育株
Normal plant
不育率
Sterile rate (%)
2017 (昌7-2×郑58)×郑58 (Chang7-2×Zheng58)×Zheng58 48 25 23 52.1
2016 晋玉1A×昌7-2 F2群体 F2 population of Jinyu1A×Chang7-2 205 12 193 8.7
2016 晋玉1A×G155 F2群体 F2 population of Jinyu1A×G155 196 6 190 3.1
2016 晋玉1A×昌7-2无叶舌 F2群体
F2 population of Jinyu1A×Chang7-2 liguleless
201 7 194 3.4
2017 晋玉1A×昌7-2 F2群体 F2 population of Jinyu1A×Chang7-2 343 24 319 7.0

Fig. 4

Yield of hybrids with Jinyu1A and Zheng 58 as female parents"

Table 3

Variance analysis of hybrid yields"

变异来源
Variation source
自由度
df
平方和
SS
均方
Mean square
F
F value
F0.05 F0.01
区组Group 2 5428484.75 2714242.37 2.5438 2.9957 4.6052
父本一般配合力
Male general combining ability
9 71335846.48 7926205.16 7.4285** 1.8799 2.4073
母本一般配合力
Female general combining ability
1 786731.79 786731.79 0.7373 3.8415 6.6349
互作 Interaction 16 18321561.15 1145097.57 1.0732 1.6435 2.0000
误差 Error 31 62953214.52 1067003.64
总变异 Total variation 59 158825838.69

Table 4

General combining ability and effect value of inbred lines"

自交系
Inbred lines
一般配合力
General combining
ability
一般配合力效应值
General combining
ability effect (%)
自交系
Inbred lines
一般配合力
General combining
ability
一般配合力效应值
General combining
ability effect (%)
PH4CV -741.31 -6.12 昌7-2 Chang7-2 705.11 5.82
PHB1M 932.83 7.70 G154 -500.23 -4.13
PH6WC 872.56 7.20 G30 -768.09 -6.34
B73 -747.99 -6.17 G31 1133.71 9.36
L269 1307.86 10.79 晋玉1A Jinyu1A 114.51 0.94
Mo17 -2194.45 -18.11 郑58 Zheng58 -114.51 -0.94

Table 5

Specific combining ability and effect value of hybrid combinations"

杂交组合
Hybrid combination
特殊配合力
Specific combining ability
特殊配合力效应值
Specific combining
ability effect (%)
杂交组合
Hybrid combination
特殊配合力
Specific combining ability
特殊配合力效应值
Specific combining ability effect (%)
晋玉1A×PH4CV
Jinyu1A×PH4CV
-188.14 -1.55 郑58×PH4CV
Zheng58×PH4CV
188.14 1.55
晋玉1A×PHB1M
Jinyu1A×PHB1M
-0.71 -0.01 郑58×PHB1M
Zheng58×PHB1M
0.71 0.01
晋玉1A×PH6WC
Jinyu1A×PH6WC
193.52 1.60 郑58×PH6WC
Zheng58×PH6WC
-193.52 -1.60
晋玉1A×B73
Jinyu1A×B73
622.10 5.13 郑58×B73
Zheng58×B73
-622.10 -5.13
晋玉1A×L269
Jinyu1A×L269
227.02 1.87 郑58×L269
Zheng58×L269
-227.02 -1.87
晋玉1A×Mo17
Jinyu1A×Mo17
-368.96 -3.04 郑58×Mo17
Zheng58×Mo17
368.96 3.04
晋玉1A×昌7-2
Jinyu1A×Chang7-2
-844.44 -6.97 郑58×昌7-2
Zheng58×Chang7-2
844.44 6.97
晋玉1A×G154
Jinyu1A×G154
561.85 4.64 郑58×G154
Zheng58×G154
-561.85 -4.64
晋玉1A×G30
Jinyu1A×G30
722.55 5.96 郑58×G30
Zheng58×G30
-722.55 -5.96
晋玉1A×G31
Jinyu1A×G31
-924.79 -7.63 郑58×G31
Zheng58×G31
924.79 7.63
[1] 李小琴, 刘纪麟, 万邦惠, 郑用琏, 李建生, 徐尚忠, 季世国. 玉米新不育胞质WBMs的利用潜力研究. 中国农业科学, 2004,37(8):1099-1103.
LI X Q, LIU J L, WAN B H, ZHENG Y L, LI J S, XU S Z, JI S G. Classification of male sterile cytoplasms of WBMs in maize (Zea mays L.). Scientia Agricultura Sinica, 2004,37(8):1099-1103. (in Chinese)
[2] 段柳静. 玉米C型胞质雄性不育育性恢复主基因Rf4的精细定位[D]. 郑州: 河南农业大学, 2009.
DUAN L J. Linkage mapping of Rf4 a fertility restorer gene for C-cytoplsmic male sterility in maize[D]. Zhengzhou: Henan Agricultural University, 2009. (in Chinese)
[3] ALLEN J O, FAURON C M, MINX P, ROARK L, ODDIRAJU S, LIN G N, MEYER L, SUN H, KIM K, WANG C. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics, 2007,177(2):1173-1192.
pmid: 17660568
[4] SUSAN G L, KUZMIN E V, JESSICA M, LEAH R, NEWTON K J. Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize. Genetics, 2009,182(182):91-103.
[5] ZABALA G, GABAY-LAUGHNAN S, LAUGHNAN J R. The nuclear geneRf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics, 1997,147(2):847-860.
pmid: 9335619
[6] 石永刚, 郑用琏, 李建生, 刘纪麟. 玉米S组CMS育性恢复基因的分子标记定位. 作物学报, 1997,23(1):1-6.
SHI Y G, ZHENG Y L, LI J S, LIU J L. Mapping CMS-S restores geneRf3 with RFLPs and RAPDs. Acta Agronomica Sinica, 1997,23(1):1-6. (in Chinese)
[7] ZHANG Z F, WANG Y, ZHENG Y L. AFLP and PCR-based markers linked toRf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Molecular Genetics and Genomics, 2006,276(2):162-169.
doi: 10.1007/s00438-006-0131-y pmid: 16705419
[8] 薛亚东. 玉米S-CMS育性恢复基因精细定位和玉米耐旱全基因组关联分析[D]. 武汉: 华中农业大学, 2013.
XUE Y D. Fine-mapping of a restorer of fertility gene for S-CMS in maize and genome-wide association study(GWAS) of drought tolerance in maize (Zea mays L.)[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[9] 李鹏, 肖森林, 王淑霞, 刘娟, 赵贤容, 陈化榜. 玉米S型细胞质雄性不育恢复基因Rf3的精细定位及其候选基因预测. 山东农业科学, 2014,46(8):1-5.
LI P, XIAO S L, WANG S X, LIU J, ZHAO X R, CHEN H B. Fine mapping of fertility restorer geneRf3 of S-Type cytoplasmic male sterility and candidate gene prediction in maize. Shandong Agricultural Sciences, 2014,46(8):1-5. (in Chinese)
[10] SUSAN G L, CHASE C D, ORTEGA V M, LIMING Z. Molecular-genetic characterization of CMS-S restorer-of-fertility alleles identified in Mexican maize and teosinte. Genetics, 2004,166(2):959.
pmid: 15020480
[11] TIE S, XIA J, QIU F, ZHENG Y. Genome-wide analysis of maize cytoplasmic male sterility-S based on QTL mapping. Plant Molecular Biology Reporter, 2006,24(1):71-80.
[12] FENG Y, ZHENG Q, SONG H, WANG Y, WANG H, JIANG L, YAN J, ZHENG Y, YUE B. Multiple loci not onlyRf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theoretical and Applied Genetics, 2015,128(11):2341-2350.
pmid: 26220224
[13] 冯阳. 玉米S型细胞质雄性不育育性恢复基因位点全基因组关联分析研究[D]. 武汉: 华中农业大学, 2015.
FENG Y. Genome-wide association analysis of fertility restoration ability to S type cytoplasmic male sterile in maize[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[14] 侯爱斌, 柳青山, 李团银, 崔贵梅, 侯旭东, 袁爱平. 玉米细胞质不育系JnA的分组鉴定和花粉败育观察. 作物学报, 2004,30(12):1278-1280.
HOU A B, LIU Q S, LI T Y, CUI G M, HOU X D, YUAN A P. Observation on pollen abortion and classification of cytoplasmic male sterile inbred JnA in maize. Acta Agronomica Sinica, 2004,30(12):1278-1280. (in Chinese)
[15] 侯爱斌, 柳青山, 董良利, 李团银, 侯旭东, 梁笃, 段冰. 玉米细胞质雄性不育系JnA的分组鉴定及利用. 华北农学报, 2006,21(1):31-34.
HOU A B, LIU Q S, DONG L L, LI T Y, HOU X D, LIANG D, DUAN B. Application and classification of cytoplasmic male sterile inbred JnA in maize. Acta Agriculturae Boreali-Sinica, 2006,21(1):31-34. (in Chinese)
[16] LIU Z, PETER S O, LONG M, WEINGARTNER U, KAESER O. A PCR assay for rapid discrimination of cytoplasm types in maize. Crop Science, 2002,42(2):566-569.
[17] 郑用琏, 方明镜, 张方东, 刘纪麟. 鉴别玉米细胞质雄性不育材料胞质类型的方法:中国, CN1514017. 2004
ZHENG Y L, FANG M J, ZHANG F D, LIU J L. Methods to identify cytoplasm types of maize: China, CN1514017. 2004. (in Chinese)
[18] DUVICK D N. Allelism and comparative genetics of fertility restoration of cytoplasmically pollen sterile maize. Genetics, 1956,41(4):544.
pmid: 17247647
[19] TEAM R C. R: A language and environment for statistical computing. 2018, R Foundation for Statistical Computing, Vienna, Austria.
[20] WICKHAM H. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer International Publishing, 2016.
[21] 李小琴, 刘纪麟, 万邦惠, 徐尚忠, 季世国. 玉米CMS育性恢复专效性分类系统的研究. 华中农业大学学报, 1999,18(3):1-4.
LI X Q, LIU J L, WAN B H, XU S Z, JI S G. Research on the classification system of fertility restorer specific effect of CMS in maize. Journal of Huazhong Agricultural University, 1999,18(3):1-4. (in Chinese)
[22] 谢友菊, 戴景瑞. 用线粒体DNA鉴定玉米雄性不育细胞质的研究. 遗传学报, 1988,15(5):335-339.
XIE Y J, DAI J R. Study on identification of male sterile cytoplasma using analysis of mitochondrial DNAs in maize. Acta Genetica Sinica, 1988,15(5):335-339. (in Chinese)
[23] 张祖新, 方明镜, 杜何为, 邓莉蓉, 郑用琏. 基于PCR技术的玉米CMS材料胞质类型的快速鉴定. 作物学报, 2005,31(10):1386-1388.
ZHANG Z X, FANG M J, DU H W, DENG L R, ZHENG Y L. The rapid discrimination based on PCR on cytoplasmic types of male sterile line of maize (Zea mays L.). Acta Agronomica Sinica, 2005,31(10):1386-1388. (in Chinese)
[24] 陈伟, 刘占先, 鄂立柱, 杨会, 戴景瑞. 玉米细胞质雄性不育材料CMS-P的胞质分类研究. 作物学报, 2007,33(2):196-200.
CHEN W, LIU Z X E L Z, YANG H, DAI J R. Classification of male sterile cytoplasm of CMS-P in maize (Zea mays everta). Acta Agronomica Sinica, 2007,33(2):196-200. (in Chinese)
[25] 孙丽芳, 邓杰, 王霞, 赵伟, 杨克军, 苗兴芬, 高树仁. 玉米细胞质雄性不育系胞质类型鉴定及花粉败育研究. 作物杂志, 2016,172(3):27-32.
SUN L F, DENG J, WANG X, ZHAO W, YANG K J, MIAO X F, GAO S R. Type Identification of cytoplasmic male sterile line and study of pollen abortion in maize. Crops, 2016,172(3):27-32. (in Chinese)
[26] ZHOU G C, SHI H C, YU X J, YUAN J C, GUO Q, ZHAO C Y, SUN Q, KE Y P. Genetic characterisation and cytological identification of a male sterile mutant in maize (Zea mays L.). Cereal Research Communications, 2018,46(2):344-354.
doi: 10.1556/0806.46.2018.15
[27] 田红丽, 晏朋涛, 王蕊, 杨扬, 许理文, 易红梅, 王元东, 宋伟, 席章营, 赵久然, 王凤格. 基于叶绿体InDel标记对玉米S型胞质不育制种鉴定的研究. 玉米科学, 2019,27(2):53-60, 68.
TIAN H L, YAN P T, WANG R, YANG Y, XU L W, YI H M, WANG Y D, SONG W, XI Z Y, ZHAO J R, WANG F G. Identification of maize S-type cytoplasmic male sterile (CMS) using two chloroplast inDel markers in seed production. Journal of Maize Sciences, 2019,27(2):53-60, 68. (in Chinese)
[28] 夏涛, 刘纪麟. 玉米细胞质雄性不育的细胞学研究. 作物学报, 1989,15(2):97-103.
XIA T, LIU J L. The cytological study of cytoplasmic male sterility in maize. Acta Agronomica Sinica, 1989,15(2):97-103. (in Chinese)
[29] WAN X, WU S, LI Z, DONG Z, AN X, MA B, TIAN Y, LI J. Maize genic male-sterility genes and their applications in hybrid breeding: Progress and perspectives. Molecular Plant, 2019,12(3):321-342.
pmid: 30690174
[30] KAMPS T L, CHASE C D. RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theoretical and Applied Genetics, 1997,95(4):525-531.
doi: 10.1007/s001220050593
[31] 铁双贵. 玉米S组CMS育性不稳定现象遗传与基因定位[D]. 武汉: 华中农业大学, 2000.
TIE S G. Genetic genome-wide analysis of maize S-CMS unstable fertility restoration based on QTL mapping[D]. Wuhan: Huazhong Agricultural University, 2000. (in Chinese)
[32] SU A, SONG W, XING J, ZHAO Y, ZHANG R, LI C, DUAN M, LUO M, SHI Z, ZHAO J. Identification of genes potentially associated with the fertility instability of S-Type cytoplasmic male sterility in maize via bulked segregant RNA-Seq. PLoS ONE, 2016,11(9):e0163489.
pmid: 27669430
[33] GABAY-LAUGHNAN S, SETTLES A M, HANNAH L C, PORCH T G, BECRAFT P W, MCCARTY D R, KOCH K E, ZHAO L, KAMPS T L, CHAMUSCO K C, CHASE C D. Restorer-of-fertility mutations recovered in transposon-active lines of S male-sterile maize. G3: Genes, Genomes, Genetics, 2018,8(1):291-302.
[34] 吕庆雪, 于彩虹, 李毅丹, 高嵩, 牟勇, 林志, 宋广树, 刘伟. 浅析玉米杂交制种技术. 分子植物育种, 2018,16(12):4037-4042.
LÜ Q X, YU C H, LI Y D, GAO S, MU Y, LIN Z, SONG G S, LIU W. Analysis of hybrid seed production in maize. Molecular Plant Breeding, 2018,16(12):4037-4042. (in Chinese)
[35] 刘春增, 郭永才, 关国志, 司智成, 鲁保良, 刘日尊, 赵文媛. 利用雄性不育生产玉米杂交种增产因素分析. 杂粮作物, 2000,20(5):11-13.
LIU C Z, GUO Y C, GUAN G Z, SI Z C, LU B L, LIU R Z, ZHAO W Y. Analysis of factors for increasing yield of hybrid maize by using male sterility. Rain Fed Crops, 2000,20(5):11-13. (in Chinese)
[36] 马冲. 玉米S型胞质不育系应用潜力与增产效应研究[D]. 郑州: 河南农业大学, 2005.
MA C. Study on yield response and application potential of cytoplasmic male sterile lines in maize[D]. Zhengzhou: Henan Agricultural University, 2005. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!