Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3903-3918.doi: 10.3864/j.issn.0578-1752.2021.18.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Wheat Yield and Protein Concentration to Soil Nitrate in Northern Wheat Production Region of China

MA Yue1(),TIAN Yi1,YUAN AiJing1,WANG HaoLin1,LI YongHua1,HUANG TingMiao1,HUANG Ning1,LI Chao1,DANG HaiYan1,QIU WeiHong1,HE Gang1,WANG ZhaoHui1,2(),SHI Mei1()   

  1. 1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2020-09-30 Accepted:2020-12-17 Online:2021-09-16 Published:2021-09-26
  • Contact: ZhaoHui WANG,Mei SHI E-mail:381495288@qq.com;w-zhaohui@263.net;meishi@nwafu.edu.cn

Abstract:

【Objective】The changes of wheat grain yield and protein concentration caused by reduced nitrogen (N) fertilizer at different soil nitrate N residue levels were clarified, for the purpose of N fertilizer reduction and soil residual nitrate N decline in northern wheat production region of China.【Method】In our research, 43-site field experiments from 2018 to 2019 were conducted in northern wheat region of China, to investigate the effects of reduced N fertilizer on grain yield, protein concentration, yield components, and N uptake and utilization of wheat at different soil nitrate N residue levels. 【Result】The results showed that the recommended fertilizer application based on soil nitrate test (RF) could reduce N rates by 55 kg·hm-2, correspond 26% of farmers’ fertilizer application (FF). Compared with the FF, the grain yield (5 885 kg·hm-2) of RF was increased by 3.1%, while no significant difference was observed for grain protein concentration between the two treatments. For the minimum of grain yield was found to be 4 252 kg·hm-2 when the soil nitrate N residue was less than 55 kg·hm-2, and the maximum was 7 186 kg·hm-2 at the soil nitrate N residue level of 55-100 kg·hm-2. Higher soil nitrate N residue was not capable to increase the grain yield sustainability. For recommended fertilizer application based on soil nitrate test without N added (RF-N), the grain yield was significantly decreased with the corresponding soil nitrate N residue less than 100 kg·hm-2, while no obvious reduction for grain yield for the RF regardless of nitrate N residue levels in soils. The grain protein concentration reached the highest when the soil nitrate-N residue was higher than 300 kg·hm-2. The grain protein concentration was significantly decreased in RF-N, when the soil nitrate N residue was less than 200 kg·hm-2, but it was not influenced obviously by soil nitrate N residue in the RF treatment. With soil nitrate N residue ranging from 55 to 100 kg·hm-2, the grain protein concentration of FF and RF was 124.5 and 123.1 g·kg-1, respectively. For RF, the N fertilizer uptake efficiency and N partial factor productivity were 1.36 and 45.7 kg·kg-1, respectively; which were significantly increased by 61.5% and 57.1%, respectively, compared with the FF. 【Conclusion】For maintaining the higher grain yield and protein concentration of wheat, the residual nitrate N in 0-100 cm soil at harvest should be kept at 55-100 kg·hm-2 in northern wheat production region. Determination of reasonable N fertilizer rates, based on combination of target grain yield, grain protein concentration and soil nitrate testing, played important roles in achieving N fertilizer reduction and agricultural green production in wheat fields.

Key words: nitrate N residue, wheat, grain yield, grain protein, N fertilizer reduction

Table 1

Basic physical and chemical properties of the top 0-20 cm soil, annual precipitation, average temperature and fertilizer rates at each experimental site in northern wheat production region of China"

试验地点
Experimental site
春/冬小麦
S/W
年降水
Apre.
(mm)
年均气温
AVT
(℃)
有机质
OM
(g·kg-1)
pH 全氮
TN
(g·kg-1)
矿质氮
MN
(mg·kg-1)
有效磷
AP
(mg·kg-1)
速效钾
AK
(mg·kg-1)
农户施肥量
FF rates
N-P2O5-K2O
(kg·hm-2)
监控施肥量
RF rates
N-P2O5-K2O
(kg·hm-2)
甘肃天水
Tianshui Gansu
冬小麦W 607 12.09 11.7 8.4 0.7 9.62 28.2 139.5 150-120-0 198-30-0
甘肃通渭1
Tongwei1 Gansu
春小麦S 429 9.06 10.9 8.6 0.6 3.72 11.6 134.2 121-90-0 10-26-0
甘肃通渭2
Tongwei2 Gansu
冬小麦W 405 9.19 10.0 8.6 0.7 5.64 7.3 134.9 120-90-0 74-31-0
甘肃通渭3
Tongwei3 Gansu
冬小麦W 405 9.19 9.0 8.9 0.6 4.90 12.0 161.0 120-90-0 89-39-0
甘肃通渭4
Tongwei4 Gansu
冬小麦W 405 9.19 10.5 8.6 0.6 9.26 8.0 121.0 150-120-0 79-24-0
甘肃武威
Wuwei Gansu
春小麦S 212* 7.95 13.9 8.6 0.8 23.23 27.0 145.6 267-242-0 183-30-0
甘肃张掖
Zhangye Gansu
春小麦S 172* 8.75 17.4 9.2 0.9 19.28 38.2 97.6 300-200-0 200-120-75
甘肃庄浪
Zhuanglang Gansu
冬小麦W 568 8.83 14.5 8.4 0.9 31.62 26.4 135.7 180-120-0 120-90-0
黑龙江黑河
Heihe Heilongjiang
春小麦S 689 1.67 38.2 5.5 2.1 18.54 33.9 166.5 80-75-38 73-73-20
黑龙江克山
Keshan Heilongjiang
春小麦S 780 3.78 31.2 6.6 1.6 14.08 68.6 296.9 90-75-45 75-30-45
内蒙古临河
Linhe Neimenggu
春小麦S 90* 9.40 15.1 8.6 0.8 23.98 70.3 206.9 302-207-0 177-62-60
内蒙古五原
Wuyuan Neimenggu
春小麦S 105* 7.95 7.4 8.4 0.4 57.64 4.4 59.8 344-173-0 203-72-60
内蒙古海拉尔
Hailaer Neimenggu
春小麦S 295 -0.13 31.9 8.3 1.6 18.54 47.1 208.1 90-60-39 120-68-14
宁夏贺兰
Helan Ningxia
春小麦S 148* 9.98 13.3 8.4 0.6 11.86 20.7 129.7 300-120-75 218-120-75
宁夏永宁1
Yongning1 Ningxia
春小麦S 226* 11.33 12.4 8.6 0.7 23.36 18.0 144.6 313-104-0 278-138-90
宁夏永宁2
Yongning2 Ningxia
春小麦S 177* 12.37 14.6 8.6 0.8 16.94 29.0 135.9 240-120-75 225-113-45
宁夏永宁3
Yongning3 Ningxia
春小麦S 226* 11.33 12.8 8.4 0.7 17.31 21.2 95.4 300-150-75 270-90-90
青海湟中
Huangzhong Qinghai
春小麦S 465 4.80 18.1 8.6 1.2 14.77 28.8 103.2 90-93-0 198-30-50
山西洪洞1
Hongtong1 Shanxi
冬小麦W 328 16.08 11.3 7.9 0.7 112.03 4.8 158.9 150-60-0 104-42-0
山西洪洞2
Hongtong2 Shanxi
冬小麦W 237* 13.79 18.7 8.4 1.0 16.58 8.8 129.0 268-135-90 188-56-31
山西临汾
Linfen Shanxi
冬小麦W 343* 15.24 19.0 8.5 0.8 13.59 11.7 160.0 266-120-66 179-111-30
山西闻喜1
Wenxi1 Shanxi
冬小麦W 289 16.75 14.0 8.2 0.7 12.59 5.6 121.3 180-60-60 142-60-34
山西闻喜2
Wenxi2 Shanxi
冬小麦W 289* 16.75 18.1 8.5 1.0 20.41 12.3 131.3 240-150-150 172-82-0
试验地点
Experimental site
春/冬小麦
S/W
年降水
Apre.
(mm)
年均气温
AVT
(℃)
有机质
OM
(g·kg-1)
pH 全氮
TN
(g·kg-1)
矿质氮
MN
(mg·kg-1)
有效磷
AP
(mg·kg-1)
速效钾
AK
(mg·kg-1)
农户施肥量
FF rates
N- P2O5-K2O
(kg·hm-2)
监控施肥量
RF rates
N- P2O5-K2O
(kg·hm-2)
山西永济
Yongji Shanxi
冬小麦W 465* 14.82 14.8 8.5 0.8 14.23 10.1 145.5 268-180-90 251-75-0
陕西彬县
Binxian Shaanxi
冬小麦W 366 10.01 12.3 8.3 0.3 33.92 16.1 181.2 234-129-44 77-75-30
陕西大荔
Dali Shaanxi
冬小麦W 381 6.57 10.7 8.8 0.3 117.77 14.8 201.7 255-217-21 147-21-30
陕西合阳
Heyang Shaanxi
冬小麦W 347 6.57 12.6 8.2 0.7 35.60 10.5 237.7 135-162-18 111-79-30
陕西蒲城
Pucheng Shaanxi
冬小麦W 345 6.57 18.0 8.2 0.7 31.49 9.4 169.5 148-93-32 83-99-30
陕西岐山1
Qishan1 Shaanxi
冬小麦W 288 12.44 12.1 7.8 0.6 71.77 12.2 122.2 203-113-35 30-92-30
陕西岐山2
Qishan2 Shaanxi
冬小麦W 288* 12.44 18.2 8.5 1.1 7.23 7.7 119.8 180-144-35 150-90-0
陕西乾县
Qianxian Shaanxi
冬小麦W 413 13.35 10.9 8.4 0.4 74.68 14.2 98.5 214-244-6 105-58-30
陕西武功1
Wugong1 Shaanxi
冬小麦W 561* 13.35 19.2 8.3 1.2 19.66 23.0 257.6 255-180-30 206-89-5
陕西武功2
Wugong2 Shaanxi
冬小麦W 561* 13.35 17.2 8.3 1.1 18.23 19.4 128.2 255-180-30 225-105-45
陕西永寿1
Yongshou1 Shaanxi
冬小麦W 370 13.35 12.0 8.1 0.7 92.00 9.8 178.0 189-132-28 98-63-30
陕西永寿2
Yongshou2 Shaanxi
冬小麦W 370 13.35 10.5 8.2 0.5 47.38 9.6 139.2 199-129-20 39-91-30
陕西永寿3
Yongshou3 Shaanxi
冬小麦W 370 13.35 13.5 8.3 0.8 27.28 15.6 80.7 138-105-0 126-51-30
陕西永寿4
Yongshou4 Shaanxi
冬小麦W 370 13.35 11.1 8.4 0.6 49.27 13.4 116.5 193-117-20 64-41-30
新疆泽普1
Zepu1 Xinjiang
冬小麦W 92* 12.31 14.4 8.6 0.7 12.92 29.2 126.4 296-173-0 295-68-68
新疆木垒
Mulei Xinjiang
春小麦W 52* 7.33 9.6 8.3 0.7 17.50 7.0 198.1 240-105-38 224-81-0
新疆奇台
Qitai Xinjiang
冬小麦W 528* 2.08 12.9 8.5 0.8 24.18 20.9 462.1 315-180-20 240-120-20
新疆塔城
Tacheng Xinjiang
冬小麦W 255* 6.15 31.1 8.3 1.8 28.24 47.8 285.0 240-105-38 192-50-0
新疆石河子
Shihezi Xinjiang
春小麦S 231* 8.43 15.5 8.3 0.9 32.33 36.2 391.2 300-133-0 216-30-0
新疆泽普2
Zepu2 Xinjiang
冬小麦W 92* 12.31 9.7 8.7 0.6 12.03 22.5 95.9 295-173-0 282-138-0

Fig. 1

Frequency distribution (a) and N application rates (b) of nitrate N residue in 0-100 cm soil layer of farmers’ fields in northern wheat region of China Error bars are standard deviations of the means, and different lowercase letters above bars indicate significant differences among different ranges of nitrate N residue in soils at P<0.05 level"

Fig. 2

Relationship of wheat grain yield to nitrate N residue in 0-100 cm soil layer (a), and the response of grain yield to reduced N fertilizer (b) in northern wheat production region of China Fig.2-a: Data is composed of FF, RF, RF-N, RF-P, RF-K. Fig. 2-b: Error bars are standard deviations of the means. Different lowercase and capital letters represent significant differences among three treatments and different ranges of soil nitrate N residue at P< 0.05 level, respectively. The same as Fig. 3, Fig. 4"

Table 2

Biomass and harvest index of wheat at different nitrate N residue levels in 0-100 cm soil layer in northern wheat production region of China"

硝态氮残留
Nitrate N residue
(kg·hm-2)
地上部生物量Aboveground biomass (kg·hm-2) 收获指数Harvest index (%)
农户施肥
FF
监控施肥
RF
监控无氮
RF-N
平均
Average
农户施肥
FF
监控施肥
RF
监控无氮
RF-N
平均
Average
<55 10397 ab 11042 a 8223 b 9887 C 42.6 a 42.1 a 42.2 a 42.3 B
55-100 15244 a 15388 a 14230 b 14954 A 48.5 a 49.8 a 48.4 a 48.9 A
100-200 11470 b 11924 a 11612 ab 11669 BC 42.2 a 41.3 a 41.1 a 41.6 B
200-300 12539 a 14109 a 13578 a 13409 AB 45.9 a 44.9 a 44.6 a 45.1 AB
>300 14388 a 14722 a 12161 a 13757 AB 44.4 a 45.2 a 44.5 a 44.7 B
平均Average 12715 a 13257 a 12206 b 44.5 a 44.4 a 43.8 a

Table 3

Grain yield components of wheat at different nitrate N residue levels in 0-100 cm soil layer in northern wheat production region of China"

硝态氮残留
Nitrate N residue
(kg·hm-2)
穗数Spike number (×104 ·hm-2) 穗粒数Grain per spike 千粒重1000 grain weight (g)
农户施肥FF 监控施肥RF 监控无氮RF-N 平均Average 农户施肥FF 监控施肥RF 监控无氮RF-N 平均Average 农户施肥FF 监控施肥RF 监控无氮RF-N 平均Average
<55 404 a 452 a 331 a 396 C 27 a 30 a 34 a 30 AB 42.8 a 40.1 a 36.0 a 39.6 A
55-100 534 a 543 a 553 a 543 A 34 a 34 a 31 b 33 A 42.2 a 42.4 a 42.9 a 42.5 A
100-200 389 ab 415 a 387 b 397 C 30 a 28 ab 28 b 29 AB 42.1 a 42.2 a 44.2 a 42.8 A
200-300 415 a 468 a 447 a 443 BC 32 a 33 a 31 a 32 AB 45.9 a 42.6 a 44.1 a 44.2 A
>300 481 a 559 a 452 a 497 AB 29 a 28 a 26 a 28 B 42.7 a 41.3 a 41.2 a 41.7 A
平均Average 439 ab 473 a 435 b 31 a 30 a 29 b 42.8 a 42.0 b 42.7 ab

Fig. 3

Relationships between wheat grain protein concentration and nitrate N residue in 0-100 cm soil layer (a), and the response of grain protein concentration to reduced N fertilizer (b) in northern wheat production region of China"

Table 4

N uptake in aboveground part, grain N uptake, and N harvest index of wheat at different nitrate N residue levels in 0-100 cm soil layer in northern wheat production region of China"

硝态氮残留
Nitrate N residue
(kg·hm-2)
地上部吸氮量
N uptake in aboveground part (kg·hm-2)
籽粒吸氮量
Grain N uptake (kg·hm-2)
氮收获指数
N harvest index (%)
农户施肥FF 监控施肥RF 监控无氮RF-N 平均Average 农户施肥FF 监控施肥RF 监控无氮RF-N 平均Average 农户施肥FF 监控施肥RF 监控无氮RF-N 平均Average
<55 124 a 123 a 81 b 109 C 105 a 103 a 68 b 92 C 84.0 a 85.5 a 83.7 a 83.4 A
55-100 192 a 194 a 164 b 183 A 157 a 160 a 137 b 151 A 83.1 a 83.1 a 83.7 a 83.1 A
100-200 150 a 148 a 134 b 144 BC 113 a 112 a 103 b 110 BC 76.2 a 75.9 a 77.4 a 76.5 A
200-300 166 a 188 a 160 a 171 AB 132 a 146 a 128 a 135 AB 79.4 a 77.0 a 79.8 a 78.7 A
>300 198 a 203 a 163 a 188 A 160 a 159 a 129 a 149 A 81.7 a 79.5 a 80.1 a 80.5 A
平均Average 164 a 168 a 142 b 131 a 133 a 114 b 79.7 a 78.9 a 80.2 a

Fig. 4

Nitrogen rates (a), N partial factor productivity (b), N fertilizer uptake efficiency (c), and N utilization efficiency (d) at different nitrate N residue levels in 0-100 cm soil layer in northern wheat production region of China The error bar indicates standard deviation.* indicate significant differences among treatments at P<0.05"

[15] BAI H, ZHANG X, CHU J P, YU H T, YANG H Y, XU C C, DAI X L. Nitrogen fertilizer level: effects on yield and nitrogen utilization of strong gluten wheat. Chinese Agricultural Science Bulletin, 2020, 36(4): 7-14. (in Chinese)
[16] 徐明杰, 董娴娴, 刘会玲, 张丽娟, 巨晓棠. 不同管理方式对小麦氮素吸收、分配及去向的影响. 植物营养与肥料学报, 2014, 20(5): 1084-1093.
[1] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51(14): 2719-2734.
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018, 51(14): 2719-2734. (in Chinese)
[16] XU M J, DONG X X, LIU H L, ZHANG L J, JU X T. Effects of different management patterns on uptake,distribution and fate of nitrogen in wheat. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1084-1093. (in Chinese)
[17] 刘学军, 巨晓棠, 张福锁. 减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响. 应用生态学报, 2004, 15(3): 458-462.
[2] JU X T, XING G X, CHEN X P, ZHANG S L, ZHANG L J, LIU X J, CUI Z L, YIN B, CHRISTIE P, ZHU Z L, ZHANG F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS, 2009, 106(9): 3041-3046.
doi: 10.1073/pnas.0813417106
[3] KAHRL F, LI Y J, SU Y F, TENNIGKEIT T, WILKES A, XU J C. Greenhouse gas emissions from nitrogen fertilizer use in China. Environmental Science & Policy, 2010, 13(8): 688-694.
[17] LIU X J, JU X T, ZHANG F S. Effect of reduced N application on N utilization and balance in winter wheat- summer maize cropping system. Chinese Hinese Journal of Applied Ecology, 2004, 15(3): 458-462. (in Chinese)
[18] MA G, LIU W X, LI S S, ZHANG P P, WANG C Y, LU H F, WANG L F, XIE Y X, MA D Y, KANG G Z. Determining the optimal N input to improve grain yield and quality in winter wheat with reduced apparent N loss in the North China Plain. Frontiers in Plant Science, 2019, 10.
[4] ZHANG X, DAVIDSON E A, MAUZERALL D L, SEARCHINGER T D, DUMANS P, SHEN Y. Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51-59.
doi: 10.1038/nature15743
[5] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国农业出版社, 2019.
[19] XUE C, AUF’M ERLEY G S, ROSSMANN A, SCHUSTER R, KOEHLER P, MUHLING K H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Frontiers in Plant Science, 2016, 7(8): 1-11.
[20] 戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50(5): 956-965.
[5] National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Agriculture Press, 2019. (in Chinese)
[6] 陈伟, 孙建好, 赵建华. 甘肃省小麦施肥现状分析与评价. 干旱地区农业研究, 2013, 31(2): 23-27.
CHEN W, SUN J H, ZHAO J H. Analysis and evaluation of fertilization situation for wheat in Gansu province. Agricultural Research in the Arid Areas, 2013, 31(2): 23-27. (in Chinese)
[7] 李茹, 单燕, 李水利, 林文, 刘芬, 同延安. 陕西麦田土壤肥力与施肥现状评估. 麦类作物学报, 2015, 35(1): 105-110.
LI R, SHAN Y, LI S L, LIN W, LIU F, TONG Y A. Analysis of soil fertility and fertilization of wheat yield in Shaanxi. Journal of Triticeae Crops, 2015, 35(1): 105-110. (in Chinese)
[8] 孙建好, 李伟绮, 赵建华. 高台县小麦及玉米施肥现状调查与评价. 甘肃农业科技, 2019(6): 51-56.
SUN J H, LI W Q, ZHAO J H. Investigation and evaluation of fertilization situation of wheat and corn in Gaotai county. Gansu Agricultural Science and Technology, 2019(6): 51-56. (in Chinese)
[9] 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14): 2758-2768.
[20] DAI J, WANG Z H, LI Q, LI M H, LI F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedologica Sinica, 2013, 50(5): 956-965. (in Chinese)
[21] 张礼军, 张耀辉, 鲁清林, 白玉龙, 周刚, 汪恒兴, 张文涛, 白斌, 周洁, 何春雨. 耕作方式和氮肥水平对旱地冬小麦籽粒品质的影响. 核农学报, 2017, 31(8): 1567-1575.
ZHANG L J, ZHANG Y H, LU Q L, BAI Y L, ZHOU G, WANG H X, ZHANG W T, BAI B, ZHOU J, HE C Y. Effect of tillage model and nitrogen rate on grain quality of dryland winter wheat. Journal of Nuclear Agricultural Sciences, 2017, 31(8): 1567-1575. (in Chinese)
[22] LUO L C, WANG Z H, HUANG M, HUI X L, WANG S, ZHAO Y, HE H X, ZHANG X, DIAO C P, CAO H B, MA Q X, LIU J S. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crops Research, 2018, 218:69-77.
doi: 10.1016/j.fcr.2018.01.005
[23] BICEGO B, SAPKOTA A, TORRION J. Differential nitrogen and water impacts on yield and quality of wheat classes. Agronomy Journal, 2019, 111(6): 2792-2803.
doi: 10.2134/agronj2019.04.0283
[24] 冯美臣, 陈鹏, 杨武德, 王超. 播期和施氮量对冬小麦氮代谢及子粒蛋白质含量的影响. 作物杂志, 2016(3): 104-109.
FENG M C, CHEN P, YANG W D, WANG C. Effects of sowing date and nitrogen fertilizer rate on nitrogen metabolism and kernel protein content of winter wheat. Crops, 2016(3): 104-109. (in Chinese)
[25] 中华人民共和国农业农村部. 农业农村部办公厅关于推介发布2018年农业主推技术的通知. 北京: 农办科〔2018〕12号, 2018年5月4日发布.
The Ministry of Agriculture and Rural Affairs of the People's Republic of China. Notice of the General Office of the Ministry of Agriculture and Rural Affairs on the promotion and release of the main agricultural technologies in 2018. Beijing: Agriculture Office [2018] No. 12, issued on May 4, 2018. (in Chinese)
[26] 曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. 中国农业科学, 2014, 47(19): 3826-3838.
CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei Dryland. Scientia Agricultura Sinica, 2014, 47(19): 3826-3838. (in Chinese)
[27] MALHI S S, LEMKE R, WANG Z H, CHHABRA B S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research, 2006, 90(1/2): 171-183.
doi: 10.1016/j.still.2005.09.001
[9] CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017, 50(14): 2758-2768. (in Chinese)
[10] 赖波, 汤明尧, 柴仲平, 陈波浪, 李青军, 董巨河, 王飞, 田长彦. 新疆农田化肥施用现状调查与评价. 干旱区研究, 2014, 31(6): 1024-1030.
LAI B, TANG M Y, CHAI Z P, CHEN B L, LI Q J, DONG J H, WANG F, TIAN C Y. Investigation and evaluation of the chemical fertilizer application situation of farmland in Xinjiang. Arid Zone Research, 2014, 31(6): 1024-1030. (in Chinese)
[11] 刘鑫, 郜翻身, 高娃, 刘宇杰, 段丽红, 王霞. 巴彦淖尔市主要农作物施肥情况调查及存在问题分析. 刘鑫. 内蒙古农业大学学报(自然科学版), 2018, 39(3): 15-24.
[28] 袁久坤, 周英. 利用取土钻改进环刀法准确测定土壤容重和孔隙度. 中国园艺文摘, 2014(3): 25-26.
YUAN J K, ZHOU Y. Chinese Horticulture Abstracts, 2014(3): 25-26. (in Chinese)
[29] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53(1): 81-93.
HUANG N, WANG Z H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(1): 81-93. (in Chinese)
[30] 杨月欣, 王光亚, 潘兴昌. 中国食物成分表. 北京: 北京医科大学、中国协和医科大学联合出版社, 2002: 7.
YANG Y X, WANG G Y, PAN X C. China Food Composition. Beijing: Beijing Medical University and China Union Medical University Press, 2002: 7. (in Chinese)
[31] SAMIRA FATHOLAHI, PARVIZ EHSANZADEH, HASSAN KARIMMOJENI. Ancient and improved wheats are discrepant in nitrogen uptake, remobilization, and use efficiency yet comparable in nitrogen assimilating enzymes capabilities. Field Crops Research, 2020, 249:1-13.
[32] 曹雯梅, 刘松涛, 郑贝贝, 路凤银, 杨青华. 小麦高产及超高产优化管理模式对氮素吸收分配、土壤硝态氮累积及产量的影响. 核农学报, 2013, 27(10): 1567-1574.
CAO W M, LIU S T, ZHENG B B, LU F Y, YANG Q H. Effects of cultivation management modes of the high-yield and super-high- yield on nitrogen uptake and distribution in wheat and accumulation of soil NO3-N. Journal of Nuclear Agricultural Sciences, 2013, 27(10): 1567-1574. (in Chinese)
[33] 江华波, 王盛锋, 杨峰, 张中华. 不同浓度硝态氮供应下小麦生长、硝态氮累积及根系钙信号特征. 植物科学学报, 2015, 33(3): 362-368.
JIANG H B, WANG S F, YANG F, ZHANG Z H. Plant growth, nitrate content and Ca signaling in wheat (Triticum aestivum L.) roots under different nitrate supply. Plant Science Journal, 2015, 33(3): 362-368. (in Chinese)
[34] 王琦, 李锋瑞. 灌溉与施氮对黑河中游新垦农田土壤硝态氮积累及氮素利用率的影响. 生态学报, 2008, 28(5): 2148-2159.
WANG Q, LI F R. Effects of different irrigation and N supply levels on NO3 --N accumulation and N use efficiency on a recently reclaime sandy farmland in Heihe River basin. Acta Ecologica Sinica, 2008, 28(5): 2148-2159. (in Chinese)
[35] 吉艳芝, 冯万忠, 郝晓然, 彭亚静, 韩鹏辉, 马峙英, 张丽娟. 不同施肥模式对华北平原小麦-玉米轮作体系产量及土壤硝态氮的影响. 生态环境学报, 2014(11): 1725-1731.
JI Y Z, FENG W Z, HAO X R, PENG Y J, HAN P H, MA Z Y, ZHANG L J. Effects of different fertilization pattern on the yield of the rotation system of wheat and maize and soil nitrate accumulation in North China Plain. Ecology and Environment Sciences, 2014(11): 1725-1731. (in Chinese)
[36] 杨晓卡, 米慧玲, 高韩钰, 辛思颖, 马文奇, 魏静. 不同栽培模式对冬小麦-夏玉米轮作系统产量、氮素累积和平衡的影响. 应用生态学报, 2016, 27(6): 1935-1941.
YANG X K, MI H L, GAO H Y, XIN S Y, MA W Q, WEI J. Effects of different cultivation patterns on yield, nitrate accumulation and nitrogen balance in winter wheat and summer maize rotation system. Chinese Journal of Applied Ecology, 2016, 27(6): 1935-1941. (in Chinese)
[37] 章孜亮, 刘金山, 王朝辉, 赵护兵, 杨宁, 杨荣, 曹寒冰. 基于土壤氮素平衡的旱地冬小麦监控施氮. 植物营养与肥料学报, 2012, 18(6): 1387-1396.
ZHANG Z L, LIU J S, WANG Z H, ZHAO H B, YANG N, YANG R, CAO H B. Nitrogen recommendation for dryland winter wheat by monitoring nitrate in 1 m soil and based on nitrogen balance. Journal of Plant Nutrition and Fertilizer, 2012, 18(6): 1387-1396. (in Chinese)
[38] VAN DER PLOEG R R, RINGE H, MACHULLA G, HERMSMEYER D. Postwar nitrogen use efficiency in West German agriculture and groundwater quality. Journal of Environmental Quality, 1997, 26(5): 1203-1212.
[11] LIU X, GAO F S, GAO W, LIU Y J, DUAN L H, WANG X. Investigation ang analysis on the existing problems of main crop fertilization situation in bayannur city. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2018, 39(3): 15-24. (in Chinese)
[12] CUI Z L, ZHANG F S, CHEN X P, MIAO Y X, LI J L, SHI L W, XU J F, YE Y L, LIU C S, YANG Z P, ZHANG Q, HUANG S M, BAO D J. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research, 2008, 105:48-55.
doi: 10.1016/j.fcr.2007.07.008
[13] 马清霞. 基于长期定位试验的旱地小麦氮磷管理优化[D]. 杨凌: 西北农林科技大学, 2018.
MA Q X. Optimization of nitrogen and phosphorus management for dryland wheat based on long term location-field experiment[D]. Yangling: Northwest Agriculture and Forestry University, 2018. (in Chinese)
[14] 刘艳妮, 马臣, 于昕阳, 路梁, 翟丙年, 王朝辉. 基于不同降水年型渭北旱塬小麦-土壤系统氮素表观平衡的氮肥用量研究. 植物营养与肥料学报, 2018, 24(3): 569-578.
LIU Y N, MA C, YU X Y, LU L, ZHAI B N, WANG Z H. Nitrogen application rate for keeping nitrogen balance in wheat-soil system in Weibei rainfed areas under different rainfall years. Journal of Plant Nutrition and Fertilizer, 2018, 24(3): 569-578. (in Chinese)
[15] 柏慧, 张秀, 初金鹏, 于海涛, 杨宏业, 徐晨晨, 代兴龙. 氮肥水平对强筋小麦产量和氮素利用的影响. 中国农学通报, 2020, 36(4): 7-14.
[39] HOFMAN G. Nutrient management legislation in European countries. Numalec Report, 1999: Concerted action, Fair6-CT98-4215.
[40] CUI Z L, CHEN X P, ZHANG F S. Development of regional nitrogen rate guidelines for intensive cropping systems in China. Agronomy Journal, 2013, 105(5): 1411-1416.
doi: 10.2134/agronj2012.0398
[41] 巨晓棠, 谷保静. 氮素管理的指标. 土壤学报, 2017, 54(2): 281-296.
JU X T, GU B J. Indexes of nitrogen management. Acta Pedologica Sinica, 2017, 54(2): 281-296. (in Chinese).
[42] 崔振岭, 石立委, 徐久飞, 李俊良, 张福锁, 陈新平. 氮肥施用对冬小麦产量、品质和氮素表观损失的影响研究. 应用生态学报, 2005, 16(11): 2071-2075.
CUI Z L, SHI L W, XU J F, LI J L, ZHANG F S, CHEN X P. Effects of N fertilization on winter wheat grain yield and its crude protein content and apparent N losses. Chinese Journal of Applied Ecology, 2005, 16(11): 2071-2075. (in Chinese)
[43] 姚金保, 马鸿翔, 张平平, 张鹏, 杨学明, 周淼平. 施氮量和种植密度对弱筋小麦宁麦18籽粒产量和蛋白质含量的影响. 西南农业学报, 2017, 30(7): 1507-1510.
YAO J B, MA H X, ZHANG P P, ZHANG P, YANG X M, ZHOU M P. Effect of nitrogen application rate and plant density on grain yield and protein contents of weak gluten wheat cultivar Ningmai 18. Southwest China Journal of Agricultural Sciences, 2017, 30(7): 1507-1510. (in Chinese)
[44] 吕敏娟, 陈帅, 辛思颖, 佟丙辛, 王释强, 薛澄, 马文奇, 魏静. 施氮量对冬小麦产量、品质和土壤氮素平衡的影响. 河北农业大学学报, 2019, 42(4): 9-15.
LÜ M J, CHEN S, XIN S Y, TONG B X, WANG S Q, XUE C, MA W Q, WEI J. Effects of nitrogen application rate on yield, quality and soil nitrogen balance of winter wheat. Journal of Hebei Agricultural University, 2019, 42(4): 9-15. (in Chinese)
[45] 熊淑萍, 王静, 王小纯, 丁世杰, 马新明. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014, 38(7): 767-775.
doi: 10.3724/SP.J.1258.2014.00072
XIONG S P, WANG J, WANG X C, DING S J, MA X M. Effects of tillage and nitrogen addition rate on nitrogen metabolism, grain yield and protein content in wheat in lime concretion black soil region. Chinese Journal of Plant Ecology, 2014, 38(7): 767-775. (in Chinese)
doi: 10.3724/SP.J.1258.2014.00072
[46] 王茂莹, 贺明荣, 李玉, 董元杰. 施氮量对不同小麦品种产量及氮素吸收利用的影响. 水土保持学报, 2020, 34(4): 241-248.
WANG M Y, HE M R, LI Y, DONG Y J. Effects of nitrogen application rate on yield and nitrogen uptake and utilization of different wheat varieties. Journal of Soil and Water Conservation, 2020, 34(4): 241-248. (in Chinese)
[47] 刘凯, 刘冰, 谢英荷, 李廷亮, 张奇茹, 李顺, 窦露, 柳玉凤, 纪美娟, 姜丽伟. 减氮覆膜对黄土旱塬小麦产量构成及水肥利用效率的影响. 水土保持学报, 2020, 34(3): 198-206.
LIU K, LIU B, XIE Y H, LI T L, ZHANG Q R, LI S, DOU L, LIU Y F, JI M J, JIANG L W. Effects of nitrogen reduction and film mulching on wheat yield composition and utilization efficiency of water and fertilizer in the Loess Plateau. Journal of Soil and Water Conservation, 2020, 34(3): 198-206. (in Chinese)
[48] 闻磊, 张富仓, 邹海洋, 陆军胜, 郭金金, 薛占琪. 水分亏缺和施氮对春小麦生长和水氮利用的影响. 麦类作物学报, 2019, 39(4): 478-486.
WEN L, ZHANG F C, ZOU H Y, LU J S, GUO J J, XUE Z Q. Effect of water defict and nitrogen rate on the growth, water and nitrogen use of spring wheat. Journal of Triticeae Crops, 2019, 39(4): 478-486. (in Chinese)
[49] 张福锁, 马文奇, 陈新平. 养分资源综合管理理论与技术概论. 北京: 中国农业大学出版社, 2006: 40-47.
ZHANG F S, MA W Q, CHEN X P. Introduction to Comprehensive Management Theory and Technology of Nutrient Resources. Beijing: China Agricultural University Press, 2006: 40-47. (in Chinese)
[50] 张福锁. 协调作物高产与环境保护的养分资源综合管理技术研究与应用. 北京: 中国农业大学出版社, 2008.
ZHANG F S. Research and application of integrated nutrient resource management technology for coordinating high crop yield and environmental protection. Beijing: China Agricultural University Press, 2008. (in Chinese)
[51] ZHANG F S, SHEN J B, JING J Y, LI L, CHEN X P. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity. Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone, 2010: 52-54.
[52] CHEN X P, CUI Z L, VITOUSEK P M, CASSMANC K G, MATSOND P A, BAI J S, MENG Q F, HOU P, YUE S C, ROMHELDE V, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences, 2011, 108(16): 6399-6404.
[53] 何萍, 金继运, PAMPOLINO F M, JOHNSTON M A. 基于作物产量反应和农学效率的推荐施肥方法. 植物营养与肥料学报, 2012, 18(2): 499-505.
HE P, JIN J Y, PAMPOLINO F M, JOHNSTON M A. Approach and decision support system based on crop yield response and agronomic efficiency. Journal of Plant Nutrition and Fertilizer, 2012, 18(2): 499-505. (in Chinese)
[54] ZHANG F S, CUI Z L, CHEN X P, JU X Y, SHEN J B, CHEN Q, LIU X J, ZHANG W F, MI G H, FANG M S, JIANG R F. Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 2012, 116:1-40.
[55] 叶优良, 黄玉芳, 刘春生, 曲日涛, 宋海燕, 崔振岭. 氮素实时管理对冬小麦产量和氮素利用的影响. 作物学报, 2010, 36(9): 1578-1584.
YE Y L, HUANG Y F, LIU C S, QU R T, SONG H Y, CUI Z L. Effect of in-season nitrogen management on grain yield and nitrogen use efficiency in wheat. Acta Agronomica Sinica, 2010, 36(9): 1578-1584. (in Chinese)
[56] CAO H B, WANG Z H, HE G, DAI J, HUANG M, WANG S, LUO L C, SADRASC V O, HOOGMOEDC M, MALHID S S. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. Field Crops Research, 2017, 209:88-95.
doi: 10.1016/j.fcr.2017.04.014
[57] HUANG M, WANG Z H, LUO L C, WANG S, HUI X L, HE G, CAO H B, MA X L, HUANG T M, ZHAO Y, DIAO C P, ZHENG X F, ZHAO H B, LIU J S, MALHI S S. Soil testing at harvest to enhance productivity and reduce nitrate residues in dryland wheat production. Field Crops Research, 2017, 212:153-164.
doi: 10.1016/j.fcr.2017.07.011
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[4] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[5] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[6] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[7] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[8] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[9] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[10] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[11] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[12] YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994.
[13] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[14] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[15] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!