Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4237-4247.doi: 10.3864/j.issn.0578-1752.2020.20.012


Effect of Maize Straw Return Aftereffect on Nitrogen Use Efficiency of Maize

ZOU WenXiu(),HAN XiaoZeng,LU XinChun,CHEN Xu,HAO XiangXiang,YAN Jun()   

  1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081
  • Received:2020-02-10 Accepted:2020-03-12 Online:2020-10-16 Published:2020-10-26
  • Contact: Jun YAN;


【Objective】Maize straw return has been one of agronomic practices for improving soil fertility. The effect of straw return aftereffect on Nitrogen use efficiency (NUE) was considered, with the objective of suppling the theoretical guidance for proposing the straw return patterns being favorable to enhance the NUE.【Method】Based on the black soil with heavy clay content in the Hailun agro-ecosystem experimental station of Chinese Academy of Sciences, the micro-plot experiment was carried out using 15N isotope techniques in 2016 under the treatment of the straw return (10 000 kg·hm-2) only once established in 2011. Seven treatments were set up, including control without maize straw return (CK), maize straw cover (D0), maize straw incorporated within 0-20 cm soil depth (D0-20), 0-35 cm soil depth (D0-35), 20-35 cm soil depth (D20-35), respectively, as well as maize straw placed on the 35 cm depth (D35) and 50 cm depth (D50).【Result】The aftereffect of maize straw return increased NUE by enhancing the cumulation of dry biomass and nitrogen in maize organs. The maize dry biomass shown in the decreasing trend of D0-35>D20-35>D0-20>CK≥D0>D35>D50, D0-35 and D20-35 treatments (Maize straw incorporated within deep soil) significantly increased by 7.1%-47.7% and 2.0%-39.1% (with exception of leaf), respectively (P<0.05), compared with other treatments. The different treatments didn’t impact the nitrogen (N) contents of maize organs, but D0-35, D20-35 and D0-20 treatments significantly increased the N cumulation in maize organs (P<0.05) with the increase of 15.8%-20.2%, 8.5%-18.2% and 27.9%-39.5%, respectively (P<0.05), compared with CK, D0, D35, and D50. The cumulation of 15N under D0-35 and D20-35 treatments significantly increased by 5.1%-38.4% and 9.3%-31.8%, respectively, compared with other treatments. 15N of more than 74.1% were accumulated in the grain, different treatments didn’t impact the 15N distribution in maize organs, indicating that NUE was increased by improving the N uptake of whole maize. The NUE and N retention rate reached the largest value under D0-35 with the increase of 1.9-12.7 percentage and 6.9-21.2 percentage, respectively, However, the N loss under D0-35 reached the lowest value with the decrease of 8.8-31.3 percentage. D0, D35 and D50 treatments (straw return in some soil layer) didn’t significantly increased the NUE compared with CK treatment, meanwhile the N loss was higher 3.6 and 4.4 percentages than that in CK treatment. The result indicated that straw return in some soil layer had potential risk in the increase of N loss, constructing fertile cultivated soil layer by straw incorporation within deep soil depth was effective agronomic practice with high NUE. The correlation analysis demonstrated that root biomass, light fraction organic carbon and soil physical properties contributed the increase of NUE in study site. N contribution rate was significantly higher 3.74, 4.26, 3.79 and 4.51percentages in D20-35, D35 and D50 treatments than that in CK treatment, no significantly difference was observed among treatments with straw return. 【Conclusion】NUE could be increased by enhancing soil fertility and improving soil structure under maize straw incorporated within deep soil, and constructing fertile soil layer in black soil with heavy clay content.

Key words: maize, maize straw return aftereffect, nitrogen use efficiency, dry biomass cumulation, maize straw incorporated within deep soil, nitrogen accumulation

Table 1

Dry biomass accumulation of maize under straw return aftereffect (g/plant)"

处理 Treatment 籽粒 Grain 根 Root 茎 Steam 叶 Leaf 轴 Cob 总量 Total biomass
CK 129.6±3.5 d 39.1±2.7 d 55.7±1.8 c 54.5±2.9 d 31.1±1.3 d 310.0±4.9 d
D0 127.7±5.7 d 31.8±2.9 e 57.7±0.7 c 57.6±1.9 c 31.8±0.9 d 306.6±8.2 d
D0-20 139.1±2.2 c 41.6±1.9 c 62.1±0.6 b 63.8±0.9 b 34.0±0.4 c 340.5±4.0 c
D0-35 156.9±3.7 a 46.2±2.9 ab 66.5±2.2 a 66.9±1.9 a 37.7±0.6 a 374.1±4.3 a
D20-35 147.8±1.8 b 50.9±4.3 a 63.4±3.7 b 62.4±2.9 b 35.7±0.8 b 360.1±5.4 b
D35 114.2±1.8 e 42.7±5.4 c 47.9±1.6 d 48.9±1.9 e 28.5±1.2 e 282.3±5.5 e
D50 106.2±1.7 f 32.5±1.7 de 45.5±0.9 d 45.1±1.1 f 26.1±1.3 f 255.3±2.2 f

Table 2

Nitrogen contents in different organs of maize under different straw return aftereffect"

全氮含量The contents of total nitrogen (g?kg-1)
籽粒 Grain 根 Root 茎 Steam 叶 Leaf 轴 Cob
CK 12.1±0.78 a 3.2±0.25 a 1.7±0.04 a 3.5±0.06 a 3.4±0.07 a
D0 12.2±1.12 a 3.5±0.46 a 1.8±0.05 a 3.5±0.05 a 3.6±0.26 a
D0-20 12.4±0.28 a 3.3±0.35 a 1.8±0.03 a 3.6±0.03 a 3.6±0.02 a
D0-35 12.6±0.97 a 3.3±0.11 a 1.8±0.05 a 3.5±0.09 a 3.5±0.04 a
D20-35 12.4±1.33 a 3.2±0.36 a 1.8±0.06 a 3.5±0.03 a 3.5±0.06 a
D35 13.0±1.93 a 3.1±0.31 a 1.8±0.03 a 3.5±0.04 a 3.5±0.06 a
D50 12.6±0.23 a 3.1±0.16 a 1.8±0.06 a 3.5±0.03 a 3.5±0.01 a

Table 3

Nitrogen accumulation in different organs of maize under different straw return aftereffect"

氮素累积量Nitrogen accumulation (mg/plant)
籽粒 Grain 根 Root 茎 Steam 叶 Leaf 轴 Cob 总量 Total
CK 1568.2±139.0 cd 125.7±17.4 bc 96.0±4.4 b 189.0±9.7 b 106. 9±3.0 d 2085.7±135.1 c
D0 1558.4 ±179.1 cd 135.1±16.2 ab 101.0±3.3 b 199.3±8.0 b 114.1±9.3 cd 2107.9 ±166.1 c
D0-20 1722.2±64.7 bc 137.0±10.9 ab 108.8±1.5 a 228.7 ±17.4 a 117.8±1.5 bc 2314.5±39.8 b
D0-35 1975.8±136.1 a 150.1±12.9 ab 116.0±5.2 a 234.4±12.6 a 129.8±3.1 a 2606.1±135.7 a
D20-35 1828.0±180.4 ab 162.1±29.2 a 111.6±9.6 a 218.2±11.6 a 123. 7±3.5 ab 2443.5±171.5 ab
D35 1487.9±209.5 d 134.3±20.9 ab 84.3±4.0 c 169.5±5.2 c 98.4±5.6 e 1974.3±199.0 c
D50 1335.8±29.2 d 99.8±6.3 c 80.1±2.7 c 156.1±4.3 c 89.9±4.7 f 1761.6±25.6 d

Table 4

15N accumulation and distribution in different organs of maize under straw return aftereffect"

累积量 Accumulation (mg/plant) 比例 Proportion (%)








CK 408.8±29.4 d 20.6±0.9 b 18.8±0.9 b 45.2±1.6 d 37.7±1.2 cd 77.0 3.8 3.6 8.5 7.1
D0 438.8±34.1 cd 37.3±9.9 a 14.8±1.6 c 47.0±1.5 cd 39.8±3.3 c 76.0 6.5 2.5 8.1 6.9
D0-20 491.3±22.4 bc 33.0±2.9 a 16.8±1.3 bc 57.7±4.8 bc 45.8±1.2 b 76.2 5.1 2.6 9.0 7.1
D0-35 564.0±14.9 a 38.1±0.9 a 28.2±1.7 a 70.8±7.2 a 59.3±2.2 a 74.2 5.0 3.7 9.3 7.8
D20-35 537.1±18.8 ab 36.4±2.5 a 27.4±2.4 a 68.1±9.5 ab 56.4±1.2 a 74.1 5.0 3.8 9.3 7.8
D35 451.7±16.1 cd 21.7±0.8 b 19.5±0.8 b 47.5±1.3 cd 33.9±0.8 de 78.7 3.8 3.4 8.1 5.9
D50 407.5±19.6 d 20.4±0.9 b 18.0±0.9 bc 44.3±0.7 d 318.0±0.4 e 78.1 3.9 3.5 8.4 6.1

Table 5

Nitrogen use efficiency of maize under different straw return aftereffect (%)"

处理 Treatment 氮肥利用率 N use efficiency 氮素残留率 N retention rate 氮素损失率 N loss 氮肥贡献率 N contribution rate
CK 28.3±1.7 c 34.2±4.5 bc 37.5±5.4 ab 25.5±1.2 b
D0 30.3±2.3 c 27.8±3.6 c 41.9±3.9 a 27.0±1.4 ab
D0-20 34.3±1.0 b 33.6±3.6 bc 32.1±3.3 b 27.8±0. 6 ab
D0-35 40.5±1.2 a 48.9±2.1 a 10.6±1.1 d 29.2±1.7 a
D20-35 38.6±1.8 a 42.0±4.1 a 19.4±2.1 c 29.8±1.6 a
D35 30.5±1.0 c 34.0±8.5 bc 35.4±4.3 ab 29.8±2.7 a
D50 27.8±1.0 c 31.1±5.2 c 41.2±5.9 a 29.6±1.0 a

Table 6

The relationship between N use efficiency and selected soil properties"

Root biomass
Light fraction organic carbon
>0.25 mm团聚体
>0.25 mm aggregate
Bulk density
Saturated water capacity
Field water capacity
氮肥利用率 N use efficiency 0.72** 0.98** 0.99** -0.85** 0.96** 0.97**
氮肥贡献率 N contribution rate 0.41* 0.75* 0.77** -0.70** 0.74** 0.76**
[1] 朱兆良. 土壤氮素. 土壤, 1982,14(3):116-119.
ZHU Z L. Nitrogen in soil. Soils, 14(3): 1982, 116-119. (in Chinese)
[2] GOTOSA J, KODZWA J, NYAMANGARA J, GWENZI W. Effect of nitrogen fertiliser application on maize yield across agro-ecological regions and soil types in Zimbabwe: a meta-analysis approach. International Journal of Plant Production, 2019,13:251-266.
doi: 10.1007/s42106-019-00045-9
[3] 朱兆良. 中国土壤氮素研究. 土壤学报, 2008,45(5):778-783.
ZHU Z L. Research on soil nitrogen in China. Acta Pedologica Sinica, 2008,45(5):778-783. (in Chinese)
[4] 王西娜, 王朝辉, 李生秀. 黄土高原旱地冬小麦/夏玉米轮作体系土壤的氮素平衡. 植物营养与肥料学报, 2006,12(6):759-764.
doi: 10.11674/zwyf.2006.0601
WANG X N, WANG Z H, LI S X. Soil nitrogen balance in winter wheat and summer maize rotation system on dryland of Loess Plateau. Plant Nutrition and Fertilizer Science, 2006,12(6):759-764. (in Chinese)
doi: 10.11674/zwyf.2006.0601
[5] 王建国, 韩晓增, 刘鸿翔. 黑土农田化肥氮素去向的研究. 生态学杂志, 1997,16(5):61-63.
WANG J G, HAN X Z, LIU H X. Study on the fate of nitrogen fertilizer in black soil. Chinese Journal of Ecology, 1997,16(5):61-63. (in Chinese)
[6] RAUN W R, JOHNSON G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999,91:357-363.
doi: 10.2134/agronj1999.00021962009100030001x
[7] MENG Q F, YUE S C, HOU P, CUI Z L, CHEN X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review. Pedosphere, 2016,26(2):137-147.
[8] 周宝元, 王新兵, 王志敏, 马玮, 赵明. 不同耕作方式下缓释肥对夏玉米产量及氮素利用效率的影响. 植物营养与肥料学报, 2016,22(3):821-829.
ZHOU B Y, WANG X B, WANG Z M, MA W, ZHAO M. Effect of slow-release fertilizer and tillage practice on grain yield and nitrogen efficiency of summer maize (Z. mays L.). Plant Nutrition and Fertilizer Science, 2016,22(3):821-829. (in Chinese)
[9] 国家统计局. 2018中国统计年鉴. 北京: 中国统计出版社, 2018.
National Bureau of Statistics. 2018 China Statistical Yearbook. Beijing: Chinese Statistics Press, 2018. (in Chinese)
[10] 韩晓增, 邹文秀. 我国东北黑土地保护与肥力提升的成效与建议. 中国科学院院刊, 2018,33(2):206-212.
HAN X Z, ZOU W X. Effects and suggestions of black soil protection and soil fertility increase in Northeast China. Bulletin of Chinese Academy of Sciences, 2018,33(2):206-212. (in Chinese)
[11] 焦晓光, 王晓军, 徐欣, 周珂, 谢洪宝. 秸秆覆盖条件下不同施氮水平对春玉米产量及氮肥利用效率的影响. 土壤与作物, 2018,7(2):242-247.
JIAO X G, WANG X J, XU X, ZHOU K, XIE H B. Effects of different nitrogen application rates on spring maize yield and nitrogen fertilizer utilization efficiency under straw cover. Soils and Crops, 2018,7(2):242-247. (in Chinese)
[12] MATIN M A, DESBIOLLES J M A, FIELKE J M. Strip-tillage using rotating straight blades: Effect of cutting edge geometry on furrow parameters. Soil & Tillage Research, 2016,155:271-279.
[13] 韩晓增, 邹文秀, 王凤仙, 王凤菊. 黑土肥沃耕层构建效应. 应用生态学报, 2009,20(12):2996-3002.
Han X Z, ZOU W X, WANG F X, WANG F J. Constructing effect of fertile cultivated layer in black soil. Chinese Journal of Applied Ecology, 2009,20(12):2996-3002. (in Chinese)
[14] 隋鹏祥, 有德宝, 安俊朋, 张文可, 田平, 梅楠, 王美佳, 王沣, 苏思慧, 齐华. 秸秆还田方式与施氮量对春玉米产量及干物质和氮素积累、转运的影响. 植物营养与肥料学报, 2018,24(2):316-324.
SUI X P, YOU D B, AN J P, ZHANG W K, TIAN P, MEI N, WANG M J, WANG F, SU S H, QI H. Effects of straw management and nitrogen application on spring maize yield, dry matter and nitrogen accumulation and transfer. Journal of Plant Nutrition and Fertilizers, 2018,24(2):316-324. (in Chinese)
[15] 韩晓增, 邹文秀, 严君, 李娜, 王献国, 李禄军. 农业生态学和长期试验示范引领黑土地保护和农业可持续发展. 中国科学院院刊, 2019,34(3):362-370.
HAN X Z, ZOU W X, YAN J, LI N, WANG X G, LI L J. Ecology in agriculture and long-term research guide protection of black soil and agricultural sustainable development in Northeast China. Bulletin of Chinese Academy of Sciences, 2019,34(3):362-370. (in Chinese)
[16] 蔡鸿光, 梁尧, 闫孝贡, 刘剑钊, 袁静超, 张洪喜, 任军, 王立春. 东北黑土区秸秆不同还田方式下玉米产量及养分积累特征. 玉米科学, 2016,24(5):68-74.
CAI H G, LIANG Y, YAN X G, LIU J Z, YUAN J C, ZHAGN H X, REN J, WANG L C. Grain yield and characteristic of nutrient accumulation for maize under different straw return modes in black soil region of northeast. Journal of Maize Sciences, 2016,24(5):68-74. (in Chinese)
[17] DING X L, YUAN Y R, LIANG Y, LI L J L, HAN X Z. Impact of long-term application of manure, crop residue, and mineral fertilizer on organic carbon pools and crop yields in a Mollisol. Journal of Soils and Sediments, 2014,14:854-859.
doi: 10.1007/s11368-013-0840-x
[18] DING X L, LIANG C, ZHANG B, YUAN Y R, HAN X Z. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biology & Biochemistry, 2015,84:137-146.
doi: 10.1016/j.soilbio.2015.02.015
[19] 梁尧, 韩晓增, 宋春, 李海波. 不同有机物料还田对东北黑土活性有机碳的影响. 中国农业科学, 2011,44(17):3536-3574.
doi: 10.3864/j.issn.0578-1752.2011.17.005
LIANG Y, HAN X Z, SONG C, LI H B. Impacts of returning organic materials on soil labile organic carbon fractions redistribution of mollisol in northeast china. Scientia Agricultura Sinica, 2011,44(17):3536-3574. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.17.005
[20] JIANG H, HAN X Z, ZOU W X, HAO XX, ZHAGN B. Seasonal and long-term changes in soil physical properties and organic carbon fractions as affected by manure application rates in the Mollisol region of Northeast China. Agricultural, Ecosystems and Environment, 2018,268:133-143.
doi: 10.1016/j.agee.2018.09.007
[21] DING X L, HAN, X Z, ZHANG X D. Long-term impacts of manure, straw, and fertilizer on amino sugars in a silty clay loam soil under temperate conditions. Biology and Fertility of Soils, 2013,49:949-954.
doi: 10.1007/s00374-012-0768-0
[22] 矫丽娜, 李志洪, 殷程程, 王晓飞, 辛士颖, 于磊. 高量秸秆不同深度还田对黑土有机质组成和酶活性的影响. 土壤学报, 2015,52(3):665-673.
JIAO L N, LI Z H, YIN C C, WANG X F, XIN S Y, YU L. Effect of incorporation of crop straw on composition of soil organic matter and enzyme activity in black soil relative to depth and rate of the incorporation. Acta Pedologica Sinica, 2015,52(3):665-673. (in Chinese)
[23] 白伟, 张立祯, 逄焕成, 牛世伟, 蔡倩, 孙占祥, 安景文. 秸秆还田配施氮肥对春玉米水氮利用效率的影响. 华北农学报, 2018,33(2):224-231.
BAI W, ZHANG L Z, PANG H C, NIU S W, CAI Q, SUN Z X, AN J W. Effects of straw returning plus nitrogen fertilizer on water use efficiency and nitrogen use efficiency of spring maize in Northeast China. Acta Agricultural Boreal-Sinica, 2018,33(2):224-231. (in Chinese)
[24] 田肖肖, 吕慎强, 张亮, 李娜, 孙晓, 景建元, 王林权, 李厚华. 免耕覆盖有效提高夏玉米产量及水氮利用效率. 植物营养与肥料学报, 2017,23(3):606-614.
TIAN X X, LÜ S Q, ZHANG L, LI N, SUN X, JING J Y, WANG L Q, LI H H. No-tillage with straw mulching could increase grain yield, water and nitrogen use efficiencies of summer maize. Journal of Plant Nutrition and Fertilizer, 2017,23(3):606-614. (in Chinese)
[25] LU X J, LI Z Z, SUN Z H, B Q G. Straw mulching reduces maize yield, water, and nitrogen use in Northeast China. Agronomy Journal, 2015,107(1):406-414.
doi: 10.2134/agronj14.0454
[26] 周珂, 王晓军, 李华芝, 徐欣, 高洪生, 焦晓光. 秸秆深埋条件下不同施氮水平对玉米产量和氮吸收利用的影响. 中国农学通报, 2019,35(33):6-11.
ZHOU K, WANG X J, LI H Z, XU X, GAO H S, JIAO X G. The effects of different nitrogen application levels on maize yield and the absorption and utilization of nitrogen under straw deep burial. Chinese Agricultural Science Bulletin, 2019,35(33):6-11. (in Chinese)
[27] 丁文成, 李书田, 黄绍敏. 氮肥管理和秸秆腐熟剂对15N标记玉米秸秆氮有效性与去向的影响 . 中国农业科学, 2016,49(14):2725-2736.
doi: 10.3864/j.issn.0578-1752.2016.14.007
DING W C, LI S T, HUANG S M. Bioavailability and fate of nitrogen from 15N-labeled corn straw as affected by nitrogen management and straw microbial inoculants . Scientia Agricultura Sinica, 2016,49(14):2725-2736. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.14.007
[28] 韩晓增, 邹文秀, 陆欣春, 丁素荣, 尤孟阳, 严君, 陈旭, 周学超. 利用牛粪和黑土构建肥沃耕层对沙性土壤有机质及养分含量的短期影响. 2018,7(4):456-464.
HAN X Z, ZOU W X, LU X C, DING S R, YOU M Y, YAN J, CHEN X, ZHOU X C. The contents of soil organic matter and nutrients as impacted by constructing fertile cultivated layers of sandy soil using cow dung and black soil in a short term experiment. Soils and Crops, 2018,7(4):456-464. (in Chinese)
[29] 邹文秀, 韩晓增, 陆欣春, 陈旭, 郝翔翔. 玉米秸秆混合还田深度对土壤有机质及养分含量的影响. 土壤与作物, 2018,7(2):139-147.
ZOU W X, HAN X Z, LU X C, CHEN X, HAO X X. Responses of soil organic matter and nutrients contents to corn stalk incorporated into different soil depths. Soil and Crops, 2018,7(2):139-147. (in Chinese)
[30] 邹文秀, 韩晓增, 陆欣春, 郝翔翔, 尤孟阳, 张一鹤. 施入不同土层的秸秆腐殖化特征及对玉米产量的影响. 应用生态学报, 2017,28(2):563-570.
ZOU W X, HAN X Z, LU X C, HAO X X, YOU M Y, ZHANG Y H. Effects of straw incorporated to different locations in soil profile on straw humification coefficient and maize yield. Chinese Journal of Applied Ecology, 2017,28(2):563-570. (in Chinese)
[31] 许国伟, 李帅, 赵永芳, 陈明灿, 李友军. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014,23(2):140-160.
doi: 10.11686/cyxb20140217
XU G W, LI S, ZHAO Y F, CHEN M C, LI Y J. Effect of straw returning and nitrogen fertilizer application root secretion and nitrogen utilization of rice. Acta prataculturae Sinica, 2014,23(2):140-160. (in Chinese)
doi: 10.11686/cyxb20140217
[32] 郑金玉, 刘武仁, 罗洋, 郑洪兵, 李瑞平. 秸秆还田对玉米生长发育及产量的影响. 吉林农业科学, 2014,39(2):42-46.
ZHENG J Y, LIU W R, LUO Y, ZHENG H B, LI R P. Effects of straws returned into field on growth and development and yield of maize. Journal of Jinlin Agricultural Sciences, 2014,39(2):42-46. (in Chinese)
[33] DUAN Y H, XU M G, WANG B R, YANG X M, HUANG S M, GAO S D. Long-term evaluation of manure application on maize yield and nitrogen use efficiency in China. Soil Science Society of America Journal, 2011,75:1562-1573.
doi: 10.2136/sssaj2010.0315
[34] SALEQUE M A, ABEDIN M J, BHUIYAN N I, ZAMAN G M, PANSULLAH G M, PANAULLAH G M. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crop Research, 2004,86:53-65.
doi: 10.1016/S0378-4290(03)00119-9
[35] 于晓芳, 高聚林, 张峰, 胡树平, 孙继颖, 王志刚, 谢岷. 深翻对耕层土壤物理特性及超高产春玉米根系垂直分布的影响. 内蒙古农业科技, 2015(2):19-21.
YU X F, GAO J L, ZHAGN F, HU S P, SUN J Y, WANG Z G, XIE M. The effect of moldboard plow on soil physical properties and the root vertical distribution of super-high yield maize.Inner Mongolia Agricultural Science and Technology, 2015(2):19-21. (in Chinese)
[36] 齐华, 刘明, 张卫健, 张振平, 李雪霏, 宋振伟, 丁吉琳, 吴亚男. 深松方式对土壤物理性状及玉米根系分布的影响. 华北农学报, 2012,27(4):191-196.
doi: 10.3969/j.issn.1000-7091.2012.04.037
QI H, LIU M, ZHANG W J, ZHANG Z P, LI X J, SONG Z W, DING J L, WU Y N. Effect of deep loosening mode on soil physical characteristics and maize root distribution. Acta Agricultural Boreal-Sinica, 2012,27(4):191-196. (in Chinese)
doi: 10.3969/j.issn.1000-7091.2012.04.037
[37] 陈强, Yuriy S Kravchenko, 陈渊, 李续峰, 李浩, 宋春雨, 张兴义. 少免耕土壤结构与导水能力的季节变化及其保水效果. 土壤学报, 2014,51(1):11-21.
CHEN Q, YURIY S K, CHEN Y, LI X F, LI H, SONG C Y, ZHANG X Y. Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tillage. Acta Pedologica Sinica, 2014,51(1):11-21. (in Chinese)
[38] 雷金银, 吴发启, 王健, 郭建华. 保护性耕作对土壤物理特性及玉米产量的影响. 农业工程学报, 2008,24(10):40-45.
LEI J Y, WU F Q, WANG J, GUO J H. Effects of conservation tillage on soil physical properties and corn yield. Transactions of the CSAE, 2008,24(10):40-45. (in Chinese)
[39] MÁRCIORN R N, JOSÉ E D, ELOY A P, FAGANELLO A, PINTO L F S. Effect of soil chiseling on soil structure and root growth for a clayey soil under no tillage. Geoderma, 2015,259/260:149-155.
doi: 10.1016/j.geoderma.2015.06.003
[40] ZHANG Y L, LI C H, WANG Y W, HU Y M, CHRISTIE P, ZHANG J L. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil & Tillage Research, 2016,155:85-94.
[41] GENG Y H, CAO G J, WANG L C, WANG S H. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution.PloS One, e0219512.
doi: 10.1371/journal.pone.0241302 pmid: 33095829
[42] ALLETTO L, POT V, GIULIANO S, COSTES M, PERDRIEUX F, JUSTES E. Temporal variation in soil physical properties improves the water dynamics modeling in a conventional-tilled soil. Geoderma, 2015,243:18-28.
[43] WEN Z H, SHEN J B, MARTIN B, LI H G, ZHAO B Q, YUAN H M. Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. Pedosphere, 2016,26(1):62-73.
[44] 盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018,51(12):2336-2347.
doi: 10.3864/j.issn.0578-1752.2018.12.010
GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Scientia Agricultura Sinica, 2018,51(12):2336-2347. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.12.010
[45] BHOGAL A, YOUNG S D, SYLVESTER-BRADLEY R. Straw incorporation and immobilization of spring-applied nitrogen. Soil Use and Management, 1997, 13:111-116.
doi: 10.1111/sum.1997.13.issue-3
[46] 孙波, 陆雅海, 张旭东, 卢升高, 韦革宏, 杨劲松, 朱安宁, 刘满强, 段英华. 耕地地力对化肥养分利用的影响机制及其调控研究进展. 土壤, 2017,49(2):209-216.
SUN B, LU Y H, ZHANG X D, LU S G, WEI G H, YANG J S, ZHU A N, LIU M Q, DUAN Y H. Research progress on impact mechanisms of cultivated land fertility on nutrient use of chemical fertilizers and their regulation. Soils, 2017,49(2):209-216. (in Chinese)
[47] 韩晓增, 邹文秀. 我国东北黑土地保护与肥力提升的成效与建议. 中国科学院院刊, 2018,33(2):206-212.
HAN X Z, ZOU W X. Effects and suggestions of black soil protection and soil fertility increase in Northeast China. Bulletin of Chinese Academy of Sciences, 2018,33(2):206-212. (in Chinese)
[48] DONG J, HENGSDIJK H, TING-BO D, BOER W, QI J, CAO W X. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China. Pedosphere, 2006,16:25-32.
[49] 王振华, 曹国军, 耿玉辉, 李佳, 张萌. 不同农业废弃物还田对玉米氮素利用及氮平衡的影响. 中国农学通报, 2015,31(23):127-133.
WANG Z H, CAO G J, GENG Y H, LI J, ZHANG M. Effect of different agricultural wastes returning to field on the absorption and utilization of nitrogen and nitrogen balance of maize. Chinese Agricultural Science Bulletin, 2015,31(23):127-133. (in Chinese)
[50] 刘红亮, 李凤海, 步蕴法, 刘国玲, 曹殿云. 不同耕作方式对土壤物理性状及玉米生长发育的影响. 江苏农业科学, 2017,45(8):52-54.
LIU H L, LI F H, BU Y F, LIU G L, CAO D Y. The effect of tillage practices on soil physical properties and maize yield. Jiangsu Agricultural Sciences, 2017,45(8):52-54. (in Chinese)
[51] AHMAD N, HASSAN F U, BELFORD R K. Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat (Triticum aestivum): I. Compaction. Field Crops Research, 2009,110(1):54-60.
doi: 10.1016/j.fcr.2008.07.001
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
Full text



No Suggested Reading articles found!