Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4164-4176.doi: 10.3864/j.issn.0578-1752.2020.20.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Analysis on the Adaptability of Northward Planting of Brassica napus

CAO XiaoDong1(),LIU ZiGang1(),MI WenBo1,XU ChunMei1,ZOU Ya1,XU MingXia1,ZHENG GuoQiang1,FANG XinLing1,CUI XiaoRu2,DONG XiaoYun1,MI Chao1,CHEN QiXian2   

  1. 1College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Arid Land Crop Sciences/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement , Lanzhou 730070
    2Gansu Agricultural Technology Extension Station, Lanzhou 730070
  • Received:2020-01-13 Accepted:2020-05-06 Online:2020-10-16 Published:2020-10-26
  • Contact: ZiGang LIU E-mail:2634984734@qq.com;lzgworking@163.com

Abstract:

【Objective】To explore the ecological adaptability of breeding new varieties/lines with strong cold resistance and the feasibility of northward migration of Brassica napus (Brassica napus L.) at high altitude and high latitude, so as to realize the replacement of inferior and inefficient winter rape varieties, farmland ecological improvement and industrial promotion.【Method】Ten cold-resistant winter rape lines of Brassica napus were used as materials, and the original planting area and typical northward migration ecological region of winter rape of Brassica napus were selected as experiments to study the changes of growth period, yield, quality, plant type and other characters of cold-resistant winter rape varieties of Brassica napus in cold and cool areas at high latitude and high altitude.【Result】The results showed that Brassica napus-type winter rape could survive the winter safely in the original planting area (Tianshui), and the over-wintering rate of Brassica napus decreased obviously after moving northward. The control varieties(Ganza 1)could not survive the winter normally in the northward migration area (Baiyin and Dingxi); The 10 strong cold-resistant varieties could survive the winter safely in the Baiyin pilot, and the over-wintering rate was between 81% and 94%; The Dingxi pilot, the over-wintering rate was between 51% and 88%, of which 6 strong cold-resistant varieties could survive the winter safely in Dingxi (≥75%). The growth period of Brassica napus was prolonged by 52 days and 70 days after moving northward; The yield of cold-resistant lines move northward to Baiyin varied from-11.05% to 44.67%, and the highest yield was 5 170.80 kg·hm-2 .The yield of all the tested lines in Baiyin decreased significantly, and the highest yield was 3 392.85 kg·hm-2 .After planting northward, the plant height, branching position decreased, the secondary branch increased, the plant type became worse, the number of pods per plant decreased, the number of pods and 1000-grain weight increased, and the characters of pods became better. After moving northward, the contents of oil and glucosinolates in Brassica napus decreased, while the contents of erucic acid increased. One of the tested lines/species was a double-low, high-quality and strong cold-resistant strain (16NS20H1), and the other was a cold-resistant variety with low erucic acid (Ganza 1). Correlation analysis showed that overwintering rate, yield, plant height, branch position, main inflorescence length, oil content and glucosinolate content were significantly negatively correlated with altitude and latitude. It was positively correlated with annual average temperature, frost-free days and coldest monthly temperature, while the growth period, secondary branches changed to the contrary. In the northward moving area, the lodging resistance of Brassica napus type was significantly better than that of Brassica campestris L.. 【Conclusion】The cold resistance of the new cold-resistant winter rape strain of Brassica napus was obviously stronger than that of the control (Ganza 1), and it could survive the winter safely in the area of 36°12'N latitude and 2 248 m above sea level, and the winter rape lines with high yield, high quality and strong cold resistance could be selected and improve the yield level, quality and nutritional value of winter rape in the strong winter region of North China.

Key words: Brassica napus L., northward expansion, overwintering rate, yield, agronomic characters, quality

Table 1

Test materials and types"

序号 品系Line 类型 Type 序号 品系Line 类型 Type
1 16NS20H1 甘蓝型油菜 Brassica napus L. 11 甘杂1号(CK)Ganza 1(CK) 甘蓝型油菜 Brassica napus L.
2 16NTS304H1 甘蓝型油菜 Brassica napus L. 12 15PW16 白菜型油菜 Brassica campestris L.
3 16NTS312-2-1 甘蓝型油菜 Brassica napus L. 13 15QX11W 白菜型油菜 Brassica campestris L.
4 16NTS312-2-2 甘蓝型油菜 Brassica napus L. 14 16QDX15 白菜型油菜 Brassica campestris L.
5 16NTS312-2-6 甘蓝型油菜 Brassica napus L. 15 16QX367HX 白菜型油菜 Brassica campestris L.
6 16NTS312-2-7 甘蓝型油菜 Brassica napus L. 16 16RMC 4H 白菜型油菜 Brassica campestris L.
7 16NTS312-2-8 甘蓝型油菜 Brassica napus L. 17 17RLX1-2 白菜型油菜 Brassica campestris L.
8 16NTS312-2-9 甘蓝型油菜 Brassica napus L. 18 17RLX2-38 白菜型油菜 Brassica campestris L.
9 18NTS309 甘蓝型油菜 Brassica napus L. 19 天油4号 Tianyou 4 白菜型油菜 Brassica campestris L.
10 18NTS309X1 甘蓝型油菜 Brassica napus L.

Table 2

Main weather factors for winter rapeseed adaptation test planting area"

生态因子 Ecological factor 天水 Tianshui 定西 Dingxi 白银 Baiyin
纬度 Latitude 34°33′ 35°58′ 36°12′
海拔高度 Altitude (m) 1210 2248 1898
最冷月平均气温The average temperature in the coldest month,ATCM (℃) -3.3 -5.9 -5.3
最冷月平均最低气温The average lowest temperature in the coldest month,ALTCM (℃) -8.2 -11.3 -11.1
年均温度 Annual average temperature,AAT (℃) 10.3℃ 7.5℃ 6.3℃
极端低温Extreme low temperature,ELT (℃) -15.0 -25.6 -23.5
无霜期天数 Free frost days,FFD (d ) 195 146 141
降水量 Precipitation (mm) 478.21 435.43 413.94
年平均蒸发量 Annual evaporation (mm) 1636.53 1632.93 1538.1

Table 3

Wintering rate and growth period of the test product"

品系
Line
越冬率 Wintering rate (%) 生育期 Growth period (d)
天水 Tianshui 定西 Dingxi 白银 Baiyin 天水 Tianshui 定西 Dingxi 白银 Baiyin
16NS20H1 90 83 86 271 328 341
16NTS304H1 93 88 92 274 330 339
16NTS312-2-1 97 88 94 269 330 340
16NTS312-2-2 93 68 88 277 331 341
16NTS312-2-6 90 65 87 274 328 340
16NTS312-2-7 96 85 85 275 333 341
16NTS312-2-8 92 80 83 274 330 339
16NTS312-2-9 95 62 87 270 330 340
18NTS309 94 75 94 277 333 341
18NTS309X1 94 51 81 277 329 339
甘杂1号(CK) Ganza 1(CK) 87 45 43 273 333 339

Table 4

Yield change of winter rape"

品系 Line 天水 Tianshui 定西 Dingxi 白银 Baiyin
甘蓝型油菜
Brassica napus L.
16NS20H1 3662.25bcde 3392.85cdefgh 3621.15bcdef
16NTS304H1 3597.45bcdefg 3131.85cdefghi 3933.30bc
16NTS312-2-1 3571.65bcdefg 2380.35hijk 5170.80a
16NTS312-2-2 3261.00cdefghi 2354.85hijk 3965.55bc
16NTS312-2-6 3618.15bcdef 1960.35jk 3712.65bcd
16NTS312-2-7 4156.50bc 2538.75ghij 3766.50bcd
16NTS312-2-8 3820.05bcd 2755.20defghij 3400.50bcdefgh
16NTS312-2-9 3822.60bcd 2564.70fghij 3723.45bcd
18NTS309 3561.30bcdefg 2277.75ijk 3551.25bcdefg
18NTS309X1 3255.90cdefghi 2529.75ghij 4030.05bc
甘杂1号(CK) Ganza 1(CK) 4472.25ab 2544.60ghij 3857.85bc
白菜型油菜
Brassica campestris L.
15QX 11W 2638.05efghij 1932.60jk 2765.10defghij
17RLX1-2 2570.55fghij 1476.30k 3182.70cdefghi
天油4号 Tianyou 4 2533.80ghij 1384.95k 3527.55bcdefg

Table 5

Correlation coefficient between main characters and ecological factors of Brassica napus L."

性状
Character
纬度
Latitude
海拔
Altitude
最冷月平均温度
ATCM
最冷月平均最低气温
ALTCM
年平均温度
AAT
无霜期天数
FFD
极端低温
ELT
越冬率 Wintering rate -0.673** -0.005 0.604** 0.534** 0.336 0.462** 0. 905**
生育期 Growth period 0.841** 0.800** -0.937** -0.980** -0.985** -0.997** -0.948**
产量 Output -0.944** -0.408* 0.939** 0.907** 0.757** 0.860** 0.934**

Table 6

Comparison of agronomic characters of winter rape"

农艺性状
Agronomic trait
甘蓝型油菜 Brassica napus L. 白菜型油菜 Brassica campestris L. 较白菜型增加
Increased
Compared with
brassica rapa (%)
变异幅度
Variation
range
均值
Mean
变异系数%
Variation
coefficient (%)
变异幅度
Variation
range
均值
Mean
变异系数
Variation
coefficient (%)
株高 PH (cm) 114.6-167.2 139.06±2.64 10.92 99.7-146.3 124.00±2.24 8.56 12.15
分枝部位 BH (cm) 9.3-82.1 36.76±4.12 64.34 6.7-36.7 19.17±1.93 49.35 91.72
一次分枝 NFB 7.7-12.8 10.24±0.27 15.19 3.7-12.7 9.11±0.40 21.51 12.56
二次分枝 NSB 0.3-17.3 8.71±0.86 56.60 2.0-18.3 8.79±0.76 42.17 -0.91
主花序长度 LMF (cm) 22.0-58.7 40.31±1.89 26.96 36.7-64.0 47.43±1.65 17.04 -15.01
全株角果数 TSP 156.3-424.0 277.69±11.77 24.37 141.7-448.7 326.49±24.56 36.85 -14.95
角粒数 SPS 23.2-33.1 27.68±0.50 10.46 20.0-32.0 27.31±0.63 11.33 1.35
千粒重 SW (g) 3.467-5.111 4.38±0.07 8.56 2.176-4.766 3.51±0.14 20.18 24.73

Table 7

Differences in agronomic traits between the northern transfer area of Brassica napus L. and the original planting area"

农艺性状
Agronomic
trait
天水 Tianshui 定西 Dingxi 白银 Baiyin
变异幅度
Variation
range
均值
Mean
变异幅度
Variation
range
均值
Mean
较天水增加
Increased
compared with
Tianshui (%)
变异幅度
Variation
range
均值
Mean
较天水增加
Increased
compared with
Tianshui (%)
株高 PH (cm) 142.0-185.0 160.48±1.73 105.0-172.0 133.02±2.49 -17.11 103.0-154.0 131.22±2.25 -18.26
分枝部位 BH (cm) 45.0-95.0 69.42±2.35 3.0-49.0 18.00±2.20 -74.07 7.0-52.0 24.70±1.92 -64.41
一次分枝 NFB 5.0-19.0 10.30±0.47 6.0-17.0 10.73±0.53 4.17 6.0-14.0 9.83±0.33 -4.85
二次分枝 NSB 0.0-8.0 0.84±0.37 0.0-28.0 11.12±1.12 1223.81 2.0-27.0 10.53±0.97 1153.57
主花序长度 LMF (cm) 30.0-79.0 49.70±1.74 0.0-50.0 26.97±2.71 -45.73 24.0-59.5 42.85±1.57 -13.78
全株角果数 TSP 105.0-603.0 307.18±20.30 92.0-547.0 263.94±22.88 -14.18 131.0-643.0 277.67±25.55 -9.60
角粒数 SPS 19.0-34.0 26.73±0.67 22.3-39.3 28.82±0.67 7.81 21.0-32.7 26.87±0.64 0.75
千粒重 SW (g) 3.400-5.400 4.21±0.10 3.800-5.600 4.50±0.08 6.89 3.400-5.200 4.46±0.08 5.84

Table 8

Coefficient of variation of agronomic traits in Brassica napus L. in different ecological regions"

品系
Line
株高
PH (cm)
分枝部位
BH (cm)
一次分枝数
NF
二次分枝数
NSB
主花序长度
LMF (cm)
全株角果数
TSP
角粒数
SPS
千粒重
SD (g)
16NS20H1 0.1688 0.7465 0.1057 0.9126 0.2731 0.3172 0.0629 0.0242
16NTS304H1 0.1533 0.7849 0.1292 0.9213 0.3203 0.2224 0.1061 0.0398
16NTS312-2-1 0.1598 0.5649 0.1157 0.6171 0.1241 0.4097 0.0462 0.0445
16NTS312-2-2 0.1064 0.9073 0.0461 0.8665 0.2475 0.2096 0.0609 0.0863
16NTS312-2-6 0.1499 0.9202 0.2053 0.5528 0.3371 0.3125 0.0748 0.1543
16NTS312-2-7 0.1369 0.9055 0.0935 0.9056 0.5749 0.1608 0.1629 0.0463
16NTS312-2-8 0.0652 0.5223 0.3469 0.8490 0.1129 0.2564 0.1252 0.1195
16NTS312-2-9 0.1042 0.9761 0.1868 0.9853 0.3336 0.4454 0.1450 0.0951
18NTS309 0.1783 0.7670 0.1321 0.8408 0.3303 0.1768 0.0280 0.1124
18NTS309X1 0.0501 0.5039 0.0968 0.8681 0.1450 0.1994 0.0859 0.0615
甘杂1号(CK)Ganza 1 (CK) 0.1301 0.8817 0.2407 0.8755 0.3982 0.0389 0.0024 0.0864
试点间变异 Plot varieties 0.1230 0.7637 0.0676 0.7282 0.2446 0.1396 0.1230 0.0342
品系间变异 Variation among varieties 0.0164 0.1007 0.0870 0.2688 0.1351 0.0956 0.0741 0.0491
总变异 Total varieties 0.1110 0.6541 0.1563 0.7964 0.2739 0.2466 0.1008 0.0868

Table 9

Correlation coefficient between main characters and ecological factors of Brassica napus L."

性状
Trait
纬度
Latitude
海拔
Altitude
最冷月平均温度
ATCM
最冷月平均最低气温
ALTCM
年平均温度
AAT
无霜期天数
FFD
极端低温
ELT
株高 PH -0.801** -0.608** 0.857** 0.872** 0.828** 0.867** 0.862**
分枝部位BH -0.927** -0.539** 0.954** 0.945** 0.841** 0.917** 0.954**
一次分枝NFB 0.041 -0.283 0.029 0.079 0.181 0.122 0.039
二次分枝NSB 0.824** 0.457** -0.843** -0.832** -.733** -.804** -0.843**
主花序长度LMF -0.735** -0.031 0.665** 0.593** 0.385* 0.518** 0.651**
全株角果数TSP -0.175 -0.298 0.226 0.256 0.299 0.277 0.232
角粒数SPS 0.326 -0.057 -0.279 -0.235 -0.121 -0.193 -0.27
千粒重SW 0.325 0.14 -0.323 -0.312 -0.26 -0.296 -0.322

Table 10

Change in oil content of Brassica napus L. in different ecological regions (%)"

品系 Line 天水 Tianshui 定西 Dingxi 白银 Baiyin
16NS20H1 45.02abc 44.88abc 40.69cdefghi
16NTS304H1 43.01bcde 41.05bcdefgh 41.77bcdef
16NTS312-2-1 42.95bcde 40.67cdefghi 45.40ab
16NTS312-2-2 43.20bcd 39.43defghi 41.94bcdef
16NTS312-2-6 45.04abc 37.70fghij 44.70abc
16NTS312-2-7 44.41abc 37.24ghij 47.98a
16NTS312-2-8 43.98abc 36.56ijk 40.73cdefghi
16NTS312-2-9 44.58abc 39.40defghi 41.77bcdef
18NTS309 41.96bcdef 38.55efghij 41.37bcdefgh
18NTS309X1 45.41ab 34.64jk 43.26bcd
甘杂1号(CK)Ganza 1(CK) 42.58bcde 32.98k 41.67bcdefg

Table 11

Changes in erucic acid and glucosinolate content in different ecological planting areas (%)"

种类 Type 品系Line 天水 Tianshui 定西 Dingxi 白银 Baiyin
芥酸
Erucic (%)
16NS20H1 0.720h 0.74h 0.63h
16NTS304H1 36.30ab 37.77a 36.82ab
16NTS312-2-1 25.13bcde 22.34cdef 31.64abcd
16NTS312-2-2 29.56abcd 28.95abcde 26.26abcde
16NTS312-2-6 31.35abcd 26.78abcde 32.21abcd
16NTS312-2-7 27.01abcde 27.44abcde 32.52abcd
16NTS312-2-8 21.28def 17.29ef 13.08fg
16NTS312-2-9 27.80abcde 24.60bcde 28.85abcde
18NTS309 32.76 abcd 32.12abcd 30.31abcd
18NTS309X1 33.67abc 35.53ab 35.49ab
甘杂1号(CK) Ganza 1(CK) 2.16g 2.21g 3.04bg
硫代葡萄糖苷
Glucosino (μmol·g-1)
16NS20H1 26.62mno 24.31mno 27.83lmno
16NTS304H1 89.38abc 68.44cdefg 40.27ghijklmn
16NTS312-2-1 32.28ijklmn 19.08no 21.99o
16NTS312-2-2 56.28efghijk 27.80lmno 25.17mno
16NTS312-2-6 55.08efghijkl 47.77ghijklm 30.89jklm
16NTS312-2-7 53.53fghijkl 29.34klmn 19.50no
16NTS312-2-8 57.29efghijk 42.64ghijklm 31.14ijklmn
16NTS312-2-9 59.36efghi 35.89hijklmn 30.57jklmn
18NTS309 44.78ghijklmn 49.68ghijklm 78.92bcdef
18NTS309X1 81.84bcd 41.37ghijklmnn 58.03efghij
甘杂1号(CK) Ganza 1(CK) 113.14a 63.15defgh 77.31abc

Table 12

Correlation coefficient between main characters and ecological factors of Brassica napus L."

性状
Character
纬度
Latitude
海拔
Altitude
最冷月平均温度
ATCM
最冷月平均最低气温
ALTCM
年平均温度
AAT
无霜期天数
FFD
极端低温
ELT
含油量 Oil content -0.727** 0.075 0.633** 0.544** 0.305 0.456** 0.616**
芥酸 Erucic 0.011 0.165 -0.048 -0.074 -0.123 -0.095 -0.053
硫苷 Glucosino -0.426* -0.433* 0.482** 0.508** 0.519** 0.520** 0.488**

Table 13

Comparison of winter rapeseed lodging index"

类型 Type 品系 Line 抗折力Flexural strength 倒伏指数Lodging index
甘蓝型油菜
Brassica napus L.
16NS20H1 30.47bcd 0.0736cd
16NTS304H1 47.00ab 0.0589cd
16NTS312-2-1 39.67bc 0.0431cd
16NTS312-2-2 28.17bcd 0.0769cd
16NTS312-2-6 37.07bcd 0.0835bcd
16NTS312-2-7 36.00bcd 0.0468cd
16NTS312-2-8 39.00bc 0.0380d
16NTS312-2-9 65.33a 0.0896bcd
18NTS309 31.00bcd 0.0390cd
18NTS309X1 38.01bcd 0.0763cd
甘杂1号(CK) Ganza 1(CK) 49.50ab 0.0373d
白菜型油菜
Brassica campestris L.
15PW16 19.20cd 0.1079bcd
15QX11W 17.48cd 0.2231b
16QDX15 20.17cd 0.1861bc
16QX367HX 19.80cd 0.1078bcd
16RMC 4H 19.33cd 0.14039bcd
17RLX1-2 16.03d 0.3611a
17RLX2-38 17.67cd 0.1086bcd
天油4号 Tianyou 4 22.83cd 0.1090bcd
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018,40(5):613-617.
WANG H Z. New-demand oriented oilseed rape industry developing strategy. Chinese Journal of Oil Crop Sciences, 2018,40(5):613-617. (in Chinese)
[2] 刘成, 黄杰, 冷博峰, 冯中朝, 李俊鹏. 我国油菜产业现状、发展困境及建议. 中国农业大学学报, 2017,22(12):203-210.
LIU C, HUANG J, LENG B F, FENG Z C, LI J P. Current situation, development difficulties and suggestions of Chinese rape industry. Journal of China Agricultural University, 2017,22(12):203-210. (in Chinese)
[3] 刘自刚, 王志江, 方圆, 孙万仓, 袁金海, 米超, 方彦, 武军艳, 李学才. NaCl胁迫对白菜型冬油菜种子萌发和幼苗生理的影响. 中国油料作物学报, 2017,39(3):351-359.
LIU Z G, WANG Z J, FANG Y, SUN W C, YUAN J H, MI C, FANG Y, WU J Y, LI X C. Effect of salt stress on seed germination and seedling physiology of winter rapeseed (Brassica rapa L.). Chinese Journal of Oil Crop Sciences, 2017,39(3):351-359. (in Chinese)
[4] 刘秦, 姚正良, 缪纯庆, 姚瑶, 毛成志, 孙万仓. 寒旱区白菜型冬油菜适应性及利用研究. 干旱地区农业研究, 2018,36(6):56-62, 130.
LIU Q, YAO Z L, MIAO C Q, YAO Y, MAO C Z, SUN W C. Adaptability and utilization of cabbage-type winter rapeseed in the cold-arid regions. Agricultural Research in the Arid Areas, 2018,36(6):56-62, 130. (in Chinese)
[5] 刘自刚, 张长生, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 武军艳, 方彦, 曾秀存. 不同生态区冬前低温下白菜型冬油菜不同抗寒品种(系)比较. 作物学报, 2014,40(2):346-354.
LIU Z G, ZHANG C S, SUN W C, YANG N N, WANG Y, HE L, ZHAO C X, WU J Y, FANG Y, ZENG X C. Comparison of winter rapeseed varieties (lines) with different cold resistance planted in the northern-extending regions in China under low temperature before winter. Acta Agronomica Sinica, 2014,40(2):346-354. (in Chinese)
[6] 刘自刚, 孙万仓, 杨宁宁, 王月, 何丽, 赵彩霞, 史鹏飞, 杨刚, 李学才, 武军艳, 方彦, 曾秀存. 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013,46(22):4679-4687.
LIU Z G, SUN W C, YANG N N, WANG Y, HE L, ZHAO C X, SHI P F, YANG G, LI X C, WU J Y, FANG Y, ZENG X C. Morphology and physiological characteristics of cultivars with different levels of cold-resistance in winter rapeseed (Brassica campestris L.) during cold acclimation. Scientia Agricultura Sinica, 2013,46(22):4679-4687. (in Chinese)
[7] 殷艳, 廖星, 余波, 王汉中. 我国油菜生产区域布局演变和成因分析. 中国油料作物学报, 2010,32(1):147-151.
YIN Y, LIAO X, YU B, WANG H Z. Regional distribution evolvement and development tendency of Chinese rapeseed production. Chinese Journal of Oil Crop Sciences, 2010,32(1):147-151. (in Chinese)
[8] 李扬. 甘蓝型油菜倒伏相关性状QTL定位和木质素合成关键基因表达研究[D]. 南京: 南京农业大学, 2013.
LI Y. QTL mapping of traits related to lodging resistance and expression of key gene in Lignin synthesis in Brassica napus L.[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[9] 顾慧, 戚存扣. 甘蓝型油菜(Brassica napus L.)抗倒伏性状的QTL分析. 江苏农业学报, 2009,25(3):484-489.
GU H, QI C K. QTL analysis of lodging resistance in Brassica napus L. Jiangsu Journal of Agricultural Sciences, 2009,25(3):484-489. (in Chinese)
[10] 许凤英, 毛群帮, 邢丹英, 秦亚平, 王晓玲. 油菜抗倒伏性的评价方法研究. 河南农业科学, 2009(11):41-43.
XU F Y, MAO Q B, XING D Y, QIN Y P, WANG X L. Study on evaluation method of lodging resistance in rapeseed. Journal of Henan Agricultural Sciences, 2009(11):41-43. (in Chinese)
[11] 彭旭辉. 甘蓝型油菜抗倒伏指标的选取及其QTL定位[D]. 重庆: 西南大学, 2012.
PENG X H. The selection of lodging indicators and mapping QTL for lodging in Brassica napus L.[D]. Chongqing: Southwest University, 2012. (in Chinese)
[12] 孙万仓, 马卫国, 雷建民, 刘秦, 杨仁义, 武军艳, 王学芳, 叶剑, 曾军, 张亚宏, 康艳丽, 郭秀娟, 魏文惠, 杨杰, 蒲媛媛, 曾潮武, 刘红霞. 冬油菜在西北旱寒区的适应性和北移的可行性研究. 中国农业科学, 2007,40(12):2716-2726.
SUN W C, MA W G, LEI J M, LIU Q, YANG R Y, WU J Y, WANG X F, YE J, ZENG J, ZHANG Y H, KANG Y L, GUO X, WEI W H, YANG J, PU Y Y, ZNEG C W, LIU H X. Study on adaptation and introduction possibility of winter rapeseed to dry and cold areas in Northwest China. Scientia Agricultura Sinica, 2007,40(12):2716-2726. (in Chinese)
[13] 王栓全, 刘冬梅. 甘蓝型油菜北移的栽培技术. 作物杂志, 1995(1):20-21.
WANG S Q, LIU D M. Cultivation techniques of northward migration ofBrassica napus L. Crops, 1995(1):20-21. (in Chinese)
[14] 王拴全, 刘冬梅. 渭北旱原甘蓝型油菜北移的实践与认识. 干旱地区农业研究, 1994(3):74-78.
WANG S Q, LIU D M. Practice and understanding of northward Movement ofBrassica napus in Weibei Dryland. Agricultural Research in the Arid Areas, 1994(3):74-78. (in Chinese)
[15] 黄继英. 甘蓝型冬油菜北移可行性初探. 中国油料, 1992(4):43-46.
HUANG J Y. A preliminary study on the feasibility of northward migration ofBrassica napus L. Oil Crops of China, 1992(4):43-46. (in Chinese)
[16] 侯献飞, 孙万仓, 方彦, 武军艳, 刘自刚, 刘林波, 钱武, 马骊, 陈奇. 甘蓝型冬油菜在西北寒旱区适应性分析. 干旱地区农业研究, 2016,34(06):63-68.
HOU X F, SUN W C, FANG Y, WU J Y, LIU Z G, LIU L B, QIAN W, MA L, CHEN Q. Analysis of adaptability of winter rapeseed (Brassica napus L.) in cold and drought areas of Northwest China. Agricultural Research in the Arid Areas, 2016,34(06):63-68. (in Chinese)
[17] LIU Z G, SUN W C, ZHAO Y N, LI X C, FANG Y, WU J Y, ZENG X C, YANG N N, WANG Y, HE L. Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed. Russian Journal of Plant Physiology, 2016,63(4):451-460.
[18] 陈姣荣, 孙万仓, 方彦, 曾秀存, 武军艳, 李学才, 何丽, 赵彩霞, 史朋辉. 白菜型冬油菜在北方寒旱区的适应性分析. 干旱地区农业研究, 2012,30(6):17-22, 31.
CHEN J R, SUN W C, FANG Y, ZENG X C, WU J Y, LI X C, HE L, ZHAO C X, SHI P H. Analysis of adaptability of Brassica rapa winter rape cultivars in cold and dry regions of North China. Agricultural Research in the Arid Areas, 2012,30(6):17-22, 31. (in Chinese)
[19] 王学芳, 孙万仓, 李孝泽, 武军艳, 刘红霞, 曾潮武, 蒲媛媛, 张朋飞, 张俊杰. 我国北方风蚀区冬油菜抗风蚀效果. 生态学报, 2009,29(12):6572-6577.
WANG X F, SUN W C, LI X Z, WU J Y, LIU H X, ZENG C W, PU Y Y, ZHANG P F, ZHANG J J. Wind erosion-resistance of fields planted with winter rapeseed in the wind erosion region of Northern China. Acta Ecologica Sinica, 2009,29(12):6572-6577. (in Chinese)
[20] 刘海卿, 孙万仓, 刘自刚, 武军艳, 杨建胜, 钱武, 赵艳宁, 刘林波. 北方旱寒区白菜型冬油菜品种抗寒性与适应性分析. 西北农业学报, 2014,23(6):109-117.
LIU H Q, SUN W C, LIU Z G, WU J Y, YANG J S, QIAN W, ZHAO Y N, LIU L B. Analysis of cold hardness adaptability of winter rapeseed (Brassica rapa L.) in the cold and arid regions of Northern China. Acta Agriculturae Boreali-Occidentalis Sinica, 2014,23(6):109-117. (in Chinese)
[21] 孙万仓, 武军艳, 方彦, 刘秦, 杨仁义, 马维国, 李学才, 张俊杰, 张鹏飞, 曹建明, 孙佳. 北方旱寒区北移冬油菜生长发育特性. 作物学报, 2010,36(12):2124-2134.
SUN W C, WU J Y, FANG Y, LIU Q, YANG R Y, MA W G, LI X C, ZHANG J J, ZHANG P F, CAO J M, SUN J. Growth and development characteristics of winter rapeseed northern-extended from the cold and arid regions of China. Acta Agronomica Sinica, 2010,36(12):2124-2134. (in Chinese)
[22] 刘海卿, 孙万仓, 刘自刚, 王治江, 袁金海, 方园, 郭仁迪, 米超, 陈奇. 北方不同生态区白菜型冬油菜农艺性状变化分析. 中国生态农业学报, 2015,23(6):694-704.
LIU H Q, SUN W C, LIU Z G, WANG Z J, YUAN J H, FANG Y, GUO R D, MI C, CHEN Q. Analysis of agronomic traits of winter rapeseed(Brassica campestris L.) in different ecological areas of North China. Chinese Journal of Eco-Agriculture, 2015,23(6):694-704. (in Chinese)
[23] 胡胜武, 于澄宇, 王绥璋, 李红兵, 黄继英. 甘蓝型油菜抗寒性的鉴定及相关性状的研究. 中国油料作物学报, 1999,21(2):3-5.
HU S W, YU C Y, WANG S Z, LI H B, HUANG J Y. Identification of cold resistance and related characters in Brassica napus (Brassica napus L.). Chinese Journal of Oil Crop Sciences, 1999,21(2):3-5. (in Chinese)
[24] 王月, 孙万仓, 刘自刚, 杨宁宁, 方彦, 曾秀存, 孔德晶, 鲁美宏, 王丽萍, 董红业, 杨刚, 侯献飞, 刘林波, 种彦容. 甘蓝型冬油菜在西北不同生态区适应性及生理生化反应. 干旱地区农业研究, 2015,33(4):197-205.
WANG Y, SUN W C, LIU Z G, YANG N N, FANG Y, ZENG X C, KONG D J, LU M H, WANG L P, DONG H Y, YANG G, HOU X F, LIU L B, ZHONG Y R. Adaptation and physiological and biochemical characteristics of winter rapeseed (Brassica napus L.) in different eco-regions of northwest China. Agricultural Research in the Arid Areas, 2015,33(4):197-205. (in Chinese)
[25] 裴国平, 雷建明, 张建学, 张岩. 甘肃省优质甘蓝型冬油菜新品种区域试验分析. 农业科技通讯, 2017(6):143-146.
PEI G P, LEI J M, ZHANG J X, ZHANG Y. Regional test and analysis of new winter rapevarieties of high qualityBrassica napus in Gansu province. Bulletin of Agricultural Science and Technology, 2017(6):143-146. (in Chinese)
[26] 米超, 赵艳宁, 刘自刚, 陈其鲜, 孙万仓, 方彦, 李学才, 武军艳. 白菜型冬油菜RuBisCo蛋白亚基基因rbcL和rbcS的克隆及其在干旱胁迫下的表达. 作物学报, 2018,44(12):1882-1830.
MI C, ZHAO Y N, LIU Z G, CHEN Q X, SUN W C, FANG Y, LI X C, WU J Y. Cloning of RuBisCo subunits genes rbcL and rbcS from winter rapeseed (Brassica rapa) and their expression under drought stress. Acta Agronomica Sinica, 2018,44(12):1882-1830. (in Chinese)
[27] 米超, 赵艳宁, 刘自刚, 孙万仓, 邹娅, 徐明霞. 白菜型冬油菜响应干旱胁迫差异蛋白质组学和HSC70-1基因克隆及表达分析. 中国油料作物学报, 2019,41(2):166-175.
MI C, ZHAO Y N, LIU Z G, SUN W C, ZOU Y, XU M X. Differential proteomics analysis of winter rapeseed (Brassica rapa) under drought and HSC70-1 gene cloning and expression. Chinese Journal of Oil Crop Sciences, 2019,41(2):166-175. (in Chinese)
[28] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄. 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良. 中国粮油学报, 2014,29(6):122-128.
XIONG Q F, ZHANG X M, WEN J, LI X H, FU T D, SHEN J X. Comparation of nutritional values between rapeseed oil and several other edible vegetable oils——discussion of rapeseed quality genetic improvement. Journal the Chinese Cereals and Oils Association, 2014,29(6):122-128. (in Chinese)
[29] 刘自刚, 孙万仓, 杨宁宁, 武军艳, 方彦, 李学才, 曾秀存, 王月. 不同生态条件下白菜型冬油菜性状差异分析. 干旱地区农业研究, 2015,33(4):49-58.
LIU Z G, SUN W C, YANG N N, WU J Y, FANG Y, LI X C, ZENG X C, WANG Y. Variations in quality and agronomic traits of winter rapeseed (Brassica campestris L.) grown in different ecological regions. Agricultural Research in The Arid Areas, 2015,33(4):49-58. (in Chinese)
[30] 徐扬帆, 张秋平, 徐明水, 张振乾. 高含油高油酸油菜新品种‘帆鸣1号’选育及品质分析. 分子植物育种, 2020,18(15):5184-5190.
XU Y F, ZHANG Q P, XU M S, ZHANG Z Q. The breeding and quality analysis of a new rape variety fanming 1 with high oil content and oleic acid content. Molecular Plant Breeding, 2020,18(15):5184-5190. (in Chinese)
[31] LIU Z G, DONG X Y, MA L, SUN W C, YANG G, FANG Y, WU J Y, LI X C. Separation and identification of Brassica rapa BrAFP and its gene cloning and expression under freezing stress. Plant Breeding, 2019,138(2):193-201.
[32] 周冬梅, 张仁陟, 孙万仓, 张军, 王鹤龄. 北方旱寒区冬油菜种植气候适宜性研究. 中国农业科学, 2014,47(13):2541-2551.
ZHOU D M, ZAHNG R S, SUN W C, ZHANG J, WANG H L. Study on climatic suitability for winter rapeseed planting in arid and cold regions in North China. Scientia Agricultura Sinica, 2014,47(13):2541-2551. (in Chinese)
[33] 刘自刚, 袁金海, 孙万仓, 曾秀存, 方彦, 王志江, 武军艳, 方园, 李学才, 米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析. 作物学报, 2016,42(10):1541-1550.
LIU Z G, YUAN J H, SUN W C, ZENG X C, FANG Y, WANG Z J, WU J Y, FANG Y, LI X C, MI C. Differential proteomic analysis and photosynthetic characteristics of winter rapeseed under low temperature stress. Acta Agronomica Sinica, 2016,42(10):1541-1550. (in Chinese)
[34] 刘自刚, 孙万仓, 方彦, 李学才, 杨宁宁, 武军艳, 曾秀存, 王月. 夜间低温对白菜型冬油菜光合机构的影响, 中国农业科学, 2015,48(4):672-682.
LIU Z G, SUN W C, FANG Y, LI X C, YANG N N, WU J Y, ZENG X C, WANG Y. Effects of low nocturnal temperature on photosynthetic apparatus of winter rapeseed (Brassica campestris L.). Scientia Agricultura Sinica, 2015,48(4):672-682. (in Chinese)
[35] 罗斌, 赵卫国, 李保军, 朱彦涛, 王灏. 我国白菜型冬油菜与甘蓝型冬油菜抗寒性研究进展. 陕西农业科学, 2017,63(9):80-83.
LUO B, ZHAO W G, LI B J, ZHU Y T, WANG H. Research progress on cold resistance of Brassica campestris and Brassica napus in China. Shaanxi Journal of Agricultural Sciences, 2017,63(9):80-83. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!