Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4152-4163.doi: 10.3864/j.issn.0578-1752.2020.20.005


The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture

ZHU LingXiao1(),LIU LianTao1(),ZHANG YongJiang1,SUN HongChun1,ZHANG Ke1,BAI ZhiYing1,DONG HeZhong2,LI CunDong1()   

  1. 1College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071000, Hebei
    2Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2020-01-08 Accepted:2020-07-06 Online:2020-10-16 Published:2020-10-26
  • Contact: LianTao LIU,CunDong LI;;


【Objective】Plant architecture is of major agronomic importance because it strongly influences the suit-ability of a plant for cultivation, its overall yield and its economic coefficient. This study was aimed to explore the effects of chemical topping on the traits of cotton’s plant architecture and to make a comprehensive analysis, thus providing a theoretical basis for the application and popularization of chemical topping. 【Method】Three topping treatments, including manual topping, chemical topping and non-decapitation treatment, were established by using Jimian863 and Nongda601, which were widely grown in Yellow River Valley, in Hebei Agriculture University experimental base during 2015-2016, yield components, plant height, stem diameter, number of fruit branches and other plant architecture related indicators were measured, carry out research on the effect of chemical topping on plant architecture. 【Result】There was no significant difference in seed cotton yield between manual topping treatment and chemical topping treatment, and both treatments were significantly higher than that of non-decapitation treatment. Compared with non-decapitation treatment, chemical topping increased the seed cotton yield of Jiman863 and Nongda601 by 7.19% and 6.78%, respectively. Compared with non-decapitation treatment, chemical topping significantly decreased the cotton plant, internode number, fruiting branches number and fruiting node number, and significantly increased the diameter ratio of near and far branches. Chemical topping significantly decreased the internode length of stem and upper fruiting branches length. The effect of chemical topping on cotton’s plant architecture could be evaluated by the plant height and the diameter ratio of near and far branches according to Pearson correlation analysis, principal component analysis and grey correlation analysis. 【Conclusion】Chemical topping treatment had the same purpose on the regulation of cotton’s vegetative and regenerative growth as manual topping treatment, and had no significant effect on seed cotton yield. The plant height and the diameter ratio of near and far branches were taken as the main evaluation indexes for the regulation of chemical topping on cotton’s plant architecture.

Key words: cotton, plant architecture, manual topping, chemical topping, yield, principal component analysis, grey correlation analysis

Fig. 1

The maximum temperature, minimum temperature and precipitation during the cotton growing season in 2015 and 2016 at the experimental station"

Table 1

Effect of different topping treatments on cotton yield and yield components in 2015 and 2016"

Boll number per plant
Boll weight
Seed cotton yield (kg·hm-2)
Lint percent
Lint cotton yield (kg·hm-2)
2015 JM863 MT 17.70±0.48a 6.23±0.33a 4266.81±165.79a 38.68±0.48c 1788.13±78.66a
CT 17.98±1.31a 5.38±10.42ab 4157.54±328.77a 41.41±0.41b 1721.70±144.06a
NT 14.75±0.95b 5.85±0.09b 3791.16±378.22b 43.06±0.27a 1632.47±217.67b
ND601 MT 11.21±0.410a 6.41±0.58a 3480.00±196.82a 40.44±0.55c 1407.35±89.80a
CT 11.13±1.46a 6.24±0.48a 3222.13±233.56ab 43.83±0.24a 1412.25±120.29a
NT 10.62±1.46a 6.26±0.24a 3003.50±262.27b 42.29±0.33b 1270.02±94.68b
2016 JM863 MT 17.67±0.59a 6.27±0.06a 4397.76±95.52a 39.33±0.85b 1730.60±75.22a
CT 17.33±0.31a 5.89±0.10b 4281.28±90.74a 41.37±0.49a 1770.79±31.87a
NT 15.70±0.67b 5.81±0.11b 4041.05±156.19b 42.70±0.45a 1725.24±61.45a
ND601 MT 14.10±0.54a 6.72±0.36a 3390.22±110.57a 39.94±1.21b 1355.33±84.33ab
CT 13.05±0.35a 7.06±0.38a 3363.72±16.79a 42.89±0.79a 1442.877±28.10a
NT 11.62±0.41b 7.15±0.12a 3135.93±56.40ab 41.26±0.58ab 1293.88±24.26b
Source of variance
Cultivar (C) ** ** ** NS **
Treatment (T) ** NS * ** *

Fig. 2

Effect of different topping treatments on plant height in 2015-2016"

Fig. 3

Effect of different topping treatments on stem diameter in 2015-2016"

Table 2

Effect of different topping treatments on internode number and internode length of cotton in 2015-2016"

2015 2016
节间数 Internode number 节间长度 Internode length (cm) 节间数 Internode number 节间长度 Internode length (cm)
JM863 MT 11.67±0.47c 9.39±0.22a 11.67±0.94b 10.08±0.66a
CT 15.33±0.82b 7.84±0.35b 15.33±0.47a 7.94±0.19b
NT 17.33±0.82a 7.58±0.29b 16.33±0.47a 7.94±0.18b
ND601 MT 12.33±0.82b 9.51±0.55a 11.33±0.94c 10.20±0.71a
CT 14.33±0.47a 8.59±0.16ab 13.67±0.47b 8.91±0.12b
NT 16.33±0.82a 8.24±0.29b 15.33±0.47a 8.37±0.07b

Table 3

Effect of different topping treatments on fruiting branches character in 2015-2016"

2015 2016
果枝数 Fruiting branches number 果节数
Fruiting node number
Fruiting branches length (cm)
Diameter ratio of near and far branches
Fruiting branches number
Fruiting node number
Fruiting branches length (cm)
Diameter ratio of near and far branches
JM863 MT 14.58±0.64c 84.71±6.12b 20.47±1.22a 1.40±0.01b 14.50±0.65c 81.80±7.89c 15.90±1.47a 1.30±0.04b
CT 16.83±1.28b 95.64±10.12a 14.48±2.33b 1.47±0.06b 16.17±1.62b 84.20±6.55bc 10.06±0.82c 1.38±0.05ab
NT 18.50±1.12a 98.64±7.98a 19.69±1.15a 1.66±0.06a 17.58±1.26a 99.90±7.23a 11.56±0.70b 1.47±0.03a
ND601 MT 14.20±0.45c 79.74±3.56c 23.01±2.74a 1.35±0.03c 14.58±0.64c 87.15±4.55b 19.65±1.31a 1.24±0.02c
CT 17.60±0.89b 84.66±7.87b 13.82±1.84c 1.47±0.03b 16.83±1.28b 88.80±7.89b 9.76±0.58c 1.40±0.06b
NT 21.60±0.55a 91.64±9.99a 17.70±0.89b 1.65±0.02a 18.50±1.12a 91.46±9.11a 12.79±0.83b 1.51±0.05c

Fig. 4

Effect of different topping treatments on the length of the upper fruiting branches in 2015-2016"

Table 4

Pearson correlation matrix of cotton shoot architecture parameters and yield"

产量SCY 1
株高PH -0.413 1
茎粗SD 0.618* -0.648* 1
节间数IN -0.483 0.853** -0.332 1
节间长度IL -0.143 0.875** -0.290 -0.850** 1
果枝数FBN 0.001 -0.695* 0.062 -0.739** -0.951** 1
果节数FNN 0.265 -0.883** 0.561 -0.715** -0.754** 0.592* 1
上部果枝长度 FBL 0.022 -0.639* 0.035 0.685* 0.779** -0.738** -0.697* 1
近远端直径比DRNB -0.072 -0.456 0.288 -0.272 -0.431 0.430 0.691* -0.273 1

Table 5

Gray correlation analysis of cotton shoot architecture parameters"

指标 Index 关联度 Correlation degree 排序 Order
节间数 Internode number 0.912 1
茎粗 Stem diameter 0.901 2
近远端直径比 Diameter ratio of near and far branches 0.890 3
株高 Plant height 0.847 4
果节数 Fruiting node number 0.835 5
果枝数 Fruiting branches number 0.825 6
节间长度 Internode length 0.750 7
上部果枝长度 Upper fruiting branches length 0.717 8

Table 6

The characteristic value, variance and accumulative contribution of each component"

初始特征值 Initial eigenvalue 提取的主成分 The extracted principal component
The contribution rate of variance (%)
Cumulative contribution rate (%)
The contribution rate of variance (%)
Cumulative contribution rate (%)
1 5.252 65.662 65.662 5.253 65.662 65.662
2 1.328 16.595 82.257 1.328 16.595 82.257
3 0.809 10.117 92.374
4 0.373 4.663 97.037
5 0.191 2.388 99.425
6 0.032 0.401 99.827
7 0.013 0.164 99.990
8 0.001 0.009 100

Table 7

Score coefficient of principal component factors"

指标 Index 第1主成分 Component 1 第2主成分 Component 2
株高 Plant height 0.180 -0.162
果枝数 Fruiting branches number 0.167 0.093
茎粗 Stem diameter -0.084 0.625
节间数 Internode number 0.181 0.153
节间长度 Internode length -0.161 -0.293
近远端直径比 Diameter ratio of near and far branches -0.173 0.198
果节数 Fruiting node number 0.150 0.346
上部果枝长度 Upper fruiting branches length -0.108 0.242
[1] DONG H Z, LI W J, TANG W, ZHANG D M. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Research, 2009,111(3):269-275.
doi: 10.1016/j.fcr.2009.01.001
[2] 孟桂元, 贺再新, 孙焕良, 周清明, 周静. 作物打顶栽培研究进展. 中国农学通报, 2010,26(24):154-158.
MENG G Y, HE Z X, SUN H L, ZHOU Q M, ZHOU J. The Research progress on topping cultivation in crops. Chinese Agricultural Science Bulletin, 2010,26(24):154-158. (in Chinese)
[3] RENOU A, TERETA I, TOGOLA M. Manual topping decreases bollworm infestations in cotton cultivation in Mali. Crop Protection, 2011,30(10):1370-1375.
[4] 邹茜, 刘爱玉, 王欣悦, 向凤玲. 棉花打顶技术的研究现状与展望. 作物研究, 2014,28(5):570-574.
ZOU Q, LIU A Y, WANG X Y, XIANG F L. Research progress and prospect on topping techniques in cotton. Crop Research, 2014,28(5):570-574. (in Chinese)
[5] 赵强, 周春江, 张巨松, 李松林, 恽友兰, 田晓莉. 化学打顶对南疆棉花农艺和经济性状的影响. 棉花学报, 2011,23(4):329-333.
ZHAO Q, ZHOU C J, ZHANG J S, LI S L, YUN Y L, TIAN X L. Effect of chemical topping on the canopy and yield of cotton (Gorrsypium hirsutum) in south Xinjiang. Cotton Science, 2011,23(4):329-333. (in Chinese)
[6] 李成奇, 王清连, 董娜, 付远志, 郭腾利. 棉花株型性状的遗传分析. 江苏农业学报, 2011,27(1):30-35.
LI C Q, WANG Q L, DONG N, FU Y Z, GUO T L. Inheritance of plant architecture traits in upland cotton (G.hirsutum L.). Jiangsu Journal of Agriculture Science, 2011,27(1):30-35. (in Chinese)
[7] 娄善伟, 赵强, 朱北京, 魏欢. 棉花化学封顶对植株上部枝叶形态变化的影响. 西北农业学报, 2015,24(8):62-67.
LOU S W, ZHAO Q, ZHU B J, WEI H. Effect of chemical topping on morphologic changes of leaves and branches in upper part of cotton. Acta Agricultural Boreali-Occidentalis Sinica, 2015,24(8):62-67. (in Chinese)
[8] REDDY V R, BAKER D N, HODGES H F. Temperature and mepiquat chloride effects on cotton canopy architecture. Agronomy Journal, 1990,82(2):190-195.
[9] OSMAN C, DEMIREL U, KARAKUS M. Effects of several plant growth regulators on the yield and fiber quality of cotton (Gossypium hirsutum L.). Notulae Botanicae Horti Agrobotanici Cluj Napoca, 2010,38(3):104-110.
[10] GWATHMEY C O, CLEMENT J D. Alteration of cotton source-sink relations with plant population density and mepiquat chloride. Field Crops Research, 2010,116(1/2):101-107.
[11] NICHOLS S P, SNIPES C E, JONES M A. Evaluation of row spacing and mepiquat chloride in cotton. Journal of Cotton Science, 2003,7(4):148-155.
[12] BOGIANI J C, ROSOLEM C A. Sensibility of cotton cultivars to mepiquat chloride. Pesquisa Agropecuária Brasileira, 2009,44(10):1246-1253.
[13] 周桂生, 林岩, 童晨, 李军, 吴慧. 钾肥和缩节胺对高品质棉株型和产量的影响. 湖北农业科学, 2011,50(23):58-60.
ZHOU G S, LIN Y, TONG C, LI J, WU H. Effects of potassium and mepiquat chloride on plant type and yield of high quality cotton. Hubei Agricultural Science, 2011,50(23):58-60. (in Chinese)
[14] 马宗斌, 房卫平, 谢德意, 李伶俐, 朱伟. 氮肥和DPC用量对棉花叶片叶绿素含量和SPAD值的影响. 棉花学报, 2009,21(3):224-229.
MA Z B, FANG W P, XIE D Y, LI L L, ZHU W. Effects of nitrogen application rates and DPC sparing doses on cotton of chlorophyll and SPAD value in leaf of cotton (Gossypium hirsutum L.). Cotton Science, 2009,21(3):224-229. (in Chinese)
[15] 杨成勋, 张旺锋, 徐守振, 随龙龙, 梁福斌, 董恒义. 喷施化学打顶剂对棉花冠层结构及群体光合生产的影响. 中国农业科学, 2016,49(9):50-62.
YANG C X, ZHANG W F, XU S Z, SUI L L, LIANG F B, DONG H Y. Effect of spraying chemical topping agents on canopy structure and canopy photosynthetic production in cotton. Scientia Agricultura Sinica, 2016,49(9):50-62.(in Chinese)
[16] 刘翠, 张巨松, 魏鑫, 徐新霞. 甲哌鎓化控对南疆杂交棉功能叶生理指标及产量性状的影响. 棉花学报, 2014,26(2):122-129.
LIU C, ZHANG J S, WEI X, XU X X. Effects of mepiquat chloride on physiological indicators of leaf function and characteristics of yield of hybrid cotton in south Xinjiang. Cotton Science, 2014,26(2):122-129. (in Chinese)
[17] 陈德华, 陈源, 杨长琴, 何忠佩, 吴云康. 氮肥与缩节胺配合对Bt棉源库特征和铃重的影响. 棉花学报, 2002,14(3):147-150.
CHEN D H, CHEN Y, YANG C Q, HE Z P, WU Y K. The effects on the boll weight and the source-sink characteristics in the coordination of nitrogen fertilizer and DPC in Bt cotton. Cotton Science, 2002,14(3):147-150. (in Chinese)
[18] 赵强, 张巨松, 周春江, 恽友兰, 李松林, 田晓莉. 化学打顶对棉花群体容量的拓展效应. 棉花学报, 2011,23(5):401-407.
ZHAO Q, ZHANG J S, ZHOU C J, YUN Y L, LI S L, TIAN X L. Chemical detopping increases the optimum plant density in cotton (Gossypium hirsutum L.). Cotton Science, 2011,23(5):401-407. (in Chinese)
[19] 冯国艺, 姚炎帝, 杜明伟, 田景山, 罗宏海, 张亚黎, 张旺锋. 缩节胺(DPC)对干旱区杂交棉冠层结构及群体光合生产的调节. 棉花学报, 2012,24(1):44-51.
FENG G Y, YAO Y D, DU M W, TIAN J S, LUO H H, ZHAG Y L, ZHANG W F. Dimethyl piperidinium chloride (DPC) regulation of canopy architecture and photosynthesis in a cotton hybrid in an arid region. Cotton Science, 2012,24(1):44-51. (in Chinese)
[20] 何钟佩, 闵祥佳, 李丕明, 奚惠达. 植物生长延缓剂DPC对棉铃内源激素水平和棉铃发育影响的研究. 作物学报, 1990,16(3):252-258.
HE Z P, MIN X J, LI P M, XI H D. Effects of plant growth retarding agent DPC on endogenous hormone levels and boll development. Acta Agronomica Sinica, 1990,16(3):252-258. (in Chinese)
[21] REN X M, ZHANG L Z, DU M W, EVERS J B, WERF W D, TIAN X L, LI Z H. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Research, 2013,149:1-10.
[22] 黎芳, 王希, 王香茹, 杜明伟, 周春江, 尹晓芳, 徐东永, 卢怀玉, 田晓莉, 李召虎. 黄河流域北部棉区棉花缩节胺化学封顶技术. 中国农业科学, 2016,49(13):2497-2510.
LI F, WANG X, WANG X R, DU M W, ZHOU C J, YIN X F, XU D Y, LU H Y, TIAN X L, LI Z H. Cotton chemical topping with mepiquat chloride application in the north of yellow river valley of China. Scientia Agricultura Sinica, 2016,49(13):2497-2510. (in Chinese)
[23] 韩焕勇, 王方永, 陈兵, 李保成, 张旺锋, 田晓莉, 李召虎. 氮肥对棉花应用增效缩节胺封顶效果的影响. 中国农业大学学报, 2017,22(2):12-20.
HAN H Y, WANG F Y, CHEN B, LI B C, ZHANG W F, TIAN X L, LI Z H. Effect of nitrogen fertilizer on plant growth and yield formation of cotton applied with fortified DPC. Journal of China Agricultural University, 2017,22(2):12-20. (in Chinese)
[24] 施伟, 昌小平, 景蕊莲. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 麦类作物学报, 2012,32(4):653-659.
SHI W, CHANG X P, JING R L. Gray association grade analysis of physiological traits with yield of wheat under different water regimes. Journal of Triticeae Crops, 2012,32(4):653-659. (in Chinese)
[25] MCLEAN E H, LUDWIG M, GRIERSON P F. Root hydraulic conductance and aquaporin abundance respond rapidly to partial root-zone drying events in a riparian Melaleuca species. The New Phytologist, 2011,192(3):664-675.
[26] MAO L L, ZHANG L Z, SUN X Z, WERF W D, EVERS J B, ZHAO X H, ZHANG S P, SONG X L, LI Z H. Use of the beta growth function to quantitatively characterize the effects of plant density and a growth regulator on growth and biomass partitioning in cotton. Field Crops Research, 2018,224:28-36.
[27] TUNG S A, HUANG Y, HAFEEZ A, ALI S, KHAN A, SOULIYANONH B, SONG X H, LIU A, YANG G Z. Mepiquat chloride effects on cotton yield and biomass accumulation under late sowing and high density. Field Crops Research, 2018,215:59-65.
[28] REDDY K R, BOONE M L, REDDY A R, HODGES H F, TURNER S B, JAMES M M. Developing and validating a model for a plant growth regulator. Agronomy Journal, 1995,87(6):1100-1105.
[29] STUART B L, ISBELL V R, WENDT C W, ABERNATHY J R. Modification of cotton water relations and growth with mepiquat chloride. Agronomy Journal, 1984,76(4):651-655.
[30] YORK A C. Cotton cultivar response to mepiquat chloride. Agronomy Journal, 1983,75(4):663-667.
[31] KLETTER E, WALLACH D. Effects of fruiting form removal on cotton reproductive development. Field Crops Research, 1982,5(1):69-84.
[32] 刘燕, 原保忠, 张献龙, 聂以春, 付小勤, 柯昌煌, 叶胜池. 缩节胺和整枝打顶对棉花产量及品质的影响. 农学学报, 2013,3(6):8-12.
LIU Y, YUAN B Z, ZHANG X L, NIE Y C, FU X Q, KE C H, YE S C. Effects of DPC and plant pruning with topping on cotton yield and fiber quality. Journal of Agriculture, 2013,3(6):8-12. (in Chinese)
[33] SIEBERT J D, STEWART A M. Influence of plant density on cotton response to mepiquat chloride application. Agronomy Journal, 2006,98(6):1634-1639.
[34] GWATHMEY C O, CRAIG C C. Managing earliness in cotton with mepiquat-type growth regulators. Crop Management, 2003,2(1):1-8.
[35] WILSON D G, YORK A C, EDMISTEN K L. Narrow-row cotton response to mepiquat chloride. Journal of Cotton Science, 2007,11(4):177-185.
[36] REINHARDT D, KUHLEMEIER C. Plant architecture. Embo Reports, 2002,3(9):846-851.
doi: 10.1093/embo-reports/kvf177 pmid: 12223466
[37] SONG X L, ZHANG T Z. Quantitative trait loci controlling plant architectural traits in cotton. Plant Science, 2009,177(4):317-323.
[38] 杜太生, 康绍忠, 王振昌, 王锋, 杨秀英, 苏兴礼. 隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应. 作物学报, 2007,33(12):1982-1990.
DU T S, KANG S Z, WANG Z C, WANG F, YANG X Y, SU X L. Response of cotton growth, yield, and water use efficiency to alternate furrow irrigation. Acta Agronomica Sinica, 2007,33(12):1982-1990. (in Chinese)
[39] 易正炳, 陈忠良, 刘海燕. 化学打顶整枝剂在棉花上的应用效果研究. 中国农技推广, 2013,29(5):32-33.
YI Z B, CHEN Z L, LIU H Y. Study on the application effect of chemical topping and pruning agent in cotton. China Agriculture Technology Extension, 2013,29(5):32-33. (in Chinese)
[40] 安静, 黎芳, 周春江, 田晓莉, 李召虎. 增效缩节安化学封顶对棉花主茎生长的影响及其相关机制. 作物学报, 2018,44(12):99-105.
AN J, LI F, ZHOU C J, TIAN X L, LI Z H. Morpho-physiological responses of cotton shoot apex to the chemical topping with fortified mepiquat chloride. Acta Agronomica Sinica, 2018,44(12):99-105. (in Chinese)
[41] MAO L L, ZHANG L Z, ZHAO X H, LIU S D, WERF W D, ZHANG S P, SPIERTZ H, LI Z H. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Research, 2014,155:67-76.
[42] WANG B, SMITH S M, LI J. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 2018,69(1):437-468.
[43] 丁璐, 刘海学, 王聿双, 牟美睿, 杨仁杰. 26个玉米杂交组合农艺性状的相关性与主成分分析. 分子植物育种, 2020,18(3):995-1002.
DING L, LIU H X, WANG Y S, MOU M R, YANG R J. Correlation and principal component analysis of the agronomic traits of 26 corn hybrids combinations. Molecular Plant Breeding, 2020,18(3):995-1002. (in Chinese)
[44] 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007,40(11):2452-2459.
WANG S Q, HU Y G, SHE K J, ZHOU L L, MENG F L. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007,40(11):2452-2459. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
Full text



No Suggested Reading articles found!