Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 3900-3914.doi: 10.3864/j.issn.0578-1752.2020.19.005

• SPECIAL FOCUS: HIGH SOLAR AND HEAT RESOURCES EFFICIENCY OF WHEAT-MAIZE CROPPING SYSTEM • Previous Articles     Next Articles

Analysis on Limiting Factors of Efficient Utilization of Winter Wheat and Summer Maize Farmland Resources

LIU XiaoYu(),ZHANG DouDou,JIAO JinYu,CHEN GuoQing(),LI Yong   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2020-05-14 Accepted:2020-08-17 Online:2020-10-01 Published:2020-10-19
  • Contact: GuoQing CHEN E-mail:291827396@qq.com;gqchen@sdau.edu.cn

Abstract:

【Objective】With the decrease of cultivated land area, the increase of population and the rapid development of social economy, increasing crop yield per unit area is an important way to improve the total grain yield and ensure the food security in China. It is of great significance to explore the way of high efficiency and limiting factors to improve the unit yield. 【Method】 In this study, winter wheat and summer maize were taken as the research objects. In four ecological regions of Shandong province (eastern Shandong, central Shandong, northwestern Shandong and southwestern Shandong), the simulation model and other methods were employed to study yield under different climate and cultivation management conditions in 2008-2017, to put forward quantitative evaluation indicators, to analyze and clarify the main limiting factors affecting resource utilization and yield.【Result】(1) In the growth season of winter wheat in the eastern Shandong, the influencing rates of light and temperature resource, variety, cultivation pattern, water resource and nitrogen resource were 16.96%, 20.68%, 1.39%, 60.97% and 0, respectively, those in central Shandong were 37.72%, 20.16%, 1.57%, 40.55% and 0, and those in northwestern Shandong were 17.90%, 19.11%, 1.20%, 61.79%, 0, respectively; Those in southwestern Shandong were 33.65%, 23.80%, 1.65%, 40.90% and 0 respectively. (2) In the growth season of summer maize in the eastern Shandong, the influencing rates of light and temperature resource, variety, cultivation mode, water resource and nitrogen resource were 49.11%, 9.07%, 10.64%, 31.18% and 0, respectively; In central Shandong, the influence rates of each limiting factor were 56.62%, 10.86%, 11.65%, 20.87% and 0, respectively; In northwestern Shandong, the influence rates of each factor were 43.01%, 18.95% 11.26%, 26.78% and 0; Those in southwestern Shandong were 64.42%, 5.44%, 15.84%, 14.30% and 0, respectively. 【Conclusion】 In the winter wheat growing season, the farmland resources in the eastern and northwestern Shandong were mainly limited by water resource, followed by light and temperature resource and variety, and the cultivation mode and nitrogen resource had little influence. In the central and southwestern Shandong, it was mainly affected by light and temperature resource and water resources, followed by the variety factors. The growth season of maize in the four regions was influenced by light and temperature resource, followed by water resource, and less by varieties and cultivation patterns.

Key words: winter wheat, summer maize, resource utilization, yield, limiting factors

Fig. 1

Study area"

Table 1

Climatic conditions of winter wheat and summer maize seasons in four ecological regions"

生长季
Growth season
参数
Parameter
鲁东
ES
鲁中
CS
鲁西北
NS
鲁西南
SS
冬小麦季
Winter wheat season
太阳辐射Solar radiation (MJ·m-2) 3362.75 3141.43 3387.37 3136.13
平均温度Average temperature (℃) 7.92 8.91 7.77 8.73
降水量Precipitation (mm) 182.32 193.05 127.56 190.86
夏玉米季
Summer maize season
太阳辐射Solar radiation (MJ·m-2) 2389.75 2083.91 2340.37 2113.68
平均温度Average temperature (℃) 24.47 25.12 24.70 24.90
降水量Precipitation (mm) 462.01 463.10 453.65 491.45

Table 2

The value of each parameter in the calculation of photosynthetic potential productivity"

生长季 Growth season ε ψ Ω α β ρ γ ω η ζ q s
冬小麦季 Winter wheat season 0.224 0.49 0.85 0.10 0.07 0.10 0.05 0.33 0.14 0.08 17.58 0.40
夏玉米季 Summer maize season 0.224 0.49 1.00 0.08 0.06 0.10 0.01 0.30 0.15 0.08 17.20 0.40

Fig. 2

Comparison between simulated and measured value of biomass for winter wheat, summer maize and annual"

Fig. 3

Comparison between simulated and measured value of yield for winter wheat, summer maize and annual"

Table 3

GDD, yield and light-temperature potential productivity and matching coefficient of winter wheat and summer maize in suitable growth period in each ecological region"

生态区
Ecological region
适宜生育期内有效积温
GDD
(℃·d)
适宜生育期获得产量
Available yield
(kg·hm-2)
光温生产潜力
Light-temperature potential productivity (kg·hm-2)
匹配系数
Matching coefficient
冬小麦季
Wheat season
鲁东ES 2289.22 9845.51 11172.61 0.8812
鲁中CS 2377.91 8369.21 11792.80 0.7097
鲁西北NS 2191.03 9692.29 11310.78 0.8569
鲁西南SS 2239.41 8419.19 11375.36 0.7401
夏玉米季
Maize season
鲁东ES 2697.94 11531.90 21039.04 0.5481
鲁中CS 2740.21 10616.70 18997.41 0.5589
鲁西北NS 2802.96 11441.68 20836.07 0.5491
鲁西南SS 2724.02 10848.45 19031.06 0.5701

Table 4

Variety parameter setting of crop"

品种参数
Variety parameter
冬小麦Winter wheat 夏玉米Summer maize
春化敏感性参数
Vern_sens
光周期敏感性参数
Photop_sens
出苗-拔节积温
tt_emerg_to_endjuv (℃·d)
开花-成熟积温
tt_flower_to_maturity (℃·d)
处理1 Level1 0.3 (VS1) 0.3 (PS1) 200 (EE1) 600 (FM1)
处理2 Level2 0.7 (VS2) 0.7 (PS2) 215 (EE2) 650 (FM2)
处理3 Level3 1.1 (VS3) 1.1 (PS3) 225 (EE3) 700 (FM3)
处理4 Level4 1.5 (VS4) 1.5 (PS4) 245 (EE4) 750 (FM4)
处理5 Level5 1.9 (VS5) 1.9 (PS5) 250 (EE5) 800 (FM5)
处理6 Level6 2.3 (VS6) 2.3 (PS6) 255 (EE6) 850 (FM6)
处理7 Level7 2.7 (VS7) 2.7 (PS7) 265 (EE7) 900 (FM7)
处理8 Level8 3.1 (VS8) 3.1 (PS8) 275 (EE8) 950 (FM8)
处理9 Level9 3.5 (VS9) 3.5 (PS9) 285 (EE9) 1000 (FM9)
处理10 Level10 3.9 (VS10) 3.9 (PS10) 300 (EE10) 1050 (FM10)
处理11 Level11 4.3 (VS11) 4.3 (PS11) 325 (EE11) 1100 (FM11)
处理12 Level12 4.7 (VS12) 4.7 (PS12) 350 (EE12) 1150 (FM12)
处理13 Level13 5.0 (VS13) 5.0 (PS13) 375 (EE13) 1200 (FM13)
处理14 Level14 400 (EE14) 1250 (FM14)

Fig. 4

The gap between the yield of winter wheat from different varieties and the yield of standard varieties Yield gap = yield available by different combinations of Vern_sens and Photop_sens - yield available by standard varieties. (a), (b), (c), (d) represent ES, CS, NS, SS, respectively"

Fig. 5

The gap between the yield of summer maize from different varieties and the yield of standard varieties Yield gap = yield available by different combinations of tt_emerg_to_endjuv and tt_flower_to_maturity - yield available by standard varieties. (a), (b), (c), (d) represent ES, CS, NS, SS, respectively"

Table 5

The optimum variety parameters combination, yield and matching coefficient of winter wheat and summer maize in each ecological region"

作物Crop 参数Parameter 鲁东ES 鲁中CS 鲁西北NS 鲁西南SS
冬小麦
Winter wheat
春化敏感性系数 Vern_sens 3.5 4.3 3.1 4.3
光周期敏感性系数 Photop_sens 3.5 3.9 3.9 3.9
产量 Yield (kg·hm-2) 10298.38 9508.68 10344.53 9999.54
匹配系数 Matching coefficient 0.8552 0.8449 0.8473 0.8162
夏玉米
Summer maize
出苗至拔节期积温tt_emerg_to_endjuv (℃·d) 200 200 200 255
开花至成熟积温 tt_flower_to_maturity (℃·d) 1150 1200 1250 1100
产量 Yield (kg·hm-2) 12582.62 11598.12 14279.07 11256.58
匹配系数 Matching coefficient 0.9165 0.9154 0.8013 0.9637

Table 6

Available yield and matching coefficient under the optimum sowing density in each ecological region"

生态区
Ecological region
冬小麦Winter wheat 夏玉米Summer maize
可获得产量
Available yield (kg·hm-2)
匹配系数
Matching coefficient
可获得产量
Available yield (kg·hm-2)
匹配系数
Matching coefficient
鲁东ES 10049.86 0.9903 11531.94 0.9021
鲁中CS 8471.68 0.9879 10616.74 0.9092
鲁西北NS 9825.92 0.9904 11441.68 0.8820
鲁西南SS 8527.92 0.9873 10848.51 0.8943

Table 7

Water use efficiency of winter wheat season in each ecological region of Shandong province"

生态区
Ecological region
参数
Parameter
生育阶段Growth stage
播种—拔节
Sowing-jointing stage
拔节—开花
Jointing-flowering stage
开花—成熟
Flowering-maturing stage
鲁东ES 降水量P (mm)
需水量ET (mm)
水资源利用系数WI
89.5
255.2
24.5
184.3
0.5730
69.0
269.4
鲁中CS 降水量P (mm)
需水量ET (mm)
水资源利用系数WI
86.2
216.9
23.8
156.7
0.6880
83.0
229.0
鲁西北NS 降水量P (mm)
需水量ET (mm)
水资源利用系数WI
56.2
251.2
16.8
181.4
0.5062
55.0
265.2
鲁西南SS 降水量P (mm)
需水量ET (mm)
水资源利用系数WI
90.9
218.2
30.1
157.6
0.6841
69.0
230.3

Table 8

Water use efficiency of summer maize season in each ecological region of Shandong province"

生态区
Ecological region
参数
Parameter
生育阶段Growth stage
播种—拔节
Sowing-jointing stage
拔节—吐丝
Jointing-silking stage
吐丝—成熟
Silking-maturing stage
鲁东ES 降水量P (mm)
需水量ET (mm)
117.0
125.0
145.0
264.0
200.0
305.8
水资源利用系数WI 0.7131
鲁中CS 降水量P (mm)
需水量ET (mm)
161.0
116.0
108.0
245.0
194.0
283.8
水资源利用系数WI 0.8374
鲁西北NS 降水量P (mm)
需水量ET (mm)
137.0
127.0
113.0
268.0
204.0
310.2
水资源利用系数WI 0.7193
鲁西南SS 降水量P (mm)
需水量ET (mm)
198.0
120.0
107.0
253.0
188.0
293.3
水资源利用系数WI 0.9046

Table 9

Nutrient use efficiency of wheat and maize season in each ecological region of Shandong province"

生态区 Ecological region 参数 Parameter 冬小麦季 Winter wheat season 夏玉米季 Summer maize season
鲁东ES 土壤氮含量N0 (mg·kg-1) 78.0
作物需氮量NC (kg·hm-2) 305.2 288.3
养分资源利用系数FI 1 1
鲁中CS 土壤氮含量N0 (mg·kg-1) 91.7
作物需氮量NC (kg·hm-2) 259.4 265.4
养分资源利用系数FI 1 1
鲁西北NS 土壤氮含量N0 (mg·kg-1) 81.0
作物需氮量NC (kg·hm-2) 300.5 286.0
养分资源利用系数FI 1 1
鲁西南SS 土壤氮含量N0(mg·kg-1 90.2
作物需氮量NC (kg·hm-2) 261.0 271.2
养分资源利用系数FI 1 1

Fig. 6

The limiting rate of various factors affecting the utilization of light and temperature resources in the growing wheat and maize season in different ecological areas of Shandong province"

[1] RAY D K, RAMANKUTTY N, MUELLER N D, WEST P C, FOLEY J A. Recent patterns of crop yield growth and stagnation. Nature Communications, 2012, 3: 1293.
doi: 10.1038/ncomms2296 pmid: 23250423
[2] 陈印军, 易小燕, 方琳娜, 杨瑞珍. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016, 49(6): 1117-1131.
doi: 10.3864/j.issn.0578-1752.2016.06.008
CHEN Y J, YI X Y, FANG L N, YANG R Z. Analysis of cultivated land and grain production potential in China. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.06.008
[3] 李克南, 杨晓光, 刘园, 荀欣, 刘志娟, 王静, 吕硕, 王恩利. 华北地区冬小麦产量潜力分布特征及其影响因素. 作物学报, 2012, 38(8): 1483-1493.
doi: 10.3724/SP.J.1006.2012.01483
LI K N, YANG X G, LIU Y, XUN X, LIU Z J, WANG J, LÜ S, WANG E L. Distribution characteristics of winter wheat yield and its influenced factors in North China. Acta Agronomica Sinica, 2012, 38(8): 1483-1493. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01483
[4] 李克南. 华北地区冬小麦-夏玉米作物生产体系产量差特征解析[D]. 北京: 中国农业大学, 2014.
LI K N. Yield gap analysis focused on winter wheat and summer maize rotation in the North China Plain[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[5] BAI H Z, TAO F L, XIAO D P, LIU F S, ZHANG H. Attribution of yield change for rice-wheat rotation system in China to climate cultivars and agronomic management in the past three decades. Climatic Change, 2016, 135(3/4): 539-553.
doi: 10.1007/s10584-015-1579-8
[6] KIRKRGAARD J A, HUNT J R. Increasing productivity by matching farming system management and genotype in water-limited environments. Journal of Experimental Botany, 2010, 61(15): 4129-4143.
pmid: 20709725
[7] XIAO D, TAO F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. European Journal of Agronomy, 2014, 52: 112-122.
doi: 10.1016/j.eja.2013.09.020
[8] AHRENS T D, LOBELL D B, ORTIZ-MONASTERIO J L, LI Y, MATSON P A. Narrowing the agronomic yield gap with improved nitrogen use efficiency: A modeling approach. Ecological Applications, 2010, 20(1): 91-100.
doi: 10.1890/08-0611.1 pmid: 20349832
[9] LICKER R, JOHNSTON M, FOLEY J A, BARFORD C, KUCHARIK C J, MONFREDA C, RAMANHUTTY N. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world?. Global Ecology and Biogeography, 2010, 19(6): 769-782.
doi: 10.1111/geb.2010.19.issue-6
[10] NEUMANN K, VERBURG P H, STEHFEST E, MULLER C. The yield gap of global grain production: A spatial analysis. Agricultural Systems, 2010, 103(5): 316-326.
doi: 10.1016/j.agsy.2010.02.004
[11] MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013, 143(1): 91-97.
doi: 10.1016/j.fcr.2012.09.023
[12] LIU Z J, Yang X G, LIN X M, HUBBARD K G, LV S, WANG J. Narrowing the agronomic yield gaps of maize by improved soil, cultivar, and agricultural management practices in different climate zones of Northeast China. Earth Interactions, 2016, 20(12): 1-18.
[13] TANAKA A, SAITO K, AZOMA K, KOBAYASHI K. Factors affecting variation in farm yields of irrigated lowland rice in southern-central Benin. European Journal of Agronomy, 2013, 44: 46-53.
doi: 10.1016/j.eja.2012.08.002
[14] ZHANG W F, CAO G X, LI X L, ZHANG H Y, WANG C, LIU Q Q, CHEN X P, CUI Z L, SHEN J B, JIANG R F, MI G H, MIAO Y X, ZHANG F S, DOU Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537: 671-674.
doi: 10.1038/nature19368 pmid: 27602513
[15] CHEN G F, CAO H Z, LIANG J, MA W Q, GUO L F, ZHANG S H, JIANG R F, ZHANG H Y, KEITH W T G, ZHANG F S. Factors affecting nitrogen use efficiency and grain yield of summer maize on smallholder farms in the North China Plain. Sustainability, 2018, 10(2): 363.
doi: 10.3390/su10020363
[16] 肖登攀, 陶福禄 . 过去 30年气候变化对华北平原冬小麦物候的影响研究. 中国生态农业学报, 2012, 20(11): 1539-1545.
XIAO D P, TAO F L. Impact of climate change in 1981-2009 on winter wheat phenology in the North China Plain. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1539-1545. (in Chinese)
[17] SUN H Y, ZHANG X Y, WANG E L, CHEN S Y, SHAO L W, QIN W L. Assessing the contribution of weather and management to the annual yield variation of summer maize using APSIM in the North China Plain. Field Crops Research, 2016, 194: 94-102.
doi: 10.1016/j.fcr.2016.05.007
[18] WANG J, WANG E L, YIN H, FENG L P, ZHANG J P. Declining yield potential and shrinking yield gaps of maize in the North China Plain. Agricultural & Forest Meteorology, 2014, 195/196: 89-101.
[19] LI K N, YANG X G, LIU Z J, ZHANG T Y, LU S, LIU Y. Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy, 2014, 59: 1-12.
doi: 10.1016/j.eja.2014.04.007
[20] WANG J, WANG E L, FENG L P, YIN H, YU W D. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Research, 2013, 144(6): 135-144.
doi: 10.1016/j.fcr.2012.12.020
[21] XIAO D P, TAO F L. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009. International Journal of Biometeorology, 2015, 67(2): 1-12.
[22] XIAO D P, QI Y Q, SHEN Y J, TAO F L, MOIWO J, LIU J F, REMDE W, ZHANG H, LIU F S. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theoretical & Applied Climatology, 2015, 124(3/4): 1-9.
[23] LI K N, YANG X G, TIAN H Q, PAN S F, LIU Z J, LU S. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. International Journal of Biometeorology, 2015, 60(1): 1-12.
pmid: 26156832
[24] ZHANG Y, FENG L P, WANG E L, WANG J, LI B G. Evaluation of the APSIM-Wheat model in terms of different cultivars, management regimes and environmental conditions. Canadian Journal of Plant Science, 2012, 92(5): 937-949.
doi: 10.4141/CJPS2011-266
[25] SUN H Y, ZHANG X Y, WANG E L, CHEN S Y, SHAO L W. Quantifying the impact of irrigation on groundwater reserve and crop production - A case study in the North China Plain. European Journal of Agronomy, 2015, 70: 48-56.
doi: 10.1016/j.eja.2015.07.001
[26] OORT P A J V, WANG G, VOS J, MEINKE H, LI B G, HUANG J K, Werf W. Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain. Agricultural Water Management, 2016, 165: 131-140.
doi: 10.1016/j.agwat.2015.11.005
[27] 赵彦茜, 齐永青, 朱骥, 肖登攀, 安塞, 陈睿. APSIM模型的研究进展及其在中国的应用. 中国农学通报, 2017, 33(18): 1-6.
ZHAO Y X, QI Y Q, ZHU J, XIAO D P, AN S, CHEN R. Research progress of APSIM model and its application in China. Chinese Agricultural Science Bulletin, 2017, 33(18): 1-6. (in Chinese)
[28] 廉丽姝, 李志富, 李梅, 李庆, 李长军. 山东省主要粮食作物气候生产潜力时空变化特征. 气象科技, 2012, 40(6): 1030-1038.
LIAN L S, LI Z F, LI M, LI Q, LI C J. Spatial-temporal variation characteristics of climatic potential productivity for grain crops in Shandong province. Meteorological Science and Technology, 2012, 40(6): 1030-1038. (in Chinese)
[29] 于振文. 作物栽培学各论. 北京: 中国农业出版社, 2013: 58-59, 119-121.
YU Z W. On Crop Cultivation. Beijing: China Agricultural Press, 2013: 58-59, 119-121. (in Chinese)
[30] LIU Y, HOU P, XIE R, LI S, ZHANG H, MING B, MA D, LIANG S. Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sience, 2013, 53(4): 1693-1703.
[31] 黄玲, 高阳, 邱新强, 李新强, 申孝军, 孙景生, 巩文军, 段爱旺. 灌水量和时期对不同品种冬小麦产量和耗水特性的影响. 农业工程学报, 2013, 29(14): 99-108.
HUANG L, GAO Y, QIU X Q, LI X Q, SHEN X J, SUN J S, GONG W J, DUAN A W. Effects of irrigation amount and stage on yield and water consumption of different winter wheat cultivars. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 99-108. (in Chinese)
[32] XU C L, TAO H B, TIAN B J, GAO Y B, REN J H, WANG P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Research, 2016, 196: 268-275.
doi: 10.1016/j.fcr.2016.07.009
[33] 赵鑫, 任伟, 王云奇, 晋鹏宇, 陶洪斌, 王璞. 冬小麦灌水模式和农艺措施对夏玉米土壤含水量及水分利用效率的影响. 水土保持学报, 2014, 28(2): 100-104, 111.
ZHAO X, REN W, WANG Y Q, JIN P Y, TAO H B, WANG P. Impact of irrigation modes of winter wheat season and agronomy managements on soil water content and WUE of summer maize. Journal of Soil and Water Conservation, 2014, 28(2): 100-104, 111. (in Chinese)
[34] CHEN C Q, LEI C X, DENG A X, QIAN C R, HOOGMOED W, ZHANG W J. Will higher minimum temperatures increases corn production in Northeast China? An analysis of historical data over 1965-2008. Agricultural and Forest Meteorology, 2011, 151(12): 1580-1588.
doi: 10.1016/j.agrformet.2011.06.013
[35] LIU Y E, XIE R Z, HOU P, LI S K, ZHANG H B, MING B, LONG H L, LIANG S M. Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Research, 2013, 144: 192-199.
doi: 10.1016/j.fcr.2013.01.003
[36] 胡实, 莫兴国, 林忠辉. 气候变化对黄淮海平原冬小麦产量和耗水量的影响及品种适应性评估. 应用生态学报, 2015, 26(4): 1153-1161.
pmid: 26259458
HU S, MO X G, LIN Z H. Evaluating the response of yield and evapotranspiration of winter wheat and the adaptation by adjusting crop variety to climate change in Huang-Huai-Hai Plain. Chinese Journal of Applied Ecology, 2015, 26(4): 1153-1161. (in Chinese)
pmid: 26259458
[37] 刘建刚. 黄淮海农作区冬小麦-夏玉米产量差及其限制因素解析[D]. 北京: 中国农业大学, 2015.
LIU J G. Yield gap of winter wheat and summer maize and limiting factors in Huang-Huai-Hai farming region[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[38] 周宝元. 黄淮海冬小麦-夏玉米资源优化配置及其节水高产技术模式研究[D]. 北京: 中国农业科学院, 2017.
Zhou B Y. Study on optimizing resource distribution of winter wheat-summer maize and its water saving and high yield cropping system[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!