Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (24): 5206-5219.doi: 10.3864/j.issn.0578-1752.2021.24.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Tillage Practices and Nitrogen Fertilizer Application Rates on Grain Yield, Protein Content in Winter Wheat and Soil Nitrate Residue in Dryland

HUANG Ming(),WU JinZhi(),LI YouJun(),FU GuoZhan,ZHAO KaiNan,ZHANG ZhenWang,YANG ZhongShuai,HOU YuanQuan   

  1. College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan
  • Received:2020-04-03 Accepted:2020-06-03 Online:2021-12-16 Published:2021-12-28
  • Contact: JinZhi WU,YouJun LI E-mail:huangming_2003@126.com;yywujz@126.com;lyj@haust.edu.cn

Abstract:

【Objective】 The objective of the present study was to clarify the suitable combined pattern of tillage and nitrogen (N) rate for dryland wheat to achieve the target of high-yield, high-quality and environment-friendly production. 【Method】 In the dry year 2016-2017 and wet year 2017-2018, a field experiment was carried out in the typical dryland in the western region of Henan province. In the experiment, the two tillage practices, including subsoiling (ST) and ploughing (PT), were set as main treatment, and the four N fertilizer application rates of 0 (N0), 120 (N120), 180 (N180) and 240 kg·hm-2 (N240), respectively were set as secondary treatment. The subsoiling operation in ST was interval one year and conducted about two weeks after the previous wheat harvest, and the ploughing operation in PT was carried out each year around late July to early August after once heavy precipitation. The grain yield, grain protein content and its yield, and plant N absorption and utilization in wheat were tested, as well as the nitrate residue in the 0-200 cm soil layer in dryland. 【Result】 The plant N accumulation after jointing stage, grain yield, protein yield and N use efficiency in wheat and the nitrate residue in 0-200 cm soil layer at harvest could be significantly regulated by annual precipitation type, tillage practice and N rate, and the interaction of tillage practice and N rate. Compared with PT, ST increased the shoot N accumulation after jointing and the pre-anthesis N translocation under all the four N treatments, and the N harvest index under N240, as well as increasing the N uptake efficiency, N agronomy efficiency, N recovery efficiency and N partial factor productivity by 8.6%-15.3%, 23.9%-86.5%, 8.1%-26.1% and 9.1%-20.3% averaged across different N treatments, respectively. Therefore, compared with PT, the grain yield under ST was significantly increased by 11.9% and 12.4%, respectively, and the grain protein content was kept no significant change, while the average protein yield was increased by 12.4% and 13.5%, but the average nitrate residue was respectively reduced by 11.9% and 25.4% in 0-200 cm soil layer averaged across all the four N treatments in the dry year and the wet year. With the increase of N rate, the shoot N accumulation, pre-anthesis N translocation amount, contribution rate of post-anthesis N accumulation to grain, and grain protein content in wheat and the soil nitrate residue at harvest were significantly increased, and there was a significant decrease on the contribution rate of pre-anthesis N translocation to grain, N grain production efficiency, N uptake efficiency and N partial factor productivity, but the changes in N agronomy efficiency, N recovery efficiency, grain yield and protein yield varied with annual precipitation type and tillage practice. The STN240 had the highest shoot N accumulation in the two years. In addition to no significant difference of grain and protein yield between ST240 and ST180 in the dry year and also of the protein content between ST240 and PT240 in the wet year, the grain yield, protein content and protein yield in ST240 were significantly higher than the other treatments in the two experimental years, the N recovery efficiency of and N agronomy efficiency in the wet year under ST240 were not less than or even significantly higher than that in the N application treatments under PT, and therefore decreased the nitrate residue in 0-200 cm soil at harvest by 16.4% compared with PT240. In general, the N rate at 180 kg·hm-2under PT could reach the highest grain yield and the optimal protein yield, N agronomy efficiency and N recovery efficiency. Compared with other treatments, the N rate at 240 kg·hm-2under ST was the best combination, which could increase the N efficiency and reduce soil nitrate residue via subsoiling during summer fallow period, as well as improving the protein content through the increased N fertilizer rate, and finally increased the grain yield and protein yield by 2.6%-45.0% and 7.3%-81.4%, respectively. 【Conclusion】 Subsoiling tillage could help synchronously to improve the grain yield, protein yield and N efficiency and reduce soil nitrate residue. The suitable N application rate for subsoiling tillage should be higher than that for ploughing tillage. The PTN180 was an optimal combination of tillage practice and N rate for high-yield and high-efficiency, and the STN240 was an optimal model for realizing the collaborative target of high-yield, high-quality, high-efficiency, and low-nitrate residue in dryland wheat production system.

Key words: tillage practice, N fertilizer application rate, dryland, wheat, yield, protein, nitrate residue

Fig. 1

Monthly precipitation from June 2016 to May 2018 The broken line shows the average precipitation of 18 years from 2000 to 2018"

Table 1

Effects of different treatments on grain yield, grain protein content and its yield in wheat"

年度
Year
耕作方式
Tillage
氮肥用量
N rate
籽粒产量
Grain yield (kg·hm-2)
籽粒蛋白质含量
Grain protein content (%)
籽粒蛋白质产量
Grain protein yield (kg·hm-2)
2016—2017
(欠水年
Dry year)
翻耕PT N0 3938d 13.9de 478.8e
N120 4412c 14.0d 542.0d
N180 4814b 14.8b 622.4b
N240 4394c 15.0a 578.4c
深松ST N0 4389c 13.8e 529.3d
N120 4931b 14.2c 614.3b
N180 5155a 14.8b 669.7a
N240 5177a 15.1a 683.3a
2017—2018
(丰水年
Wet year)
翻耕PT N0 5291g 9.5f 439.7f
N120 6821f 12.7c 756.7e
N180 7612d 13.6b 905.9c
N240 7145e 14.7a 918.4c
深松ST N0 5192g 10.0e 453.4f
N120 7906c 12.8c 883.2d
N180 8387b 13.5b 992.2b
N240 8715a 14.4a 1099.7a
变异来源
Source of variance
(F-value)
年度Year (Y) 28351.7** 7420.6** 5445.7**
耕作Tillage (T) 266.0** 2.0 207.3**
氮肥用量N rate (N) 909.8** 928.5** 2315.2**
耕作×氮肥用量T×N 59.8** 2.4 52.2**

Fig. 2

Effects of different treatments on shoot N accumulation at different growth stages of wheat The error bar indicates standard deviation, above which different letters indicate significant difference among treatments at a growing stage (P<0.05). *and ** indicate statistical significance of variance at P<0.05 and P<0.01, respectively. The same as below"

Table 2

Effects of different treatments on the characteristics of N accumulation and translocation and N harvest index in wheat"

年度
Year
耕作方式
Tillage
氮肥用量
N rate
花前氮素Pre-anthesis N 花后氮素Post-anthesis N 籽粒氮素积累量
N accumulation amount in grain
(kg·hm-2)
氮收获指数
N harvest index (%)
转运量
Translocation amount
(kg·hm-2)
对籽粒的贡献率
Contribution rate to grain
(%)
积累量
Accumulation
amount
(kg·hm-2)
对籽粒的贡献率Contribution rate to grain
(%)
2016—2017
(欠水年
Dry year)
翻耕PT N0 79.0e 94.0a 5.0e 6.0c 84.0e 85.4a
N120 87.4c 92.0ab 7.7de 8.0bc 95.1d 81.6b
N180 94.2b 86.3c 15.0abc 13.7a 109.2b 81.8b
N240 87.0c 85.8c 14.5bc 14.2a 101.5c 74.5d
深松ST N0 83.5d 89.9b 9.4d 10.1b 92.9d 85.7a
N120 93.6b 86.9c 14.1c 13.1a 107.8b 81.9b
N180 99.8a 84.9c 17.7ab 15.1a 117.5a 81.7b
N240 101.7a 84.9c 18.2a 15.1a 119.9a 78.6c
2017—2018
(丰水年
Wet year)
翻耕PT N0 67.5g 87.5a 9.6e 12.5e 77.1f 82.2a
N120 92.3e 69.5b 40.5d 30.5d 132.8e 79.3bc
N180 106.9c 67.3bc 52.0c 32.7cd 158.9c 79.7b
N240 101.4d 63.0de 59.7b 37.0b 161.1c 75.8d
深松ST N0 70.5f 88.6a 9.1e 11.4e 79.5f 78.5c
N120 102.6d 66.3c 52.4c 33.7d 154.9d 79.9b
N180 113.1b 65.0cd 61.0b 35.0bc 174.1b 79.8b
N240 117.4a 60.9e 75.5a 39.1a 192.9a 78.4c
变异来源
Source of variance
(F-value)
年度Year (Y) 12.7* 155.4** 374.1** 155.4** 5436.7** 73.7**
耕作Tillage (T) 646.8** 14.8* 49.1 ** 14.8* 207.4** 5.8
氮肥用量N rate (N) 560.6** 166.1** 377.5** 166.1** 2315.7** 126.4**
耕作×氮肥用量T×N 21.1** 1.3 5.6** 1.3 52.2** 21.7**

Table 3

Effects of different treatments on the N efficiency in wheat"

年度
Year
耕作方式
Tillage
氮肥用量
N rate
氮素籽粒生产效率N grain production efficiency (kg·kg-1) 氮肥吸收效率
N uptake efficiency
(kg·kg-1)
氮肥农学效率
N agronomy efficiency (kg·kg-1)
氮肥利用率
N recovery efficiency (%)
氮肥偏生产力
N partial factor productivity (kg·kg-1)
2016—2017
(欠水年
Dry year)
翻耕PT N0 46.2ab
N120 45.7b 0.97b 3.89ab 15.2c 36.2b
N180 43.4d 0.74d 4.79a 19.5a 26.3d
N240 42.6ef 0.57f 1.87c 15.8bc 18.0f
深松ST N0 46.5a
N120 45.0c 1.10a 4.45a 19.3a 40.5a
N180 43.2de 0.80c 4.19ab 19.7a 28.2c
N240 42.5f 0.64e 3.23b 18.4ab 21.2e
2017—2018
(丰水年
Wet year)
翻耕PT N0 67.5a
N120 50.6c 1.39b 12.56d 61.3c 56.0b
N180 47.1d 1.11d 12.69d 58.7c 41.6d
N240 43.7f 0.89f 7.61e 49.5d 29.3f
深松ST N0 64.3b
N120 50.3c 1.62a 22.26a 77.2a 64.9a
N180 47.4d 1.21c 17.47b 64.8b 45.9c
N240 44.5e 1.03e 14.45c 60.3c 35.7e
变异来源
Source of variance
(F-value)
年度Year (Y) 4591.7** 2171.3** 280.4** 893.1** 8544.2**
耕作Tillage (T) 8.1* 375.9** 94.5** 45.3** 383.5**
氮肥用量N rate (N) 1157.6** 3149.4** 147.5** 71.8** 6423.5**
耕作×氮肥用量T×N 5.6** 29.5** 20.2** 15.6** 36.3**

Fig. 3

Effects of different treatments on the nitrate residue in 0-200 cm soil layer at harvest of wheat"

[1] 黄明, 王朝辉, 罗来超, 王森, 包明, 何刚, 曹寒冰, 刁超朋, 李莎莎. 膜侧施肥对旱地小麦产量、籽粒蛋白质含量和水分利用效率的影响. 作物学报, 2017, 43(6):895-907.
HUANG M, WANG Z H, LUO L C, WANG S, BAO M, HE G, CAO H B, DIAO C P, LI S S. Effects of ridge mulching with side-dressing on grain yield, protein content and water use efficiency in dryland wheat. Acta Agronomica Sinica, 2017, 43(6):895-907. (in Chinese)
[2] LV G H, HAN W, WANG H B, BAI W B, SONG J Q. Effect of subsoiling on tillers, root density and nitrogen use efficiency of winter wheat in loessal soil. Plant, Soil and Environment, 2019, 65(9):456-462.
doi: 10.17221/PSE
[3] JU X T, XING G X, CHEN X P, ZHANG S L, ZHANG L J, LIU X J, CUI Z L, YIN B, CHRISTIE C P, ZHU Z L, ZHANG F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy Science of USA 2009, 106:3041-3046.
[4] WANG H G, GUO Z J, SHI Y, YU Z W. Impact of tillage practices on nitrogen accumulation and translocation in wheat and soil nitrate- nitrogen leaching in drylands. Soil & Tillage Research, 2015, 153:20-27.
[5] HE J N, SHI Y, YU Z W. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China. Soil & Tillage Research, 2019, 187:182-193.
[6] 李慧, 高志强, 薛建福. 夏闲期耕作对旱地麦田土壤物理质量的影响. 山西农业大学学报(自然科学版), 2018, 38(2):15-21
LI H, GAO Z Q, XUE J F. Effects of tillage during summer fallow on soil physical properties of dryland winter wheat fields in the Loess Plateau. Journal of Shanxi Agriculture University (Natural Science Edition), 2018, 38(2):15-21. (in Chinese)
[7] HE J N, SHI Y, ZHAO J Y, YU Z W. Strip rotary tillage with a two-year subsoiling interval enhances root growth and yield in wheat. Scientific Reports, 2019, 9(1):11678.
doi: 10.1038/s41598-019-48159-4
[8] 黄明, 吴金芝, 李友军, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对旱作区冬小麦生产和产量的影响. 农业工程学报, 2009, 25(1):50-54.
HUANG M, WU J Z, LI Y J, YAO Y Q, ZHANG C J, CAI D X, JIN K. Effects of different tillage managements on production and yield of winter wheat in dryland. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1):50-54. (in Chinese)
[9] 王永华, 刘焕, 辛明华, 黄源, 王壮壮, 王金凤, 段剑钊, 冯伟, 康国章, 郭天财. 耕作方式与灌水次数对砂姜黑土小麦水分利用及籽粒产量的影响. 中国农业科学, 2019, 52(5):801-812.
WANG Y H, LIU H, XIN M H, HUANG Y, WANG Z Z, WANG J F, DUAN J Z, FENG W, KANG G Z, GUO T C. Effects of tillage practices and irrigation times on water use efficiency and grain yield of winter wheat in lime concretion black soil. Scientia Agricultura Sinica, 2019, 52(5):801-812. (in Chinese)
[10] 赵亚丽, 刘卫玲, 程思贤, 周亚男, 周金龙, 王秀玲, 张谋彪, 王群, 李潮海 . 深松(耕)方式对砂姜黑土耕层特性、作物产量和水分利用效率的影响. 中国农业科学, 2018, 51(13):2489-2503.
ZHAO Y L, LIU W L, CHENG S X, ZHOU Y N, ZHOU J L, WANG X L, ZHANG M B, WANG Q, LI C H. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil. Scientia Agricultura Sinica, 2018, 51(13):2489-2503. (in Chinese)
[11] MORELL F J, LAMPURKANS J, ÁLXARO-FUENTES J A, CANTERO-MARTINEZ C. Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: Long-term effects of tillage and N fertilization. Soil & Tillage Research, 2011, 117:76-84.
[12] 黄明, 吴金芝, 李友军, 王贺正, 付国占, 陈明灿, 李学来, 马俊利. 耕作方式和秸秆覆盖对旱地麦豆轮作下小麦籽粒产量、蛋白质含量和土壤硝态氮残留的影响. 草业学报, 2018, 27(9):34-44.
HUANG M, WU J Z, LI Y J, WANG H Z, FU G Z, CHEN M C, LI X L, MA J L. Effects of tillage method and straw mulching on grain yield and protein content in wheat and soil nitrate residue under a winter wheat and summer soybean crop rotation in drylands. Acta Prataculturae Sinica, 2018, 27(9):34-44. (in Chinese)
[13] 赵红梅, 高志强, 赵维峰, 邓联峰, 孙敏, 邓妍. 休闲期耕作对旱地小麦籽粒蛋白质形成及其相关酶活性的影响. 麦类作物学报, 2013, 33(2):331-338.
ZHAO H M, GAO Z Q, ZHAO W F, DENG L F, SUN M, DENG Y. Effects of tillage during fallow period on protein and its related enzyme activity in dryland wheat. Journal of Triticease Crops, 2013, 33(2):331-338. (in Chinese)
[14] 孙敏, 高志强, 赵维峰, 任爱霞, 邓妍, 苗果园. 休闲期深松配施氮肥对旱地土壤水分及小麦籽粒蛋白质积累的影响. 作物学报, 2014, 40(7):1286-1295.
doi: 10.3724/SP.J.1006.2014.01286
SUN M, GAO Z Q, ZHAO W F, REN A X, DENG Y, MIAO G Y. Effect of tillage in fallow period on soil water and nitrogen absorption and utilization of dryland wheat. Acta Agronomica Sinica, 2014, 40(7):1286-1295. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01286
[15] 熊淑萍, 王静, 王小纯, 丁世杰, 马新明. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014, 38(7):767-775.
doi: 10.3724/SP.J.1258.2014.00072
XIONG S P, WANG J, WANG X C, DING S J, MA X M. Effects of tillage and nitrogen addition rate on nitrogen metabolism, grain yield and protein content in wheat in lime concretion black soil region. Chinese Journal of Plant Ecology, 2014, 38(7):767-775. (in Chinese)
doi: 10.3724/SP.J.1258.2014.00072
[16] 梁艳妃, 孙敏, 高志强, 张慧芋, 张娟, 李念念, 杨清山. 夏闲期深松耕作和氮肥用量对旱地小麦土壤水分及氮素利用的影响. 山西农业大学学报(自然科学版), 2018, 38(9):16-23.
LIANG Y F, SUN M, GAO Z Q, ZHANG H Y, ZHAG J, LI N N, YANG Q S. Impacts of subsoiling tillage during the fallow period and nitrogen application rates on the utilization of soil water and plant nitrogen of dry-land wheat. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(9):16-23. (in Chinese)
[17] 杨永辉, 武继承, 潘晓莹, 张洁梅, 何方, 张玉亭, 王喆, 王越, 韩伟锋. 不同耕作保墒措施下施氮量对小麦耗水量、产量及水分生产效率的影响. 河南农业科学, 2016, 45(4):1-65.
YANG Y H, WU J C, PAN X Y, ZHANG J M, HE F, ZHANG Y T, WANG Z, WANG Y, HAN W F. Effect of nitrogen fertilizer application rate on water consumption, yield and water production efficiency of wheat under different tillage and soil moisture conservation measures. Journal of Henan Agricultural Science, 2016, 45(4):1-65. (in Chinese)
[18] 张霞, 张育林, 刘丹, 杜昊辉, 李军, 王旭东. 种植方式和耕作措施对土壤结构与水分利用效率的影响. 农业机械学报, 2019, 50(3):250-261.
ZHNG X, ZHANG Y L, LIU D, DU H H, LI J, WANG X D. Effects of planting methods and tillage systems on soil structure and water use efficiency. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3):250-261. (in Chinese)
[19] HE J, LI H W, WANG X Y, MCHUGH A D, LI W Y, GAO H W, KUHN N J. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China. Soil & Tillage Research, 2007, 94:493-502.
[20] 张北赢, 徐学选, 刘文兆, 陈天林. 黄土丘陵沟壑区不同降水年型下土壤水分动态. 应用生态学报, 2008, 19(6):1234-1240.
ZHANG B Y, XU X X, LIU W Z, CHEN T L. Dynamic changes of soil moisture in loess hilly and gully region under effects of different yearly precipitation patterns. Chinese Journal of Applied Ecology, 2008, 19(6):1234-1240. (in Chinese)
[21] 宋歌, 孙波, 教剑英. 测定土壤硝态氮的紫外分光光度法与其他方法的比较. 土壤学报, 2007, 44(2):288-293.
SONG G, SUN B, JIAO J Y. Comparison between ultraviolet spectrophotometry and other methods in determination of soil nitrate-N. Acta Pedologica Sinica, 2007, 44(2):288-293. (in Chinese)
[22] HUANG M, WANG Z H, LUO L C, WANG S, HUI X L, HE G, CAO H B, MA X L, HUANG T M, ZHAO Y, DIAO C P, ZHENG X F, ZHAO H B, LIU J S, MALHI SUKHDEV S. Soil testing at harvest to enhance productivity and reduce nitrate residues in dryland wheat production. Field Crops Research, 2017, 212:153-164.
doi: 10.1016/j.fcr.2017.07.011
[23] 霍中洋, 葛鑫, 张洪程, 戴其根, 许轲, 龚振恺. 施氮方式对不同专用型小麦氮素吸收和氮肥利用率的影响. 作物学报, 2004, 30:449-454.
HUO Z Y, GE X, ZHANG H C, DAI Q G, XU K, GONG Z K. Effect of different nitrogen application types on N-absorption and N-utilization rate of specific use cultivars of wheat. Acta Agronomica Sinica, 2004, 30:449-454. (in Chinese)
[24] SUN M, GAO Z Q, REN A X, DENG Y, ZONG Y Z. Contribution of subsoiling in fallow period and nitrogen fertilizer to the soil-water balance and grain yield of dry-land wheat. International Journal of Agriculture and Biology, 2015, 17(1):175-180.
[25] YU Q, WANG H, WEN P F, WANG S L, LI J, WANG R, WANG X L. A suitable rotational conservation tillage system ameliorates soil physical properties and wheat yield: An 11-year in-situ study in a semi-arid agroecosystem. Soil & Tillage Research, 2020, 199. (online)
[26] 毛红玲, 李军, 贾志宽, 王蕾. 旱作麦田保护性耕作蓄水保墒和增产增收效应. 农业工程学报, 2010, 26(8):44-51.
MAO H L, LI J, JIA Z K, WANG L. Soil water conservation effect, yield and income increments of conservation tillage measures on dryland wheat field. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8):44-51. (in Chinese)
[27] 吴金芝, 黄明, 李友军, 付国占, 赵凯男, 侯园泉, 张振旺. 耕作方式和氮肥用量对旱地小麦产量、水分利用效率和种植效益的影响. 水土保持学报, 2021, 35(5):264-271.
WU J Z, HUANG M, LI Y J, FU G Z, ZHAO K N, HOU Y Q, ZHANG Z W. Effects of tillage practices and nitrogen rates on grain yield, water use efficiency and planting profits in winter wheat in dryland. Journal of Soil and Water Conservation, 2021, 35(5):264-271. (in Chinese)
[28] CHUAN L M, HE P, JIN J Y, LI S T, GRANT C, XU X P, QIU S J, ZHAO S C, ZHOU W. Estimating nutrient uptake requirements for wheat in China. Field Crops Research, 2013, 146:96-104.
doi: 10.1016/j.fcr.2013.02.015
[29] 赵红梅, 高志强, 孙敏, 赵维峰, 李青, 邓妍, 杨珍平. 休闲期耕作对旱地小麦土壤水分、花后脯氨酸积累及籽粒蛋白质积累的影响. 中国农业科学, 2012, 45(22):4574-4586.
ZHAO H M, GAO Z Q, SUN M, ZHAO W F, LI Q, DENG Y, YANG Z P. Effect of tillage in fallow period on soil water, post-anthesis proline accumulation and grains protein accumulation in dryland wheat. Scientia Agricultura Sinica, 2012, 45(22):4574-4586. (in Chinese)
[30] 张娟, 孙敏, 原亚琦, 梁艳妃, 杨清山, 高志强. 休闲期耕作对旱地小麦产量及品质的影响. 山西农业大学学报(自然科学版), 2018, 38(12):15-21.
ZHANG J, SUN M, YUAN Y Q, LIANG Y F, YANG Q S, GAO Z Q. Effects of tillage during fallow period on grain yield and quality of dryland wheat. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(12):15-21. (in Chinese)
[31] 丁晋利, 武继承, 杨永辉, 冯浩. 长期保护性耕作对冬小麦氮素积累和转运的影响. 农业机械学报, 2017, 48(2):240-246, 341.
DING J L, WU J C, YANG Y H, FENG H. Effects of long-term conservation tillage on nitrogen accumulation and translocation of winter wheat. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2):240-246, 341. (in Chinese)
[32] 张慧芋, 孙敏, 高志强, 梁艳妃, 杨清山, 张娟, 李念念. 旱地麦田深松蓄水和覆盖播种土壤水分变化与小麦籽粒蛋白质含量的关系. 中国农业科学, 2018, 51(15):2860-2871.
ZHANG H Y, SUN M, GAO Z Q, LIANG Y F, YANG Q S, ZHANG J, LI N N. Relationship between soil water variation, wheat yield and grain protein and its components contents under sub-soiling during the fallow period plus mulched-sowing. Scientia Agricultura Sinica, 2018, 51(15):2860-2871. (in Chinese)
[33] 郑成岩, 于振文, 王东, 张永丽, 石玉. 耕作方式对小麦氮素积累与转运及土壤硝态氮含量的影响. 植物营养与肥料学报, 2012, 18(6):1303-1311.
ZHENG C Y, YU Z W, WANG D, ZHANG Y L, SHI Y. Effects of tillage practices on nitrogen accumulation and translocation in winter wheat and NO3--N content in soil. Plant Nutrition and Fertilizer Science, 2012, 18(6):1303-1311. (in Chinese)
[34] 张礼军, 张耀辉, 鲁清林, 白玉龙, 周刚, 汪恒兴, 张文涛, 白斌, 周洁, 何春雨. 耕作方式和氮肥水平对旱地小麦籽粒品质的影响. 核农学报, 2017, 31(8):1567-1575.
ZHANG L J, ZHANG Y H, LU Q L, BAI Y L, ZHOU G, WANG H X, ZHANG W T, BAI B, ZHOU J, HE C Y. Effect of tillage model and nitrogen rate on grain quality of dryland winter wheat. Journal of Nuclear Agricultural Sciences, 2017, 31(8):1567-1575. (in Chinese)
[35] 王春阳, 周建斌, 郑险峰, 赵满兴, 李生秀. 不同栽培模式及施氮量对半旱地冬小麦氮素累积及分配的影响. 西北农林科技大学学报(自然科学版), 2008, 36(1):102-110.
WANG C Y, ZHOU J B, ZHEN X F, ZHAO M X, LI S X. Effects of different cultivation methods and nitrogen fertilizer application on nitrogen accumulat ion and distribut ion in winter wheat on semi-dryland farming. Journal of Northwest A & F University(Natural Science Edition ), 2008, 36(1):102-110. (in Chinese)
[36] 孙敏, 白冬, 高志强, 任爱霞, 邓妍, 赵维峰, 赵红梅. 休闲期耕作对旱地麦田土壤水分与小麦植株氮素吸收、利用的影响. 水土保持学报, 2014, 28(1):203-208.
SUM M, BAI D, GAO Z Q, REN A X, DENG Y, ZHAO W F, ZHAO H M. Effects of tillage in fallow period on soil water and nitrogen absorption and utilization of dryland wheat. Journal of Soil and Water Conservation, 2014, 28(1):203-208. (in Chinese)
[37] 闫湘, 金继运, 梁鸣早. 我国主要粮食作物化肥增产效应与肥料利用效率. 土壤, 2017, 49(6):1067-1077.
YAN X, JIN J Y, LIANG M Z. Fertilizer use efficiencies and yield-increasing rates of grain crops in China. Soils, 2017, 49(6):1067-1077. (in Chinese)
[38] CHUAN L M, HE P, ZHAO T K, ZHENG H G, XU X P. Agronomic characteristics related to grain yield and nutrient use efficiency for wheat production in China. PLoS ONE, 2016, 11(9):1-16.
[39] 董放, 王媛, 关维刚, 周建斌. 旱地不同栽培模式和施氮对土壤水分、温度及氮矿化的影响. 西北农林科技大学学报(自然科学版), 2008, 36(12):108-114.
DONG F, WANG Y, GUAN W G, ZHOU J B. Effects of different cultivation patterns and application of nitrogen fertilizer on moisture, temperature and nitrogen mineralization in soil of dryland. Journal of Northwest A&F University (Natural Science Edition), 2008, 36(12):108-114. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[8] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[9] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[10] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[11] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[12] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[13] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[14] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[15] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!