Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4248-4258.doi: 10.3864/j.issn.0578-1752.2020.20.013

• HORTICULTURE • Previous Articles     Next Articles

Effects of End of Day Far-Red Light on Growth, Histiocyte Morphology and Phytohormones Content of Pumpkin Seedlings

LIU Qi1(),MEI YanHao1,LI Qi1,MA HongXiu3,WU YongJun2,YANG ZhenChao1()   

  1. 1College of Horticulture, Northwest A&F University/Key Laboratory of Protected Horticultural Engineering in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2College of Sciences, Northwest A&F University, Yangling 712100, Shaanxi
    3Lingyu Modern Agricultural Research Institute, Yangling 712100, Shaanxi
  • Received:2020-03-14 Accepted:2020-05-12 Online:2020-10-16 Published:2020-10-26
  • Contact: ZhenChao YANG E-mail:lq821798304@163.com;yangzhenchao@nwafu.edu.cn

Abstract:

【Objective】This study was aimed to understand the effects of growth, histiocyte morphologic and phytohormone levels of pumpkin seedlings under different doses of End-Of-Day Far-Red light (EOD-FR) treatment, so as to provide a theoretical basis for the application of far-red in agricultural industry. 【Method】 Taken the pumpkin (cv. Japanese cedar) as experimental material, the growth state of hypocotyl’s histiocyte morphology and the contents of auxin (IAA), zeatin (ZT), gibberellin (GA3) and brassinolide (BR) were measured under 0 (CK), 2 (T1) , 4 (T2) , 6 (T3) , 8 (T4) , 10 (T5) and 12 (T6) mmol·m-2·d-1dose far-red light treatments, respectively. 【Result】 The hypocotyl length and plant height of pumpkin seedlings were significantly increased by EOD-FR treatment, while there was no significant effect on the diameter, dry and fresh weight of pumpkin stem. Compared with the control group, the lengths of hypocotyl’s parenchyma cell of each treatment were significantly increased by 34.6%, 20.7%, 31.3%, 25.6%, 32.8% and 20.9%, respectively; the collenchyma's thickness were significant increased by 19.6%, 22.4%, 21.2%, 23.9%, 19.6% and 28%, respectively. After EOD-FR treatment, the contents of IAA in roots of pumpkin seedlings significantly increased, and the contents of IAA, GA3 and ZT in hypocotyls, IAA, GA3 and BR in cotyledons, IAA and BR in euphylla were also increased. 【Conclusion】Through increasing the hormone levels under EOD-FR treatment, the histiocyte morphology could be changed, and the hypocotyl elongation could be increased.

Key words: far-red light, pumpkin seedlings, hypocotyl, cell morphology, phytohormone, regulative of far-red light

Table 1

Far-red light intensity, duration and dose"

处理
Treament
照射持续时间
Duration (s)
远红光通量
FR photo flux
(μmol·m-2·s-1)
远红光剂量
FR dose
(mmol·m-2·d-1)
CK 0 0 0
T1 20 100 2
T2 40 100 4
T3 60 100 6
T4 80 100 8
T5 100 100 10
T6 120 100 12

Fig. 1

Effects of different end-of-day FR doses on hypocotyl length of pumpkin seedlings"

Table 2

Effects of different doses of end-of-day FR on the other growth indicators and biomass of pumpkin seedlings"

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
地上鲜重
Above ground
fresh weight (g)
地下鲜重
Root
fresh weight (g)
地上干重
Above ground part
dry weight (g)
地下干重
Root
dry weight (g)
壮苗指数
Index of vigorous
seedings
CK 9.668±0.488bA 3.277±0.077aA 2.460±0.107aA 0.323±0.015aA 0.177±0.008aA 0.023±0.003aA 0.069±0.005aA
T1 10.998±0.480abA 3.303±0.100aA 2.970±0.155aA 0.380±0.034aA 0.191±0.010aA 0.023±0.002aA 0.065±0.006aA
T2 10.602±0.521abA 3.410±0.140aA 2.901±0.266aA 0.423±0.043aA 0.172±0.008aA 0.025±0.002aA 0.065±0.006aA
T3 10.620±0.471abA 3.133±0.110aA 2.836±0.092aA 0.351±0.037aA 0.177±0.007aA 0.020±0.001aA 0.058±0.003aA
T4 11.072±0.397abA 3.100±0.140aA 2.700±0.140aA 0.318±0.032aA 0.182±0.009aA 0.021±0.001aA 0.057±0.004aA
T5 11.383±0.235aA 3.457±0.118aA 2.887±0.144aA 0.321±0.017aA 0.174±0.008aA 0.021±0.001aA 0.059±0.004aA
T6 10.615±0.633abA 3.187±0.073aA 2.749±0.201aA 0.404±0.044aA 0.182±0.016aA 0.021±0.002aA 0.061±0.005aA

Fig. 2

Effects of different dose of end-of-day FR on the parenchyma cells of hypocotyl in pumpkin seedlings Different lowercase letters after the same data column indicate a significant difference at 5% level between different treatments; capital letters indicate a significant difference at a 1% level between different treatments. The same as below"

Table 3

Effects of different doses of end-of-day FR on the Phloem cells and epidermal cells in vertical section of hypocotyl of pumpkin"

处理
Treatment
筛管分子细胞轴向长度
Axial length (μm)
筛管分子细胞径向长度
Radial length (μm)
表皮细胞轴向长度
Axial length (μm)
表皮细胞径向长度
Radial length (μm)
CK 67.025±1.355bA 36.118±0.766aA 89.465±2.368cD 21.988±0.368aA
T1 69.620±1.632abA 37.226±0.918aA 93.426±2.605cCD 21.737±0.468aAB
T2 69.114±1.779abA 35.566±0.7191aA 96.210±3.026bcBCD 20.234±0.358bBC
T3 74.384±2.035aA 35.954±0.991aA 110.782±3.866aA 22.564±0.433aA
T4 74.309±2.105aA 37.464±0.724aA 91.352±1.875cD 22.666±0.440aA
T5 68.732±1.956abA 34.663±0.869aA 106.237±3.280aAB 22.148±0.444aA
T6 73.032±2.118aA 37.032±1.161aA 104.202±3.511abAB 19.656±0.481bC

Fig. 3

Effects of the different doses of end-of-day far-red light on the thickness of the collenchyma of pumpkin"

Fig. 4

Effects of the different doses of end-of-day far-red light on the collenchyma of pumpkin"

Fig. 5

Effect of the different doses of end-of-day far-red light on the thickness of the cortex of pumpkin"

Table 4

Effect of the different doses of end-of-day far-red light on the size of duct cells and the size of vascular of pumpkin"

处理
Treatment
导管细胞面积
The size of duct cells
(×102 μm2)
维管束面积
The size of vascular
(×103 μm2)
CK 11.153±0.804aA 92.559±7.113abAB
T1 10.898±0.654aA 110.71±8.555aA
T2 11.323±0.650aA 97.097±4.855abAB
T3 12.135±0.674aA 96.939±7.441abAB
T4 10.997±0.501aA 87.595±5.354bB
T5 12.468±0.754aA 83.292±4.726bAB
T6 11.972±0.687aA 88.102±6.51bAB

Table 5

Effect of the different doses of end-of-day far-red light on content of IAA in pumpkin"

处理
Treatment
根中IAA质量分数
The content of IAA in root
(ng?g-1 FW)
下胚轴中IAA质量分数
The content of IAA in hypocotyl
(ng?g-1 FW)
子叶中IAA质量分数
The content of IAA in cotyledon
(ng?g-1 FW)
真叶中IAA质量分数
The content of IAA in euphylla (ng?g-1 FW)
CK 23.163±0.757dC 29.614±1.21bcdA 39.854±1.357cC 39.139±1.180bD
T1 31.118±1.283abA 29.359±1.493cdA 53.109±0.891bAB 51.137±2.246aA
T2 28.664±1.373abAB 31.993±1.289abcdA 50.130±1.698bAB 43.475±0.892bBCD
T3 24.235±0.994cdBC 29.004±0.835cA 48.372±0.380bBC 50.501±1.317aAB
T4 27.471±1.762bcABC 34.399±2.031abA 52.805±2.420bAB 43.726±2.277bBCD
T5 30.719±0.733abA 33.942±2.036abcA 52.649±0.837bAB 49.795±1.312aABC
T6 32.385±0.86aA 34.598±0.894aA 59.778±4.592aA 43.156±1.303bCD

Table 6

Effects of the different doses of end-of-day far-red light on content of ZT in pumpkin"

处理
Treatment
根中ZT质量分数
The content of ZT in root
(ng?g-1 FW)
下胚轴中ZT质量分数
The content of ZT in hypocotyl
(ng?g-1 FW)
子叶中ZT质量分数
The content of ZT in cotyledon
(ng?g-1 FW)
真叶中ZT质量分数
The content of ZT in euphylla
(ng?g-1 FW)
CK 4.618±0.147bcB 3.750±147dC 11.217±0.356bB 7.703±0.302bB
T1 5.543±0.165aA 4.659±0.262bcAB 11.521±0.493bcAB 7.741±0.407bB
T2 4.738±0.211bcB 4.566±0.149cAB 12.360±0.332abAB 7.077±0.241bcB
T3 4.290±0.111cB 5.282±0.177aA 12.912±0.363aA 7.305±0.332bcB
T4 4.696±0.143bcB 5.155±0.250abAB 12.185±0.389abAB 9.135±0.362aA
T5 4.310±0.223cB 5.285±0.116aA 11.226±0.286bcB 6.599±0.299cB
T6 5.025±0.141bAB 4.421±0.114cBC 10.926±0.201cB 6.521±0.272cB

Table 7

Effects of the different doses of end-of-day far-red light on content of GA3 in pumpkin"

处理
Treatment
根中GA3质量分数
The content of GA3 in root
(ng?g-1FW)
下胚轴中GA3质量分数
The content of GA3 in hypocotyl
(ng?g-1FW)
子叶中GA3质量分数
The content of GA3 in cotyledon
(ng?g-1FW)
真叶中GA3质量分数
The content of GA3 in euphylla
(ng?g-1FW)
CK 5.201±0.123bBC 4.461±0.112cB 6.742±0.309cB 6.966±0.135cdBC
T1 5.633±0.015bAB 4.902±0.314bcB 7.167±0.164bcB 8.161±0.156aA
T2 4.769±0.205cC 4.789±0.175bcB 7.187±0.140bcB 7.706±0.402abABC
T3 5.596±0.103bAB 5.316±0.136abAB 8.362±0.425aA 6.580±0.276dC
T4 5.410±0.204bB 4.562±0.119cB 7.027±0.084bcB 6.562±0.130dC
T5 5.418±0.160bB 5.683±0.218aA 7.290±0.059bcAB 7.090±0.076bcdBC
T6 6.125±0.050aA 5.205±0.160abAB 7.722±0.375abAB 7.439±0.182bcABC

Table 8

Effect of the different doses of end-of-day far-red light on content of BR in pumpkin"

处理
Treatment
根中BR质量分数
The content of BR in root
(ng?g-1 FW)
下胚轴中BR质量分数
The content of BR in hypocotyl
(ng?g-1 FW)
子叶中BR质量分数
The content of BR in cotyledon
(ng?g-1 FW)
真叶中BR质量分数
The content of BR in euphylla
(ng?g-1 FW)
CK 5.528±0.343abAB 5.901±0.222aA 5.108±0.144bB 5.432±0.119cC
T1 4.466±0.198dB 4.022±0.217cB 5.860±0.172aAB 6.357±0.309bBC
T2 5.185±0.097abcdAB 6.236±0.171aA 5.619±0.217bcAB 6.805±0.223abAB
T3 4.944±0.114bcdAB 5.665±0.199aA 6.370±0.168aA 7.205±0.0316aAB
T4 5.906±0.381aA 5.852±0.256aA 5.060±0.158bB 7.550±0.310aA
T5 4.648±0.302cdB 4.720±0.115bB 6.270±0.348aA 7.576±0.445aA
T6 5.410±0.215abcAB 6.245±0.24aA 5.054±0.338bB 6.303±0.183bBC
[1] SASSI M, RUBERTI I, VERNOUX T, XU J. Shedding light on auxin movement: Light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signaling & Behavior, 2013,8(3):e23355.
doi: 10.4161/psb.23355 pmid: 23333970
[2] PARK Y, RUNKLE E S. Investigating the merit of including far-red radiation in the production of ornamental seedlings grown under sole-source lighting. Acta Horticulturae, 2016,1134(1134):259-266.
[3] JI Y R, OUZOUNIS T, COURBIER S, KAISER E, NGUYEN P T, SCHOUTEN H J, VISSER R G F, PIERIK R, MARCELIS L F M, HEUVELINK E. Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato. Environmental and Experimental Botany, 2019,168:103889.
doi: 10.1016/j.envexpbot.2019.103889
[4] GOMMERS C M M, BUTI S, TARKOWSKÁ D, PĚNČÍK A, BANDA J P, ARRICASTRES V, PIERIK R. Organ-specific phytohormone synthesis in two Geranium species with antithetical responses to far-red light enrichment. Plant Direct, 2018,2(8):e66.
[5] KALAITZOGLOU P, VAN IEPEREN W, HARBINSON J, VAN DER MEER M, MARTINAKOS S, WEERHEIM K, NICOLE C C S, MARCELIS L F M. Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. Frontiers in Plant Science, 2019,10:322.
doi: 10.3389/fpls.2019.00322 pmid: 30984211
[6] 浩二島. 明期終了時における遠赤色光照射の光強度および照射時間がスプレーギクの茎伸長に及ぼす影響. 園芸学研究. 2011,10(3):401-406.
KOHJI S. Effect of the irradiance and duration with far-red light at the end of day (eod-fr) on stem elongation of spray type chrysanthemum. Horticultural Research (Japan), 2011,10(3):401-406. (in Japanese)
[7] 圭弘竹村. 明期終了時の遠赤色光照射処理および昇温処理がトルコギキョウの生育に及ぼす影響. 園芸学研究, 2014,13(3):255-260.
YOSHIHIRO T. Effect of far-red light and heating treatment at end of day on growth of eustoma grandiflorum (Raf.) Shinn.Horticultural Research (Japan), 2014,13(3):255-260. (in Japanese)
[8] STEWART S J, PRATT L H, CORDONNIER-PRATT I M. Phytochrome levels in light-grown avena change in response to end-of-day irradiations. Plant Physiology, 1992,99(4):1708-1710.
pmid: 16669098
[9] OLSEN J E, JUNTTILA O. Far red end-of-day treatment restores wild type‐like plant length in hybrid aspen overexpressing phytochrome A. Physiologia Plantarum, 2002,115(3):448-457.
doi: 10.1034/j.1399-3054.2002.1150315.x pmid: 12081538
[10] 曹凯, 于捷, 叶林, 赵海亮, 邹志荣. 暗前适宜LED远红光光照强度促进设施番茄种苗生长发育. 农业工程学报, 2016,32(8):171-176.
CAO K, YU J, YE L, ZHAO H L, ZOU Z R. Optimal LED far-red light intensity in end-of-day promoting tomato growth and development in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(8):171-176. (in Chinese)
[11] QIN S S, CHEN X Y, JIANG C, LI M J, YUAN Y, YANG J, WU Q H. Pruning induced yield and quality variations and the correlated gene expression and phytohormone changes in Lonicera japonica. Industrial Crops and Products, 2019,132:386-395.
doi: 10.1016/j.indcrop.2019.02.048
[12] PRADKO A G, LITVINOVSKAYA R P, SAUCHUK A L, DRACH S V, BARANOVSKY A V, ZHABINSKII V N, MIRANTSOVA T V, KHRIPACH V A. A new ELISA for quantification of brassinosteroids in plants. Steroids, 2015,97:78-86.
pmid: 25201263
[13] CHEN X L, GUO W Z, XUE X Z, WANG L C, QIAO X J. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae, 2014,172:168-175.
doi: 10.1016/j.scienta.2014.04.009
[14] VIRŠILĖ A, BRAZAITYTĖ A, VAŠTAKAITĖ-KAIRIENĖ V, JANKAUSKIENĖ J, MILIAUSKIENĖ J, SAMUOLIENĖ G, NOVIČKOVAS A, DUCHOVSKIS P. Nitrate, nitrite, protein, amino acid contents, and photosynthetic and growth characteristics of tatsoi cultivated under various photon flux densities and spectral light compositions. Scientia Horticulturae, 2019,258:108781.
doi: 10.1016/j.scienta.2019.108781
[15] 杨有新, 王峰, 蔡加星, 喻景权, 周艳虹. 光质和光敏色素在植物逆境响应中的作用研究进展. 园艺学报, 2014,41(9):1861-1872.
YANG Y X, WANG F, CAI J X, YU J Q, ZHOU Y H. Recent advances in the role of light quality and phytochrome in plant defense resistance against environmental stresses. Acta Horticulturae Sinica, 2014,41(9):1861-1872. (in Chinese)
[16] HOLMES M, SMITH H. The function of phytochrome in the natural environment: I. Characterization of daylight for studies in photomorphogenesis and photoperiodism. Photochemistry and Photobiology, 2008,25(6):533-538.
doi: 10.1111/php.1977.25.issue-6
[17] FRANKLIN K A. Shade avoidance. New Phytologist, 2008,179(4):930-944.
doi: 10.1111/j.1469-8137.2008.02507.x pmid: 18537892
[18] CHIA P, KUBOTA C. End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. HortScience, 2010,45(10):1501-1506.
doi: 10.21273/HORTSCI.45.10.1501
[19] GRAHAM H H A, DECOTEAU D R. Young watermelon plant growth responses to end-of-day red and far-red light are affected by direction of exposure and plant part exposed. Scientia Horticulturae, 1997,69(2):41-49.
doi: 10.1016/S0304-4238(96)00991-0
[20] XIONG J Q, PATIL G G, MOE R. Effect of DIF and end-of-day light quality on stem elongation in Cucumis sativus. Scientia Horticulturae, 2002,94(4):219-229.
doi: 10.1016/S0304-4238(02)00002-X
[21] HALIAPAS S, YUPSANIS T A, SYROS T D, KOFIDIS G, ECONOMOU A S. Petunia × hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiologiae Plantarum, 2008,30(6):807-815.
doi: 10.1007/s11738-008-0185-z
[22] SASIDHARAN R, CHINNAPPA C C, VOESENEK L A C J, PIERIK R. The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. Plant Physiology, 2008,148(3):1557-1569.
doi: 10.1104/pp.108.125518 pmid: 18768908
[23] MOUTINHO-PEREIRA J M, BACELAR E A, GONÇALVES B, FERREIRA H F, COUTINHO J F, CORREIA C M. Effects of Open-Top Chambers on physiological and yield attributes of field grown grapevines. Acta Physiologiae Plantarum, 2010,32(2):395-403.
doi: 10.1007/s11738-009-0417-x
[24] LEROUX O. Collenchyma: A versatile mechanical tissue with dynamic cell walls. Annals of Botany, 2012,110(6):1083-1098.
doi: 10.1093/aob/mcs186 pmid: 22933416
[25] ROWE N P, SPECK T. Hydraulics and mechanics of plants: Novelty, innovation and evolution. The Evolution of Plant Physiology, 2004: 297-325.
[26] DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development. Annual Review of Plant Biology, 2016,67(1):513-537.
[27] PROCKO C, CRENSHAW C M, LJUNG K, NOEL J P, CHORY J. Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiology, 2014,165(3):1285-1301.
pmid: 24891610
[28] TAO Y, FERRER J, LJUNG K, POJER F, HONG F, LONG J A, LI L, MORENO J E, BOWMAN M E, IVANS L J, CHENG Y, LIM J, ZHAO Y, BALLARÉ C L, SANDBERG G, NOEL J P, CHORY J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell, 2008,133(1):164-176.
[29] DEVOGHALAERE F, THOMAS D, BAPTISTE G J K, WENDY P, TOBY J L, ROSS J J, IAN C H, KULARAJATHEVAN G, GA D, ROBERT D, KEN C B, TUSTIN D S, EVELYNE C, DAVID C, ROBERT J S A K. A genomics approach to understanding the role of auxin in apple (Malus×domestica) fruit size control. BMC Plant Biology, 2012,12:7.
doi: 10.1186/1471-2229-12-7 pmid: 22243694
[30] CONG L, YUE R R, WANG H B, LIU J L, ZHAI R, YANG J, WU M, SI M, ZHANG H Q, YANG C Q, XU L F, WANG Z G. 2,4-D-induced parthenocarpy in pear is mediated by enhancement of GA4 biosynthesis. Physiologia Plantarum, 2019,166(3):812-820.
pmid: 30203555
[31] SCHWECHHEIMER C. Understanding gibberellic acid signaling--are we there yet? Current Opinion in Plant Biology, 2008,11(1):9-15.
doi: 10.1016/j.pbi.2007.10.011 pmid: 18077204
[32] RAGHAVENDRA A S. Physiology of Trees. Published Simaltaneously in Canada, 1991: 175-178.
[33] ARTECA R N, TSAI D S, SCHLAGNHAUFER C, MANDAVA N B. The effect of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiologia Plantarum, 1983,59(4):539-544.
[34] XIONG F J, ZHUO F P, REITER R J, WANG L L, WEI Z Z, DENG K X, SONG Y, QANMBER G, FENG L, YANG Z R, LI F G, REN M Z. Hypocotyl elongation inhibition of melatonin is involved in repressing brassinosteroid biosynthesis in Arabidopsis. Frontiers in Plant Science, 2019,10:1082.
pmid: 31616446
[35] 丁锦新, 马国瑞, 黄素青, 叶孟兆. 表油菜素内酯对黄瓜的生理效应. 浙江农业大学学报, 1995,21(6):615-621.
DING J X, MA G R, HUANG S Q, YE M Z. Studies on physiological effects of epiBR on cucumber (Cucumis sativus L.). Journal of Zhejiang Agricultural University, 1995,21(6):615-621. (in Chinese)
[1] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[2] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[3] ZHANG Xun, HAO JianPing, WANG Pu, ZHANG Ping, CHEN LuJie. Effects of Low Temperature on Maize Superior and Inferior Kernels Development During Grain Filling in Vitro [J]. Scientia Agricultura Sinica, 2018, 51(12): 2263-2273.
[4] LIU Qing-1, TONG Jian-Hua-1, SHI Qi-1, PENG Ke-Qin-1, WANG Ruo-Zhong-1, LIN Wan-Huang-1, MohammedHumayunKabir1 , SHEN Ge-Zhi-2, XIAO Lang-Tao-1. Dynamic Changes of Phytohormones as Influenced by Different Plant Growth Substances in a Dwarf-Multi-Tiller Rice Mutant [J]. Scientia Agricultura Sinica, 2014, 47(13): 2519-2528.
[5] ZHANG Li, NIU Xiang-Li, ZHANG Hui-Ying, LIU Yong-Sheng. Functional Analysis via Overexpressing Xyloglucan Endotransglycosylase Gene OsXTH11 in Rice [J]. Scientia Agricultura Sinica, 2012, 45(16): 3231-3239.
[6] ,,,,. Plant Regeneration from in vitro Cultured Hypocotyl Explants of Euonymus japonicus 'Cu zhi' [J]. Scientia Agricultura Sinica, 2005, 38(12): 2502-2507 .
[7] ,. Phytochrome Control of Hypocotyl Length, Anthocyanin Biosynthesis and Inflorescence Initiation of Tomato Plants Grown Under White Light [J]. Scientia Agricultura Sinica, 2004, 37(10): 1517-1520 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!