Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3587-3596.doi: 10.3864/j.issn.0578-1752.2020.17.015

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Residue Behavior and Dietary Intake Risk Assessment of Imidaclothiz in Pakchoi (Brassica chinensis L.)

LI XiaoBei(),ZHAO XiaoYan(),LI JianYing,CHEN Lei,ZHOU ChangYan,HE XiangWei   

  1. Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403
  • Received:2019-12-17 Accepted:2020-03-11 Online:2020-09-01 Published:2020-09-11
  • Contact: XiaoYan ZHAO E-mail:lixiaobei212@sina.com;cindy8119@163.com

Abstract:

【Objective】The objective of the experiment was to reveal the residue behavior of imidaclothiz in pakchoi (Brassica chinensis L.), so as to provide a scientific basis for its safety utilization.【Method】Field experiments of 10 % imidaclothiz wettable powder in pakchoi under open field and greenhouse conditions were carried out in winter (between November and December) of 2018 and summer (between July and August) of 2019 at Shanghai. In dissipation experiments, the dosage of imidaclothiz was 90 g (a.i.)·hm-2(1.5 times recommended dosage) with one-time spray, and the treated samples were collected randomly from several points of each plot at 2 h, 1, 2, 3, 4, 5, 7, 10, 14, 21, and 30 days after spraying of the pesticide to detect the residual concentration. For the study of final residue of imidaclothiz in pakchoi, imidaclothiz was sprayed for 2-3 times at an internal of 7 days at the recommended dosage (60 g (a.i.)·hm-2) and 1.5 times recommended dosage (90 g (a.i.)·hm-2), and the treated samples were collected randomly at 3, 5, and 7 days after the final processing to detect the residual concentration. The QuEChERS method coupled with ultra-high performance liquid chromatography-tandem mass spectrum (UPLC-MS/MS) was used to determine imidaclothiz in pakchoi. Dietary intake risk assessments were processed based on the maximal concentration, acceptable daily intake (ADI) of imidaclothiz, and daily consumption of pakchoi. The people involved in the experiment were divided into 8 classes, including underage male and female (subdivided into 3-6 years old infants and 7- 19 years old teenagers), as well as adult male and female (subdivided into 20-59 years old adults and 60-69 years old elder crowed).【Result】The limit of detection (LOD) of imidaclothiz was 0.0002 mg·kg-1, and the limit of quantitation (LOQ) was 0.01 mg·kg-1. Recoveries of imidaclothiz in pakchoi ranged from 77.2% to 87.9% at 0.01, 0.10 and 1.0 mg·kg-1spiked levels, respectively, and the relative standard deviations (RSDs) were in the range of 2.5%-3.0%. The developed analytical method was suitable for the determination of imidaclothiz in pakchoi. Field experiments showed that the dissipation dynamics of imidaclothiz sprayed at the dosage of 90 g (a.i.)·hm-2in pakchoi exhibited a first-order kinetic decline. The regression equation of imidaclothiz in winter greenhouse, summer greenhouse and summer open fields were C=0.8476e-0.158t, C=1.6558e-0.212t and C=4.3069e-1.197t, and their half-lives were 4.39, 3.27 and 0.58 days, respectively. Both existing time and plant conditions had significant correlation with degradation efficiency of imidaclothiz in pakchoi (P<0.05). The maximal concentrations of imidaclothiz in pakchoi under winter greenhouse were all below 0.5 mg·kg-1 at 7 days after the final processing, when it was sprayed for 2-3 times at an internal of 7 days at the dosage of 60 or 90 g (a.i.)·hm-2 in pakchoi, while it just required 3 days to decline below 0.5 mg·kg-1 for those treated in summer in the same place, regardless of greenhouse and open fields. The final residue concentrations had positive correlation with spraying dosage, but no relationship with spraying number (P>0.05). The risk assessments showed that hazard quotients (HQs) of imidaclothiz for different groups consuming pakchoi were far below 1, and the maximum HQ was 0.2196.【Conclusion】Imidaclothiz was a kind of easily degradable pesticide, and its degradation rate was significantly higher in summer than winter, as well as higher in open fields than greenhouse. The dietary exposure of imidaclothiz only by pakchoi’s consumption was at a relatively low level to the ordinary resident of China. Generally, it’s effective to use imidaclothiz as the pest control method for pakchoi, accompanied with recommended dosage (45-60 g (a.i.)·hm-2) and appropriate pre- harvest intervals (7 days in winter and 3 days in summer).

Key words: pakchoi, imidaclothiz, residue, greenhouse, open field, risk assessment

Table 1

Procedure of gradient elution"

时间
Time (min)
流速
Flow velocity (mL·min-1)
流动相 Mobile phase
V甲醇
Methyl alcohol (%)
V 0.1%甲酸水
0.1% Formic acid in water (%)
0.0 0.35 30 70
1.0 0.35 30 70
2.5 0.35 90 10
3.0 0.35 30 70
4.0 0.35 30 70

Table 2

Mass spectrum parameters of imidaclothiz"

农药名称
Pesticide
保留时间
Retention time (min)
定量离子对
Quantitative ions (m·z-1)
定性离子对
Qualitative ion (m·z-1)
碰撞电压
Collision pressure (V)
碰撞能量
Collision energy (eV)
氯噻啉
Imidaclothiz
2.12 262.2/181.1 262.2/181.1 100 20
28
262.2/122.1 100

Table 3

Body weight of the subpopulation and dietary intake of pakchoi"

人群类别
Subpopulation
平均体重
Body weight (kg)
调研人群数量
Number of investigated groups
小白菜日均摄入量
Daily intake of pakchoi (kg·d-1)
蔬菜日均摄入量
Daily intake of vegetable (kg·d-1)
3—6岁男性Male age 3-6 19.6 50 0.066 0.266
3—6岁女性Female age 3-6 18.7 43 0.061 0.213
7—19岁男性Male age 7-19 48.9 365 0.071 0.294
7—19岁女性Female age 7-19 43.5 360 0.074 0.299
20—59岁男性Male age 20-59 70.3 646 0.074 0.279
20—59岁女性Female age 20-59 57.8 722 0.069 0.263
60—69岁男性Male age 60-69 67.1 132 0.062 0.252
60—69岁女性Female age 60-69 59.5 135 0.063 0.247

Table 4

Recovery, limit of detection (LOD) and limit of quantitation (LOQ) (n=5) under different fortified concentrations"

添加浓度
Fortified concentration
(mg·kg-1)
回收率Recovery rate (%) 相对标准偏差
RSD
(%)
检出限
LOD
(mg·kg-1)
定量限
LOQ
(mg·kg-1)
1 2 3 4 5 平均值
Mean
0.01 84.0 86.8 80.0 86.8 82.0 83.9 3.0 0.0002 0.01
0.10 82.9 81.2 83.5 80.2 77.2 81.0 2.5
1.00 87.9 86.0 82.2 82.3 82.8 84.2 2.6

Fig. 1

Residue dynamics of imidaclothiz in pakchoi under different planting environments"

Table 5

Regression equation and relevant parameters of degradation dynamics of imidaclothiz in pakchoi"

试验条件
Experimental condition
消解动态方程
Linear equation of degradation dynamics
相关系数
R2
半衰期
T1/2 (d)
大棚/冬 Greenhouse in winter C=0.8476e-0.158t 0.8504 4.39
大棚/夏 Greenhouse in summer C=1.6558e-0.212t 0.9739 3.27
露地/夏 Open fields in summer C=4.3069e-1.197t 0.9553 0.58

Table 6

Tests of between-subject effects for degradation dynamics of imidaclothiz"


Source
III型平方和
Type III sum of square
自由度
df
均方
Mean square
F检验
F
显著性
Significance
校正模型 Corrected model 49.36a 12 4.113 95.21 0.000
截距 Intercept 29.83 1 29.83 690.4 0.000
种植条件 Plant conditions 1.196 2 0.5980 13.84 0.000
时间 Time 48.16 10 4.816 111.5 0.000
误差 Error 3.716 86 0.0430
总计 Total 82.90 99
校正的总计 Corrected total 53.08 98

Table 7

Final residue of imidaclothiz in pakchoi"

施药剂量
Application concentration
(g (a.i.)· hm-2)
施药次数
Application no.
采收距末次施药间隔时间
Days after the last
treatment (d)
氯噻啉残留量Residue (mg·kg-1)
大棚(冬季)
Greenhouse in winter
大棚(夏季)
Greenhouse in summer
露地(夏季)
Open fields in summer
60 2 3 0.849±0.293 0.188±0.042 0.203±0.073
5 0.416±0.101 0.082±0.028 0.050±0.016
7 0.276±0.056 0.046±0.006 0.011±0.002
3 3 0.621±0.188 0.166±0.039 0.199±0.064
5 0.468±0.076 0.087±0.025 0.045±0.012
7 0.206±0.040 0.046±0.002 0.026±0.009
90 2 3 1.166±0.352 0.248±0.035 0.246±0.043
5 0.893±0.439 0.147±0.060 0.084±0.013
7 0.476±0.149 0.112±0.004 0.027±0.002
3 3 1.103±0.467 0.226±0.036 0.264±0.017
5 0.824±0.254 0.128±0.034 0.084±0.032
7 0.489±0.227 0.113±0.041 0.024±0.006

Table 8

Tests of between- subject effects for degradation dynamics of imidaclothiz"


Source
III 型平方和
Type III sum of square
自由度df 均方
Mean square
F检验
F
显著性
Significance
校正模型 Corrected model 12.19a 6 2.031 87.23 0.000
截距 Intercept 11.69 1 11.69 502.2 0.000
种植条件 Plant conditions 9.566 2 4.783 205.4 0.000
施药浓度 Spraying dosage 0.480 1 0.480 20.60 0.000
施药次数 Spraying number 0.00001 1 0.00001 0.000 0.983
采收间隔期 Pre-harvest interval 2.141 2 1.070 45.98 0.000
误差 Error 2.352 101 0.023
总计 Total 26.23 108
校正的总计 Corrected total 14.54 107

Table 9

Dietary exposure and hazard quotient of imidaclothiz in pakchoi"

人群类别
Subpopulation
估计暴露量EED (mg·kg-1·bw-1·d-1) 风险商RQ
3 d 5 d 7 d 3 d 5 d 7 d
3—6岁男性 Male age 3-6 0.0055 0.0037 0.0025 0.2196 0.1492 0.0994
3—6岁女性 Female age 3-6 0.0053 0.0036 0.0024 0.2139 0.1454 0.0968
7—19岁男性 Male age 7-19 0.0024 0.0016 0.0011 0.0944 0.0642 0.0427
7—19岁女性 Female age 7-19 0.0028 0.0019 0.0013 0.1111 0.0755 0.0503
20—59岁男性 Male age 20-59 0.0017 0.0012 0.0008 0.0683 0.0464 0.0309
20—59岁女性 Female age 20-59 0.0019 0.0013 0.0009 0.0777 0.0528 0.0352
60—69岁男性 Male age 60-69 0.0015 0.0010 0.0007 0.0603 0.0410 0.0273
60—69岁女性 Female age 60-69 0.0017 0.0012 0.0008 0.0696 0.0473 0.0315
[1] 李敏, 赵会君, 屈欢, 雷茜. 新烟碱类杀虫剂潜在环境风险及光降解行为研究进展. 农药, 2019,58(3):170-173.
LI M, ZHAO H J, QU H, LEI Q. Research progress on potential environmental risks and photodegradation of neonicotinoids insecticides. Agrochemicals, 2019,58(3):170-173. (in Chinese)
[2] DAI Y J, JI W W, CHEN T, ZHANG W J, LIU Z H, GE F, YUAN S D. Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast rhodotorulamucilaginosa strain IM-2. Journal of Agricultural and Food Chemistry, 2010,58(4):2419-2425.
doi: 10.1021/jf903787s pmid: 20112912
[3] 陈燕玲. 中国自主创制的农药品种及登记情况. 现代农药, 2017,16(3):1-9.
CHEN Y L. China's innovative pesticides and their registration. Modern Agrochemicals, 2017,16(3):1-9. (in Chinese)
[4] 中国农药信息网. 行业数据. (2019.11.25) [2019.11.25] http://www. chinapesticide.org.cn/hysj/index.jhtml.
China Pesticides Information Network. Industry Data. (2019.11.25) [2019.11.25] http://www.chinapesticide.org.cn/hysj/index.jhtml. (in Chinese)
[5] LI J Y, ZHANG S F, WU C C, LI C, WANG HY, WANG W, LI Z, YE Q F. Stereoselective degradation and transformation products of a novel chiral insecticide, paichongding, in flooded paddy soil. Journal of Agricultural and Food Chemistry, 2016,64(40):7423-7430.
doi: 10.1021/acs.jafc.6b02787 pmid: 27660850
[6] 肖昱. 茶树叶片农药残留化谢平台优化及氯噻啉降解的初步研究[D]. 合肥: 安徽农业科学院, 2015.
XIAO Y. Optimize of the platform for pesticide residues on tea leaves and preliminary research on degradation of imidaclothiz[D]. Hefei: Anhui Academy of Agricultural Sciences, 2015. (in Chinese)
[7] SIMON-DELSO N, AMARAL-ROGERS V, BELZUNCES L P, BONMATIN J M, CHAGNON M, DOWNS C, FURLAN L, GIBBONS D W, GIORIO C, GIROLAMI V, GOULSON D, KREUTZWEISER D P, KRUPKE C H, LIESS M, LONG E, MCFIELD M, MINEAU P, MITCHELL E, MORRISSEY C, NOOME D, PISA L, SETTELE J, STARK J, TAPPARO A, VAN DYCK H, VAN PRAAGH J, VAN DER SLUIJS J, WHITEHORN P, WIEMERS M. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 2015,22(1):5-34.
doi: 10.1007/s11356-014-3470-y pmid: 25233913
[8] GIORIO C, SAFER A, SÁNCHEZ-BAYO F, TAPPARO A, LENTOLA A, GIROLAMI V, LEXMOND W B, BONMATIN J M. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: New molecules, metabolism, fate, and transport. Environmental Science and Pollution Research, 2017. doi: 10.1007/S11356-017-0394-3.
doi: 10.1007/s11356-020-10655-w pmid: 32895796
[9] 戴宝江. 新颖杀虫剂—氯噻啉. 世界农药, 2005(6):46-47.
DAI B J. A new insecticide-imidaclothiz. World Pesticides, 2005(6):46-47. (in Chinese)
[10] 孙占刚. 上海新型蔬菜营销模式的调研与发展对策. 中国蔬菜, 2018(11):12-17.
SUN Z G. Investigation and development strategies of the novel marketing model for vegetables in Shanghai.. China Vegetables, 2018(11):12-17. (in Chinese)
[11] 上海蔬菜食用菌协会. 上海地产蔬菜2019年7月产销月报. (2019.7.31) [2019.9.4] https://www.shsjx.org/10622.
Vegetables and Edible Fungi Society of Shanghai and CBU-Autostats of local vegetables in shanghai in July 2019. (2019.7.31) [2019.9.4] https://www.shsjx.org/10622.(in Chinese)
[12] 王敏权. 夏季青菜栽培与病虫害防治技术. 上海蔬菜, 2017(2):23-24.
WANG M Q. Techniques of cultivation and insect control forBrassica chinensis growing in summer. Shanghai Vegetables, 2017(2):23-24. (in Chinese)
[13] 杜颖. 叶菜类蔬菜主要病虫害防治技术. 现代农业科技, 2017(6):140-142.
DU Y. Techniques of pest control for leaf vegetable. Modern Agricultural Science and Technology, 2017(6):140-142. (in Chinese)
[14] 李义强, 曹爱华, 任广伟, 孙惠青, 徐金丽, 郑晓, 徐光军, 周显升, 龚道新. 氯噻啉对烟蚜的防治效果和烟叶中农药残留规律研究. 中国烟草学报, 2010,16(4):63-66.
LI Y Q, CAO A H, REN G W, SUN H Q, XU J L, ZHENG X, XU G J, ZHOU X S, GONG D X. The control effect of imidaclothiz against Myzuspersicae and its residue in tobacco leaf. Acta Tabacaria Sinica, 2010,16(4):63-66. (in Chinese)
[15] 贺敏, 贾春虹, 朱晓丹, 赵尔成, 陈莉, 余平中. 40%氯噻啉水分散粒剂在稻田环境中的残留动态. 农药, 2010,49(1):50-52.
HE M, JIA C H, ZHU X D, ZHAO E C, CHEN L, YU P Z. Residue dynamics of imidaclothiz 40% WG in rice. Agrochemicals, 2010,49(1):50-52. (in Chinese)
[16] 徐燕, 徐茜, 余鸿燕. 10%氯噻啉可湿性粉剂防治萝卜蚜虫田间药效试验. 广西农业科学, 2007(3):282-284.
XU Y, XU Q, YU H Y. Effect of 10% imidaclothiz WP on controlling radish aphid in field trial. Guangxi Agricultural Sciences, 2007(3):282-284. (in Chinese)
[17] 吴明. 新烟碱类杀虫剂氯噻啉环境行为研究[D]. 上海: 上海交通大学, 2010.
WU M. Study on nicotinoid imidaclothiz’s behaviors in environments[D]. Shanghai: Shanghai Jiaotong University, 2010. (in Chinese)
[18] WU M, CAI J G, YAO J Y, DAI B J, LU Y T. Study of imidaclothiz residues in cabbage and soil by HPLC with UV detection. Bulletin of Environmental Contamination & Toxicology, 2010,84(3):289-293.
doi: 10.1007/s00128-010-9941-z pmid: 20111945
[19] 黄兰淇, 马琳, 占绣萍, 陈建波, 赵莉. 露地和大棚条件下噻虫嗪和啶虫脒在青菜中的残留及消解动态. 农药, 2018,57(1):42-45.
HUANG L Q, MA L, ZHAN X P, CHEN J B, ZHAO L. Residue and decline study of thiamethoxam and acetamiprid in pakchoi under open field and greenhouse conditions. Agrochemicals, 2018,57(1):42-45. (in Chinese)
[20] 刘腾飞, 杨代凤, 钱辉, 陆皓茜, 董明辉. 氯氰菊酯在露地和大棚小白菜上的残留动态研究. 中国农学通报, 2015,31(11):200-204.
LIU T F, YANG D F, QIAN H, LU H Q, DONG M H. Residue dynamics of cypermethrin in pakchoi under open field and greenhouse conditions. Chinese Agricultural Science Bulletin, 2015,31(11):200-204. (in Chinese)
[21] 郑坤明, 陈劲星, 陈冬花, 林瑶, 张钰萍, 苏建峰, 胡德禹. 吡蚜酮在大棚和露地芥蓝上的残留消解动态. 农药, 2019,58(8):598-600.
ZHENG K M, CHEN J X, CHEN D H, LIN Y, ZHANG Y P, SU J F, HU D Y. Residue and dissipation of pymetrozine in Chinese kale under open field and greenhouse conditions. Agrochemicals, 2019,58(8):598-600. (in Chinese)
[22] NY/T 788-2004: 农药残留试验准则 北京: 中国农业出版社, 2004.
NY/T 788- 2004: Guideline on pesticide residue trials. Beijing: China Standards Press, 2004. (in Chinese)
[23] 钱永忠, 李耘. 农产品质量安全风险评估-原理、方法和应用. 北京: 中国标准出版社, 2007.
QIAN Y Z, LI Y. Risk Assessment for Quality Andsafety of Agro- Foods: Principles, Methodologies and Applications. Foods: Principles, Methodologies and Applications. Beijing: Standards Press of China, 2007. (in Chinese)
[24] 国家体育总局. 2014年国民体质监测公报. (2015.11.25) [2019.9.4] http://www.sport.gov.cn/n315/n329/c216784/content.html.
General Administration of Sport of China. Bulletin of fitness and health monitoring of Chinese citizen in 2014. (2015.11.25) [2019.9.4] http://www.sport.gov.cn/n315/n329/c216784/content.html.(in Chinese)
[25] GB2763-2019: 食品安全国家标准食品中农药最大残留限量. 北京: 中国农业出版社, 2019.
GB2763-2019. National food safety standard- Maximum residue limits for pesticides in food. Beijing: China Standards Press, 2019. (in Chinese)
[26] EU SANTE/11945/2015. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. Directorate- Genaral for Health and Food Safety, European Union, 2015.
[27] 马畅. 土壤和水环境中氯噻啉的降解行为和降解产物研究[D]. 北京: 中国农业科学院, 2019.
MA C. The degradation behaviors and products of imidaclothiz in soil and water[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[28] 宋稳成, 龚勇. 农药安全间隔期及其管理研究. 农产品质量与安全, 2013(5):5-8.
SONG W C, GONG Y. Research and management of pre-harvest interval of pesticides. Quality and Safety of Agro-Products, 2013(5):5-8. (in Chinese)
[29] 韩丽君, 潘灿平, 钱传范. 最高残留限量和安全间隔期的计算方法(欧盟). 世界农药, 2005(3):37-41, 36.
HAN L J, PAN C P, QIAN C F. Calculation method of maximum residue limit and pre-harvest interval (European Union). World Pesticides, 2005(3):37-41, 36. (in Chinese)
[30] 孔令娟, 张峻, 陈珏, 周晓晨, 张瑞明, 李恒松. 上海地区耐热青菜的生产和优势品种推荐. 长江蔬菜, 2017(23):15-17.
KONG L J, ZHANG J, CHEN Y, ZHOU X C, ZHANG R M, LI H S. Production and recommendation of dominant variety for heat resistant pakchoi in Shanghai. Changjiang Vegetables, 2017(23):15-17. (in Chinese)
[31] 冯正娣, 林付根, 蔡长庚. Q型烟粉虱在叶类蔬菜上的发生特点与防治技术. 安徽农学通报, 2008,14(19):179-181.
FENG Z D, LIN F G, CAI C G. Occurrence characters and control technology of bemisia tabaci (Q) in leaf vegetables. Anhui Agricultural Science Bulletin, 2008,14(19):179-181. (in Chinese)
[32] Joint Meeting of Pesticide Residues. Inventory of evaluations performed by the Joint Meeting on Pesticide Residues (JMPR). (2019.11.25) [2019.11.25] http://apps.who.int/pesticide-residues-jmpr-database/Home/ Range/G-I.
[1] WANG YuTai,XU ZhiFan,LIU Jie,ZHONG GuoHua. Preparation and Application of Indoxacarb Degrading Bacteria Immobilized Sodium Alginate Microspheres [J]. Scientia Agricultura Sinica, 2022, 55(5): 920-931.
[2] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[3] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[4] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[5] ZHANG JinRui,REN SiYang,DAI JiZhao,DING Fan,XIAO MouLiang,LIU XueJun,YAN ChangRong,GE TiDa,WANG JingKuan,LIU Qin,WANG Kai,ZHANG FuSuo. Influence of Plastic Film on Agricultural Production and Its Pollution Control [J]. Scientia Agricultura Sinica, 2022, 55(20): 3983-3996.
[6] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[7] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[8] LiYuan ZHANG,JinDong LÜ,XinYue SHI,Na YU,HongTao ZOU,YuLing ZHANG,YuLong ZHANG. Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil [J]. Scientia Agricultura Sinica, 2021, 54(5): 992-1002.
[9] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[10] HUANG Ming,WU JinZhi,LI YouJun,FU GuoZhan,ZHAO KaiNan,ZHANG ZhenWang,YANG ZhongShuai,HOU YuanQuan. Effects of Tillage Practices and Nitrogen Fertilizer Application Rates on Grain Yield, Protein Content in Winter Wheat and Soil Nitrate Residue in Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219.
[11] ZHANG Qiao,WANG Ke. The Uncertainty of Agricultural Yield Risk Assessment and Agricultural Insurance Pricing: Literature Review and Wayforward [J]. Scientia Agricultura Sinica, 2021, 54(22): 4778-4786.
[12] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[13] MA Yue,TIAN Yi,YUAN AiJing,WANG HaoLin,LI YongHua,HUANG TingMiao,HUANG Ning,LI Chao,DANG HaiYan,QIU WeiHong,HE Gang,WANG ZhaoHui,SHI Mei. Response of Wheat Yield and Protein Concentration to Soil Nitrate in Northern Wheat Production Region of China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3903-3918.
[14] ZHANG GuiFen,ZHANG YiBo,LIU WanXue,ZHANG Fan,XIAN XiaoQing,WAN FangHao,FENG XiaoDong,ZHAO JingNa,LIU Hui,LIU WanCai,ZHANG XiaoMing,LI QingHong,WANG ShuMing. Effect of Trap Color and Position on the Trapping Efficacy of Tuta absoluta [J]. Scientia Agricultura Sinica, 2021, 54(11): 2343-2354.
[15] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!