Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 3915-3927.doi: 10.3864/j.issn.0578-1752.2020.19.006

• SPECIAL FOCUS: HIGH SOLAR AND HEAT RESOURCES EFFICIENCY OF WHEAT-MAIZE CROPPING SYSTEM • Previous Articles     Next Articles

Effects of Line-Spacing Expansion and Row-Spacing Shrinkage on Population Structure and Yield of Summer Maize

DING XiangPeng(),BAI Jing,ZHANG ChunYu,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin()   

  1. College of Agronomy, Shandong Agricultural Univercity/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2020-05-11 Accepted:2020-07-13 Online:2020-10-01 Published:2020-10-19
  • Contact: Bin ZHAO E-mail:1751592368@qq.com;zhaobin@sdau.edu.cn

Abstract:

【Objective】 The aim of this study was to explore the regulatory effects of expanding and shrinking cultivation models under different densities on the yield and population structure of Huang-Huai-Hai summer maize. 【Method】 The high yield maize variety Zhengdan958 was used as experimental material, three kinds of row spacing treatments, such as 60 cm (B1), 80 cm (B2), and 100 cm (B3), and two planting densities of 67 500 plants/hm2and 82 500 plants/hm2, were used to form different cultivation patterns through split zone design in 2018 and 2019. 【Result】 Compared with D1 density, D2 density could significantly increase the population leaf area and photosynthetic potential, improve the light energy utilization of the population, increase the dry matter accumulation of the population, and promote the increase of yield. Under the condition of different planting density, the effect of expansion and shrinkage on population structure was different. Under the density of 67 500 plants/hm2, the effect of expansion and shrinkage on the yield was not significant. Under the density of 82 500 plants/hm2, B2 treatment increased the yield by increasing the number of grains per row and 1000-grain weight, which was 9.45% and 11.48% higher than that of B1 and B3 treatments, respectively. B2 treatment significantly increased the population leaf area index (LAI), delayed the senescence of the middle and lower leaves, increased the photosynthetic potential of the population after anthesis, increased the angle between stems and leaves, and decreased the leaf orientation value. The light transmittance of leaf layer and bottom layer in panicle position increased significantly, the extinction coefficient decreased, the dry matter accumulation increased after anthesis, and the dry matter transfer decreased after anthesis. The results showed that under the condition of high density, the equal row spacing model of 80 cm expansion was beneficial to build an efficient photosynthetic population structure, delay leaf senescence, improve the photosynthetic performance of the population, increase the production and accumulation of dry matter of the population, and thus increase the yield. 【Conclusion】 The high-yield cultivation of summer maize in Huang-Huai-Hai Plain can achieve efficient utilization of light energy and synergistic increase in yield by increasing planting density and appropriate expansion and shrinking of plants. Under the experimental conditions, a planting pattern of 82 500 plants/hm2 with a density of 80 cm is recommended.

Key words: expanding and shrinking plant, planting density, canopy structure, summer maize, yield

Table 1

Effects of line-spacing expansion and row-spacing shrinkage on yield and components of summer maize"

年份
Year
密度
Density
行距
Row space
穗长
Ear length (cm)
秃顶长
Bald tip length
(cm)
穗行数
Number of
lines per ear
行粒数
Number of
kernels per line
穗粒数
Spike grain number
千粒重
Weight of 1000-kernels (g)
产量
Yield
(t·hm-2)
2018 D1 B1 17.18a 0.13c 15.42a 33.86a 522.12a 316.28a 10.89c
B2 17.22a 0.06f 15.53a 33.44a 519.32a 318.47a 10.79c
B3 17.27a 0.11e 15.56a 32.62bc 507.57ab 315.72ab 10.56c
平均值Average 17.22 0.10 15.50a 33.31 516.34 316.82 10.75
D2 B1 16.95a 0.17b 15.24a 31.56c 480.97bc 309.08bc 11.99b
B2 16.95a 0.10d 15.36a 33.25ab 510.72a 314.92ab 13.07a
B3 16.84a 0.23a 15.17a 31.23c 473.76c 304.75c 11.66b
平均值 Average 16.91 0.17 15.26a 32.01 488.48 309.58 12.24
2019 D1 B1 16.84ab 0.23d 15.71a 34.02a 534.45a 312.24ab 10.99c
B2 17.04ab 0.28c 15.77a 34.57a 545.17a 315.18a 11.16c
B3 17.58a 0.16e 15.69a 33.92a 532.20a 314.40ab 11.02c
平均值 Average 17.15 0.22 15.72a 34.17 537.28 313.94 11.06
D2 B1 16.59b 0.48a 15.61a 31.95b 498.76b 305.04c 12.41b
B2 16.85ab 0.30b 15.67a 34.42a 539.34a 310.00abc 13.63a
B3 16.71ab 0.31b 15.72a 31.22b 490.78b 308.20bc 12.33b
平均值 Average 16.68 0.36 15.67a 32.53 509.63 307.75 12.79
变异来源Sources of
variation
年份 Year (Y) NS ** NS * ** NS **
密度 Density (D) * ** NS ** ** * **
行距 Race space (R) NS ** NS ** ** * **
年份×密度 Y×D NS ** NS NS NS NS NS
年份×行距 Y×R NS ** NS NS NS NS NS
密度×行距 D×R NS ** NS ** * NS **
年份×密度×行距
Y×D×R
NS ** NS NS NS NS NS

Fig. 1

Effects of line-spacing expansion and row-spacing shrinkage on LAI of summer maize V12: Trumpeting stage; R1: Silking stage; R3: Milking stage; R6: Maturity stage. The same as below"

Table 2

Effects of line-spacing expansion and row-spacing shrinkage on leaf area index of each layer of summer maize"

年份
Year
密度
Density
行距
Row space
棒三叶以上Above three-ear leaves 棒三叶Three-ear leaves 棒三叶以下Under three-ear leaves
吐丝期Silking 乳熟期Milking 吐丝期Silking 乳熟期Milking 吐丝期Silking 乳熟期Milking
2018 D1 B1 1.30b 1.22d 1.45c 1.42d 2.59d 2.24d
B2 1.33b 1.26cd 1.48c 1.38de 2.76c 2.36c
B3 1.33b 1.27c 1.39d 1.34e 2.47e 2.26d
平均值Average 1.32 1.25 1.44 1.38 2.61 2.29
D2 B1 1.52a 1.48a 1.74b 1.72b 3.15a 2.48b
B2 1.48a 1.41b 1.81a 1.77a 3.22a 2.74a
B3 1.49a 1.40b 1.70b 1.65c 2.97b 2.66a
平均值Average 1.50 1.43 1.75 1.71 3.11 2.63
2019 D1 B1 1.41bc 1.33c 1.72b 1.70c 2.23d 1.71d
B2 1.42bc 1.32cd 1.73b 1.71c 2.31d 1.73d
B3 1.39c 1.28d 1.70b 1.67c 2.23d 1.71d
平均值Average 1.41 1.31 1.72 1.69 2.26 1.72
D2 B1 1.49a 1.39b 1.88b 1.85b 2.71c 2.02c
B2 1.46ab 1.44a 1.94a 1.92a 2.85a 2.31a
B3 1.45ab 1.40ab 1.89b 1.88ab 2.77b 2.19b
平均值Average 1.47 1.41 1.90 1.88 2.78 2.17
变异来源
Sources of
variation
年份 Year (Y) ** * ** ** ** **
密度 Density (D) ** ** ** ** ** **
行距 Race space (R) NS NS ** ** ** **
年份×密度Y×D ** ** ** ** NS **
年份×行距Y×R NS NS NS * ** NS
密度×行距D×R NS NS NS * NS **
年份×密度×行距
Y×D×R
NS ** NS NS NS NS

Table 3

Effects of line-spacing expansion and row-spacing shrinkage on LAD of summer maize population"

年份
Year
密度
Density
行距
Row space
吐丝前光合势
LAD in pre-anthesis (m2·d·m-2)
吐丝后光合势
LAD in post-anthesis (m2·d·m-2)
总LAD
Total LAD (m2·d·m-2)
VE-V12 V12-R1 Total R1-R3 R3-R6 Total
2018 D1 B1 65.76b 93.38c 159.14b 148.37cd 118.62c 267.00c 426.14c
B2 67.63b 95.51c 163.15b 151.39c 118.37c 269.75c 432.90c
B3 67.09b 92.50c 159.59b 145.64d 117.31c 262.95c 422.54c
平均值Average 66.83 93.80 160.63 148.47 118.10 266.57 427.20
D2 B1 80.75a 113.06ab 193.81a 175.40ab 131.51b 306.91b 500.73b
B2 81.64a 114.54a 196.18a 180.30a 140.68a 320.98a 517.16a
B3 80.61a 110.50b 191.11a 172.45b 134.11b 306.57b 497.68b
平均值Average 81.00 112.70 193.70 176.05 135.44 311.49 505.19
2019 D1 B1 83.33c 104.09b 187.42b 141.36c 118.04d 259.40c 446.82c
B2 83.18c 105.02b 188.21b 143.05c 117.43d 260.07c 448.28c
B3 81.75c 102.77b 184.52b 139.79c 117.06d 256.85c 441.36c
平均值Average 82.75 103.96 186.72 141.40 117.04 258.44 445.16
D2 B1 93.80b 117.69a 211.50a 164.48b 127.13c 291.61b 503.11b
B2 95.64ab 120.44a 216.08a 172.78a 137.22a 309.99a 526.07a
B3 97.06a 119.06a 216.12a 166.70b 131.63b 298.33b 514.45ab
平均值Average 95.50 119.06 214.57 167.99 131.99 299.98 514.54
变异来源
Sources of
variation
年份 Year (Y) ** ** ** ** ** ** **
密度 Density (D) ** ** ** ** ** ** **
行距 Race space (R) NS ** NS ** ** ** **
年份×密度Y×D NS ** ** NS NS NS NS
年份×行距Y×R NS NS NS NS NS NS NS
密度×行距D×R NS NS NS NS ** ** NS
年份×密度×行距
Y×D×R
* NS NS NS NS NS NS

Table 4

Effects of line-spacing expansion and row-spacing shrinkage on plant morphological characteristics of summer maize"

年份
Year
密度
Density
行距
Row space
株高
Plant height (cm)
穗位高
Ear height (cm)
穗位系数
Ear ratio (%)
茎秆横截面积
Stalk area (cm2)
茎叶夹角
Leaf angle (°)
叶向值
LOV
2018 D1 B1 247.00a 122.50a 49.60a 4.36a 24.33bc 61.79bc
B2 248.75a 121.25a 48.74a 4.45a 25.64b 59.50c
B3 251.25a 122.50a 48.76a 4.31a 27.64a 56.22d
平均值Average 249.00 122.08 49.03 4.37 25.87 59.17
D2 B1 252.67a 127.50a 50.46a 3.32c 21.23d 66.36a
B2 252.25a 124.23a 49.25a 3.59b 23.91c 62.94b
B3 254.17a 124.62a 49.03a 3.46bc 25.50b 60.32bc
平均值Average 253.03 125.78 49.71 3.46 23.55 63.21
2019 D1 B1 253.89a 118.50c 46.67a 4.79a 24.35bc 60.91b
B2 256.75a 121.20bc 47.21a 4.64a 25.66b 56.93c
B3 252.60a 116.80c 46.24a 4.75a 27.65a 55.25c
平均值Average 254.41 118.83 46.71 4.73 25.89 57.70
D2 B1 257.75a 128.13a 49.71a 3.66c 21.22d 64.96a
B2 259.29a 125.83ab 48.53a 3.99b 23.93c 62.30ab
B3 265.10a 127.90a 48.25a 4.05b 25.51b 60.35b
平均值Average 260.71 127.29 48.82 3.90 23.55 62.54
变异来源
Sources of
variation
年份 Year (Y) * NS ** ** NS NS
密度 Density (D) NS ** NS ** ** **
行距 Race space (R) NS NS NS * ** **
年份×密度Y×D NS NS NS NS NS NS
年份×行距Y×R NS NS NS NS NS NS
密度×行距D×R NS NS NS ** NS NS
年份×密度×行距
Y×D×R
NS NS NS NS NS NS

Table 5

Effects of line-spacing expansion and row-spacing shrinkage on light transmittance and extinction coefficient of summer maize"

年份
Year
密度
Density
行距
Row space
透光率 (%) 消光系数
Extinction coefficient equation
吐丝期 Silking 乳熟期 Milking
穗位层Ear layer 底层Bottom 穗位层Ear layer 底层Bottom 吐丝期Silking 乳熟期Milking
2018 D1 B1 25.19d 9.61c 25.94d 11.38c 0.44c 0.43b
B2 26.34c 14.94b 27.22c 17.19b 0.35e 0.35d
B3 36.69 a 20.83a 37.09a 22.46a 0.30f 0.31e
平均值Average 29.41 15.13 30.08 17.34 0.36 0.36
D2 B1 15.45f 3.19f 16.46f 5.92f 0.54a 0.50a
B2 19.31e 4.92e 20.22e 6.82e 0.46b 0.45b
B3 29.32b 8.64d 31.23b 10.76d 0.40d 0.39c
平均值Average 21.36 5.58 22.64 7.83 0.47 0.45
2019 D1 B1 23.19d 8.35c 24.39d 12.84c 0.46c 0.43c
B2 25.22c 16.03b 25.93c 18.03b 0.34e 0.36d
B3 33.93a 18.01a 35.05a 21.37a 0.32f 0.33e
平均值Average 27.45 14.13 28.46 17.41 0.37 0.37
D2 B1 14.45f 3.01f 17.23f 5.46f 0.58a 0.55a
B2 19.49e 4.56e 20.62e 6.22e 0.49b 0.49b
B3 27.75b 7.83d 29.92b 9.05d 0.42d 0.44c
平均值Average 20.56 5.13 22.59 6.91 0.50 0.49
变异来源
Sources of
variation
年份 Year (Y) ** * ** NS ** **
密度 Density (D) ** ** ** ** ** **
行距 Race space (R) ** ** ** ** ** **
年份×密度Y×D ** ** ** ** ** **
年份×行距Y×R ** ** ** ** ** **
密度×行距D×R ** ** ** ** ** **
年份×密度×行距
Y×D×R
NS ** NS NS NS NS

Table 6

Effects of line-spacing expansion and row-spacing shrinkage on dry matter accumulation and transport of summer maize"

年份
Year
密度
Density
行距
Row space
吐丝期干物质
积累量 DMAS
(t·hm-2)
成熟期干物质积累量DMAM
(t·hm-2)
花后干物质积累量DMAAS
(t·hm-2)
花后干物质转运量TADM
(t·hm-2)
花后干物质转运对
籽粒的贡献率
CGDMT (%)
2018 D1 B1 10.91b 18.67cd 7.75b 1.75b 18.42c
B2 10.94b 18.62d 7.68b 1.72b 18.25c
B3 10.92b 18.58d 7.66b 1.76b 18.64c
平均值Average 10.92 18.62 7.70 1.74 18.44
D2 B1 11.39a 19.27bc 7.88b 2.72a 31.32a
B2 11.72a 19.99a 8.28a 2.65a 29.64b
B3 11.60a 19.40ab 7.81b 2.69a 31.31a
平均值Average 11.57 19.56 7.99 2.68 30.76
2019 D1 B1 10.46c 18.07c 7.61c 1.98d 20.64c
B2 10.58c 18.25c 7.67c 2.03d 20.91c
B3 10.50c 18.12c 7.62c 1.98d 20.61c
平均值Average 10.51 18.15 7.63 2.00 20.72
D2 B1 11.47ab 19.60b 8.13b 2.69a 30.40a
B2 11.73a 20.25a 8.53a 2.59b 28.50b
B3 11.22b 19.38b 8.15b 2.42c 28.00b
平均值Average 11.47 19.74 8.27 2.57 28.97
变异来源
Sources of
variation
年份 Year (Y) ** NS NS ** NS
密度 Density (D) ** ** ** ** **
行距 Race space (R) NS * ** ** **
年份×密度Y×D * * ** ** **
年份×行距Y×R NS NS NS ** **
密度×行距D×R NS NS ** ** **
年份×密度×行距
Y×D×R
NS NS NS * *
[1] XUE J, XIE R Z, ZHANG W F, WANG K R, HOU P, MING B, GOU L, LI S K. Research progress on reduced lodging of high yield and density maize. Journal of Integrative Agriculture, 2017, 16(12): 2717-2725.
doi: 10.1016/S2095-3119(17)61785-4
[2] TILMAN D, BALZER C, HILL J, BEFFORT B L. From the cover: Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260.
pmid: 22106295
[3] YANG H S, DOBERMANN A, LINDQUIST J L, WALTEB D T, ARKEBAUER T J, CASSMAN K G. Hybrid-maize-A maize simulation model that combines two crop modeling approaches. Field Crops Research, 2004, 87(2/3): 131-154.
doi: 10.1016/j.fcr.2003.10.003
[4] MANDIC V, BIJELIC Z, KRNJAJA V, TOMIC Z, CARO-PETROVIC V. The effect of crop density on maize grain yield. Biotechnology in Animal Husbandry, 2016, 32(1): 83-90.
doi: 10.2298/BAH1601083M
[5] LIU G Z, HOU P, XIE R Z, MING B, WANG K R, XU W J, LIU W M, YANG Y S, LI S K. Canopy characteristics of high-yield maize with yield potential of 22.5 t·ha-1. Field Crops Research, 2017, 213: 221-230.
doi: 10.1016/j.fcr.2017.08.011
[6] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38(1): 80-85.
doi: 10.3724/SP.J.1006.2012.00080
CHEN G P, GAO J L, ZHAO M, DONG S T, LI S K, YANG Q F, LIU Y H, WANG L C, XUE J Q, LIU J G, LI C H, WANG Y H, WANG Y D, SONG H X, ZHAO J R. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agronomica Sinica, 2012, 38(1): 80-85. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00080
[7] 卫丽, 熊友才, 马超, 张慧琴, 邵阳, 李朴芳, 程正国, 王同朝. 不同群体结构夏玉米灌浆期光合特征和产量变化. 生态学报, 2011, 31(9): 2524-2531.
WEI L, XIONG Y C, MA C, ZHANG H Q, SHAO Y, LI P F, CHENG Z G, WANG T Z. Photosynthetic characterization and yield of summer corn (Zea mays L.) during grain filling stage under different planting pattern and population densities. Acta Ecologica Sinica, 2011, 31(9): 2524-2531. (in Chinese)
[8] 高英波, 陶洪斌, 黄收兵, 田北京, 王丽君, 李芸, 任建宏, 王璞. 密植和行距配置对夏玉米群体光分布及光合特性的影响. 中国农业大学学报, 2015, 20(6): 9-15.
GAO Y B, TAO H B, HUANG S B, TIAN B J, WANG L J, LI Y, REN J H, WANG P. Effects of high planting density and row spacing on canopy light distribution and photosynthetic characteristics of summer maize. Journal of China Agricultural University, 2015, 20(6): 9-15. (in Chinese)
[9] GONG F P, WU X L, ZHANG H Y, CHEN Y H, WANG W. Making better maize plants for sustainable grain production in a changing climate. Frontiers in Plant Science, 2015, 6: 835.
pmid: 26500671
[10] YANG Y S, XU W J, HOU P, LIU G Z, LIU W M, WANG Y H, ZHAO R L, MING B, XIE R Z, WANG K R, LI S K. Improving maize grain yield by matching maize growth and solar radiation. Scientific Reports, 2019, 9(1): 3635.
doi: 10.1038/s41598-019-40081-z pmid: 30842514
[11] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017, 50(11): 1960-1972.
doi: 10.3864/j.issn.0578-1752.2017.11.002
MING B, XIE R Z, HOU P, LI L L, WANG K R, LI S K. Changes of maize planting density in China. Scientia Agricultura Sinica, 2017, 50(11): 1960-1972. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.002
[12] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3): 447-455.
doi: 10.3724/SP.J.1006.2008.00447
LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomical Sinica, 2008, 34(3): 447-455. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00447
[13] SONG Q F, ZHANG G L, ZHU X G. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2-A theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 2013, 40(2): 109-124.
doi: 10.1071/FP12056
[14] HUANG S B, GAO Y B, LI Y B, XU L N, TAO H B, WANG P. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop Journal , 2017, 5(1): 52-62.
doi: 10.1016/j.cj.2016.06.018
[15] WEI S S, WANG X Y, JIANG D, DONG S T. Physiological and proteome studies of maize ( Zea mays L.) in response to leaf removal under high plant density. BMC Plant Biology, 2018, 18: 378.
pmid: 30594144
[16] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36(7), 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
YANG J S, GAO H Y, LIU P, LI G, DONG S T, ZHANG J W, WANG J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agronomica Sinica, 2010, 36(7): 1226-1233. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01226
[17] 梁熠, 齐华, 王敬亚, 白向历, 王晓波, 刘明, 孟显华, 许晶. 宽窄行栽培对玉米生长发育及产量的影响. 玉米科学, 2009, 17(4): 97-100.
LIANG Y, QI H, WANG J Y, BAI X L, WANG X B, LIU M, MENG X H, XU J. Effects of growth and yield of maize under wide and narrow row cultivation. Journal of Maize Sciences, 2009, 17(4): 97-100. (in Chinese)
[18] 苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海. 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016, 42(1): 104-112.
doi: 10.3724/SP.J.1006.2016.00104
CHANG J F, ZHANG H H, LI H P, DONG P F, LI C H. Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agronomical Sinica, 2016, 42(1): 104-112. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00104
[19] 刘永忠, 李万星, 曹晋军, 靳鲲鹏. 高密度条件下行距配置对春玉米光合特性及产量的影响. 华北农学报, 2017, 32(3): 111-117.
LIU Y Z, LI W X, CAO J J, JIN K P. Effects of row spacing on photosynthetic characteristics and yield of spring maize under high density. Acta Agriculturae Boreali-Sinica, 2017, 32(3): 111-117. (in Chinese)
[20] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018, 44(3): 414-422.
doi: 10.3724/SP.J.1006.2018.00414
XU T J, LÜ T F, ZHAO J R, WANG R H, CHEN C Y, LIU Y E, LIU X Z, WANG Y D, LIU C G. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agronomica Sinica, 2018, 44(3): 414-422. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00414
[21] 任佰朝, 张吉旺, 董树亭, 赵斌, 刘鹏. 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017, 50(11): 2093-2103.
doi: 10.3864/j.issn.0578-1752.2017.11.015
REN B Z, ZHANG J W, DONG S T, ZHAO B, LIU P. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2017, 50(11): 2093-2103. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.015
[22] TESTA G, REYNERI A, BLANDINO M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. European Journal of Agronomy, 2016, 72: 28-37.
doi: 10.1016/j.eja.2015.09.006
[23] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉. 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011, 44(21): 4367-4376.
doi: 10.3864/j.issn.0578-1752.2011.21.005
ZHANG Y Q, YANG H S, GAO J L, ZHANG R F, WANG Z G, XU S J, FAN X Y, YANG S H. Study on canopy structure and physiological characteristics of super-high yield spring maize. Scientia Agricultura Sinica, 2011, 44(21): 4367-4376. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.21.005
[24] 王洪章, 刘鹏, 董树亭, 张吉旺, 赵斌, 任佰朝. 夏玉米产量与光温生产效率差异分析——以山东省为例. 中国农业科学, 2019, 52(8): 1355-1367.
doi: 10.3864/j.issn.0578-1752.2019.08.006
WANG H Z, LIU P, DONG S T, ZHANG J W, ZHAO B, REN B Z. Analysis of gap between yield and radiation production efficiency and temperature production efficiency in summer maize-Taking Shandong province as an example. Scientia Agricultura Sinica, 2019, 52(8): 1355-1367. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.08.006
[25] 刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. 作物学报, 2011, 37(7): 1301-1307.
doi: 10.3724/SP.J.1006.2011.01301
LIU W, ZHANG J W, LÜ P, YANG J S, LIU P, DONG S T, LI D H, SUN Q Q. Effect of plant density on grain yield dry matter accumulation and partitioning in summer maize cultivar Denghai 661. Acta Agronomica Sinica, 2011, 37(7): 1301-1307. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01301
[26] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630.
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)
[27] MOHAMMADI G R, GHOBADI M E, SHEIKHEHPOOR S. Phosphate biofertilizer, row spacing and plant density effects on corn yield and weed growth. American Journal of Plant Sciences, 2012, 3: 425-429.
doi: 10.4236/ajps.2012.34051
[28] 魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25(2): 441-450.
pmid: 24830244
WEI S S, WANG X Y, DONG S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chinese Journal of Applied Ecology, 2014, 25(2): 441-450. (in Chinese)
pmid: 24830244
[29] 黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜. 产量15000 kg·ha-1以上夏玉米灌浆期间的光合特性. 中国农业科学, 2007, 40(9): 1898-1906.
HUANG Z X, WANG Y J, WANG K J, LI D H, ZHAO M, LIU J G, DONG S T, WANG H J, WANG J H, YANG J S. Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg·ha-1. Scientia Agricultura Sinica, 2007, 40(9): 1898-1906. (in Chinese)
[30] MA D L, XIE R Z, NIU X K, LI S K, LONG H L, LIU Y E. Changes in the morphological traits of maize genotypes in China between the 1950 and 2000. European Journal of Agronomy, 2014, 58: 1-10.
doi: 10.1016/j.eja.2014.04.001
[31] 张旺锋, 王振林, 余松烈, 李少昆, 曹连莆, 任丽彤. 膜下滴灌对新疆高产棉花群体光合作用、冠层结构和产量形成的影响. 中国农业科学, 2002, 35(6): 632-637.
ZHANG W F, WANG Z L, YU S L, LI S K, CAO L P, REN L T. Effect of under-mulch-drip irrigation on canopy apparent photosynthesis, canopy structure and yield formation in high-yield cotton of Xinjiang. Scientia Agricultura Sinica, 2002, 35(6): 632-637. (in Chinese)
[32] 刘广周. 产量潜力22.5 t hm-2玉米理想株型及群体结构研究[D]. 北京: 中国农业科学院, 2019.
LIU G Z. Research on maize (Zea mays L.) ideotype and canopy structure with yield potential of 22.5 t hm-2[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[33] 徐克章, 武志海, 王珍. 玉米群体冠层内光和CO2分布特性的初步研究. 吉林农业大学学报, 2001, 23(3): 9-12.
XU K Z, WU Z H, WANG Z. The primary study on the distribution character of irradiance and CO2 of maize canopies. Journal of Jilin Agricultural University, 2001, 23(3): 9-12. (in Chinese)
[34] 胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018, 44(6): 920-930.
doi: 10.3724/SP.J.1006.2018.00920
HU D D, ZHANG J W, LIU P, ZHAO B, DONG S T. Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agronomica Sinica, 2018, 44(6): 920-930. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00920
[35] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45(12): 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019, 45(12): 1868-1879. (in Chinese)
doi: 10.3724/SP.J.1006.2019.93011
[36] 杨克军, 萧常亮, 李明, 李振华. 栽培方式与群体结构对玉米生长发育及产量的影响. 黑龙江八一农垦大学学报, 2005, 17(4), 9-12.
YANG K J, XIAO C L, LI M, LI Z H. Study on the influence of cultivation methods and community construction to growth and yield of corn. Journal of Heilongjiang Bayi Agricultural University, 2005, 17(4): 9-12. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!