Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2840-2851.doi: 10.3864/j.issn.0578-1752.2020.14.008

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau

ZHANG Qi(),WANG ShuLan,WANG Hao,LIU PengZhao,WANG XuMin,ZHANG YuanHong,LI HaoYu,WANG Rui,WANG XiaoLi(),LI Jun()   

  1. College of Agronomy, Northwest A&F University/Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling 712100, Shannxi
  • Received:2019-12-23 Accepted:2020-02-19 Online:2020-07-16 Published:2020-08-10
  • Contact: XiaoLi WANG,Jun LI E-mail:17835424993@163.com;nwwanxl@nwsuaf.edu.cn;junli@nwsuaf.edu.cn

Abstract:

【Objective】This study was aimed to clarify the effects of reducing the frequencies of subsoiling on the soil structures and soil carbon pool in spring maize fields on the Loess Plateau. 【Method】A long-term positioning experiment of conservation tillage with different frequencies of subsoiling and no-tillage was carried out in spring maize fields on Weibei dryland from 2007 to 2019, with continuous subsoiling (S) as the contrast, which set up combination tillage modes of no-tillage and subsoiling to reduce the frequency of subsoiling: subsoiling once two years (NS) and subsoiling once three years (NNS). The effects of reducing the frequency of subsoiling on soil aggregates, carbon preservation capacity of soil aggregates, soil carbon pool composition and carbon pool management index under different tillage treatments were observed after 12 year continuous experiment. 【Result】(1) Decreasing the frequency of subsoiling improved the content of macroaggregates (R0.25), the content of 0-40 cm soil layer mechanical-stability aggregates (DR0.25) increased by 3.8% and water-stable aggregates (WR0.25) increased by 38.9% under NNS treatment, respectively. NS treatment increased the WR0.25 by 41.8%. Meanwhile, NNS decreased the destruction rate (PAD) and unstable aggregate index (ELT) of aggregates, with the mean weight diameter (MWD) and geometrical mean diameter (GMD) significantly increased by 13.3% and 16.6%. (2) The total carbon preservation capacity (TOPC) of the aggregates under NNS and NS was significantly increased. The average carbon sequestration capacity of aggregates in 0-40 cm soil layer under NNS was increased by 10.8%, whereas it was decreased in 20-30 cm soil layer. The carbon preservation ability of aggregates in different sizes indicated that the carbon preservation ability of aggregates with particle size of <0.25 mm was stronger. (3) NNS treatment had no significant effect on the total organic carbon (TOC) content in 0-40 cm soil layer, but increased the TOC content in the 10-20 cm soil layer, reduced stratification effect of surface soil organic carbon, and decreased the TOC content in 30-40 cm soil layer and caused the effect of organic carbon layering in deep soil. (4) The content of active organic carbon (EOC) in the 0-40 cm soil layer under NNS treatment obviously increased by 24.9%. Furthermore, the increase of EOC content lead to higher EOC/TOC ratio, carbon pool activity (A) and carbon pool activity index (AI), with the carbon pool management index (CPIM) increased by 39.8% compared to S. 【Conclusion】Long-term continuous subsoiling was not conducive to the formation of soil aggregates and the cycle of soil carbon pools. While subsoiling once three years tillage mode helped to reduce the degree of damage about soil aggregates, improve the carbon pool management index and adjust the renewal and cycling of soil carbon pool, which was a suitable tillage model for the region.

Key words: Loess plateau, spring maize, subsoiling frequency, soil aggregates, soil carbon pool

Fig. 1

Average monthly rainfall and temperature in 2007-2019"

Table 1

Soil physical and chemical properties at beginning of experiment"

土层
Soil depth (cm)
pH 有机质
Organic matter (g·kg-1)
全氮
Total nitrogen (g·kg-1)
全磷
Total phosphorus (g·kg-1)
全钾
Total potassium (g·kg-1)
容重
Bulk density (g·cm-3)
孔隙度
Porosity
(%)
0-20 7.86 9.95 0.74 0.59 5.92 1.36 48.68
20-40 7.96 8.41 0.65 0.69 5.53 1.45 44.66

Fig. 2

Contents of force-stable aggregates (DR0.25) and water-stable aggregates (WR0.25) under different frequency subsoiling treatments 下同 Different letters mean significant difference at 0.05 level. The same as below"

Fig. 3

Rate of structure break-up (PAD) and unstable aggregate index (ELT) under different frequency subsoiling treatments"

Table 2

The mean weight diameter (MWD) and geometrical mean diameter (GMD) of WR0.25 under different frequency of subsoiling treatment (mm)"

项目
Items
处理
Treatment
土层深度Depth
0-10 cm 10-20 cm 20-30 cm 30-40 cm AVG
平均质量直径
MWD
NNS 1.05a 0.97b 1.03a 0.88a 0.98a
NS 1.04a 1.00a 0.85b 0.85a 0.94a
S 0.92b 0.94b 0.82b 0.72b 0.85b
几何平均直径
GMD
NNS 0.92a 0.82a 0.88a 0.73a 0.84a
NS 0.85b 0.85a 0.72ab 0.72a 0.78a
S 0.75c 0.77b 0.68b 0.60b 0.70b

Table 3

Carbon preservation capacity of soil aggregates under different frequency of subsoiling treatments"

土层深度
Depth (cm)
处理
Treatment
总固碳能力
TOPC (g·kg-1)
不同粒级团聚体固碳能力Aggregate-associated CPC (g·kg-1)
>2 mm 2-1 mm 1-0.5mm 0.5-0.25mm 0.25-0.053mm <0.053mm
0-10 NNS 8.60a 0.47a 0.47b 1.09a 1.33a 2.27a 2.98a
NS 7.42ab 0.39a 0.36b 0.79b 0.89a 2.05a 2.94a
S 6.42b 0.37a 0.85a 1.09a 0.65b 1.82b 1.63b
10-20 NNS 7.92a 0.09c 0.35b 1.73a 0.97a 1.50a 3.27a
NS 8.14a 0.63a 0.59a 1.17a 1.14a 1.47a 3.14a
S 6.66b 0.26b 0.41b 0.86b 0.77a 1.12b 3.24a
20-30 NNS 4.58b 0.15b 0.27a 0.41b 0.72a 1.35b 1.68b
NS 6.77a 0.10b 0.24a 0.36b 0.59b 3.47a 2.01b
S 6.93a 0.21a 0.33a 0.50a 0.85a 1.38b 3.65a
30-40 NNS 6.64a 0.15a 0.21a 0.43a 0.64a 1.70a 3.50a
NS 6.17a 0.01b 0.15a 0.31a 0.44b 0.96b 4.30a
S 4.70b 0.03b 0.09b 0.31a 0.36b 1.19b 2.72b
AVG NNS 6.93a 0.21a 0.33b 0.91a 0.92a 1.70a 2.86b
NS 7.13a 0.28a 0.30b 0.66b 0.76b 1.99a 3.10a
S 6.18b 0.22a 0.42a 0.69b 0.66c 1.38b 2.81b

Fig. 4

TOC and EOC content in soil under different frequency of subsoiling treatments"

Table 4

SOC stratification ratio under different frequency of subsoiling treatments"

项目
Item
处理
Treatment
土层深度 Depth
0-10/10-20 cm 10-20/20-30 cm 20-30/30-40 cm
总有机碳
TOC
NNS 1.18b 1.16ab 1.68a
NS 1.26ab 1.25a 1.33b
S 1.35a 1.01b 1.33b
活性有机碳
EOC
NNS 2.12a 0.77b 0.98b
NS 1.62b 1.00a 0.78b
S 1.58b 1.00a 1.37a

Table 5

Change of SOC fractions under different frequency of subsoiling treatments."

土层
Depth (cm)
处理
Treatment
活性有机碳/总有机碳
EOC/TOC (%)
非活性有机碳/总有机碳
HOC/TOC (%)
氧化稳定系数
Kos
0-10 NNS 0.33a 0.67b 1.99b
NS 0.25b 0.75a 2.96a
S 0.26b 0.74a 2.91a
10-20 NNS 0.19a 0.81a 4.38a
NS 0.20a 0.80a 4.11a
S 0.22a 0.78a 3.57b
20-30 NNS 0.28a 0.72a 2.56b
NS 0.23b 0.77a 3.29a
S 0.22b 0.78a 3.55a
30-40 NNS 0.48a 0.52c 1.08b
NS 0.40a 0.60b 1.53b
S 0.21b 0.79a 3.70a
AVG NNS 0.32a 0.68b 2.50b
NS 0.27b 0.73ab 2.97ab
S 0.23b 0.77a 3.43a

Table 6

Soil carbon pool management index"

土层
Depth (cm)
处理
Treatment
碳库指数
CPI
碳库活度
A
碳库活度指数
AI
碳库管理指数
CPMI
0-10 NNS 1.03a 0.50a 1.46a 150.00a
NS 1.04a 0.34b 0.99b 102.18b
S 1.00b 0.34b 1.00b 100.00b
10-20 NNS 1.18a 0.23b 0.81b 95.94ab
NS 1.12a 0.24b 0.87b 97.13ab
S 1.00b 0.28a 1.00a 100.00a
20-30 NNS 1.02a 0.39a 1.38a 140.69a
NS 0.94b 0.30a 1.08b 101.73b
S 1.00a 0.28a 1.00b 100.00b
30-40 NNS 0.80b 0.93a 3.42a 275.09a
NS 0.95b 0.65b 2.42ab 229.13a
S 1.00a 0.27c 1.00b 100.00b
AVG NNS 1.01a 0.51a 1.77a 165.43a
NS 1.01a 0.39b 1.34ab 132.54ab
S 1.00a 0.29b 1.00b 100.00b
[1] 薛建福, 赵鑫, SHADRACK B D, 陈阜, 张海林. 保护性耕作对农田碳、氮效应的影响研究进展. 生态学报, 2013,33(19):6006-6013.
XUE J F, ZHAO X, SHADRACK B D, CHEN F, ZHANG H L. Advances in effects of conservation tillage on soil organic carbon and nitrogen. Acta Ecologica Sinica, 2013,33(19):6006-6013. (in Chinese)
[2] 孔维萍, 成自勇, 张芮, 何钊全, 何正乾, 张晓霞, 刘静霞, 高阳. 保护性耕作在黄土高原的应用和发展. 干旱区研究, 2015,32(2):240-250.
KONG W P, CHENG Z Y, ZHANG R, HE Z Q, HE Z Q, ZHANG X X, LIU J X, GAO Y. Application and development of conservation tillage techniques in the Loess Plateau. Arid Zore Research, 2015,32(2):240-250. (in Chinese)
[3] 王碧胜, 蔡典雄, 武雪萍, 李景, 梁国鹏, 于维水, 王相玲, 杨毅宇, 王小彬. 长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响. 植物营养与肥料学报, 2015,21(6):1455-1464.
doi: 10.11674/zwyf.2015.0610
WANG B S, CAI D X, WU X P, LI J, LIANG G P, YU W S, WANG X L, YANG Y Y, WANG X B. Effects of long-term conservation tillage on soil organic carbon, maize yield and water utilization. Journal of Plant Nutrition and Fertilize, 2015,21(6):1455-1464. (in Chinese)
doi: 10.11674/zwyf.2015.0610
[4] XU J, HAN H F, NING T Y, LI Z J, LAI R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. Field Crops Research, 2019,233:33-40.
[5] 何明, 高焕文, 董培岩, 崔德杰, 赵文阁. 一年两熟地区保护性耕作深松试验. 农业机械学报, 2018,49(7):58-63.
HE M, GAO H W, DONG P Y, CUI D J, ZHAO W G. Sub-soiling experiment on double cropping and conservation tillage adopted area. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(7):58-63. (in Chinese)
[6] 王峻, 薛永, 潘剑君, 郑宪清, 秦秦, 孙丽娟, 宋科. 耕作和秸秆还田对土壤团聚体有机碳及其作物产量的影响. 水土保持学报, 2018,32(5):121-127.
WANG J, XUE Y, PAN J J, ZHENG X Q, QIN Q, SUN L J, SONG K. Effect of tillage and straw incorporation on sequestration of organic carbon and crop yield. Journal of Soil and Water Conservation, 2018,32(5):121-127. (in Chinese)
[7] 赵富王, 王宁, 苏雪萌, 李秋嘉. 黄土丘陵区主要植物根系对土壤有机质和团聚体的影响. 水土保持学报, 2019,33(5):105-113.
ZHAO F W, WANG N, SU X M, LI Q J. Effect of main plant roots on soil organic matter and aggregates in Loses Hilly Region. Journal of Soil and Water Conservation, 2019,33(5):105-113. (in Chinese)
[8] 杨思存, 王成宝, 霍琳, 姜万礼, 温美娟. 不同耕作措施对甘肃引黄灌区耕地土壤有机碳的影响. 农业工程学报, 2019,35(02):114-121.
YANG S C, WANG C B, HUO L, JIANG W L, WEN M J. Effects of different tillage practices on soil organic carbon of cultivated land in Gansu Yellow River irrigation district. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(2):114-121. (in Chinese)
[9] 于维水, 王碧胜, 王士超, 孟繁华, 卢昌艾. 长期不同施肥下我国4种典型土壤活性有机碳及碳库管理指数的变化特征. 中国土壤与肥料, 2018(2):29-34.
YU W S, WANG B S, WANG S C, MENG F H, LU C A. Characteristics of soil labile organic carbon and carbon management index under different long-term fertilization systems in four typical soils of China. Soil and Fertilizer Sciences in China, 2018(2):29-34. (in Chinese)
[10] 李景, 吴会军, 武雪萍, 蔡典雄, 姚宇卿, 吕军杰, 郑凯, 刘志平. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用. 植物营养与肥料学报, 2015,21(2):378-386.
doi: 10.11674/zwyf.2015.0212
LI J, WU H J, WU X P, CAI D X, YAO Y Q, LÜ J J, ZHENG K, LIU Z P. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents. Journal of Plant Nutrition and Fertilizer, 2015,21(2):378-386. (in Chinese)
doi: 10.11674/zwyf.2015.0212
[11] 王勇, 姬强, 刘帅, 孙汉印, 王旭东. 耕作措施对土壤水稳性团聚体及有机碳分布的影响. 农业环境科学学报, 2012,31(7):1365-1373.
WANG Y, JI Q, LIU S, SUN H Y, WANG X D. Effects of tillage practices on water-stable aggregation and aggregate-associated organic C in soils. Journal of Agro-Environment Science, 2012,31(7):1365-1373. (in Chinese)
[12] 张博文, 杨彦明, 张兴隆, 李金龙, 陈新宇, 李志新. 连续深松对黑土结构特性和有机碳及碳库指数影响. 中国土壤与肥料, 2019(2):6-13.
ZHANG B W, YANG Y M, ZHANG X L, LI J L, CHEN X Y, LI Z X. Effects of continuous deep loosening on soil physical characteristics, organic carbon content and carbon pool index in black soil. Soil and Fertilizer Sciences in China, 2019(2):6-13. (in Chinese)
[13] 蔡太义, 黄耀威, 黄会娟, 贾志宽, 李立科, 杨宝平, 韩思明. 不同年限免耕秸秆覆盖对土壤活性有机碳和碳库管理指数的影响. 生态学杂志, 2011,30(9):1962-1968.
CAI T Y, HUANG Y W, HUANG H J, JIA Z K, LI L K, YANG B P, HAN S M. Soil labile organic carbon and carbon pool management index as affected by different years no-tilling with straw mulching. Chinese Journal of Ecology, 2011,30(9):1962-1968. (in Chinese)
[14] 田慎重, 王瑜, 张玉凤, 边文范, 董亮, 罗加法, 郭洪海. 旋耕转深松和秸秆还田增加农田土壤团聚体碳库. 农业工程学报, 2017,33(24):133-140.
TIAN S Z, WANG Y, ZHANG Y F, BIAN W F, DONG L, LUO J F, GUO H H. Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(24):133-140. (in Chinese)
[15] 田慎重, 郭洪海, 董晓霞, 董亮, 郑东峰, 孙泽强, 王学君, 刘盛林. 耕作方式转变和秸秆还田对土壤活性有机碳的影响. 农业工程学报, 2016,32(S2):39-45.
TIAN S Z, GUO H H, DONG X X, DONG L, ZHENG D F, SUN Z Q, WANG X J, LIU S L. Effect of tillage method change and straw return on soil labile organic carbon. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(S2):39-45. (in Chinese)
[16] 张霞, 杜昊辉, 王旭东, 李军. 不同耕作措施对渭北旱塬土壤碳库管理指数及其构成的影响. 自然资源学报, 2018,33(12):2223-2237.
ZHANG X, DU H H, WANG X D, LI J. Effects of different tillage methods on soil organic carbon pool management index and its composition in Weibei Highland. Journal of Natural Resources, 2018,33(12):2223-2237. (in Chinese)
[17] 程科, 李军, 毛红玲. 不同轮耕模式对黄土高原旱作麦田土壤物理性状的影响. 中国农业科学, 2013,46(18):3800-3808.
CHENG K, LI J, MAO H L. Effects of different rotational tillage patterns on soil physical properties in rainfed wheat fields of the Loess Plateau. Scientia Agricultura Sinica, 2013,46(18):3800-3808. (in Chinese)
[18] 侯贤清, 李荣, 贾志宽, 韩清芳. 不同农作区土壤轮耕模式与生态效应研究进展. 生态学报, 2016,36(5):1215-1223.
HOU X Q, LI R, JIA Z K, HAN Q F. Research progress on ecological effects under the rotational tillage patterns in agricultural regions of China. Acta Ecologica Sinica, 2016,36(5):1215-1223. (in Chinese)
[19] 孔凡磊, 张海林, 孙国峰, 黄光辉, 陈阜. 轮耕措施对小麦玉米两熟制农田土壤碳库特性的影响. 水土保持学报, 2010,24(2):150-154, 183.
KONG F L, ZHANG H L, SUN G F, HUANG G H, CHEN F. Rotational tillage effects on characteristics of soil carbon pool for the wheat-corn system. Journal of Soil and Water Conservation, 2010,24(2):150-154, 183. (in Chinese)
[20] 王丽, 李军, 李娟, 柏炜霞. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响. 应用生态学报, 2014,25(3):759-768.
pmid: 24984494
WANG L, LI J, LI J, BAI W X. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland. Chinese Journal of Applied Ecology, 2014,25(3):759-768. (in Chinese)
pmid: 24984494
[21] 陈宁宁, 李军, 吕薇, 王淑兰. 不同轮耕方式对渭北旱塬麦玉轮作田土壤物理性状与产量的影响. 中国生态农业学报, 2015,23(9):1102-1111.
CHEN N N, LI J, LÜ W, WANG S L. Effects of different rotational tillage patterns on soil physical properties and yield of winter wheat-spring maize rotation field in Weibei highland. Chinese Journal of Eco-Agriculture, 2015,23(9):1102-1111. (in Chinese)
[22] 陈源泉, 隋鹏, 严玲玲, 龙攀, 李柘锦, 王彬彬. 有机物料还田对华北小麦玉米两熟农田土壤有机碳及其组分的影响. 农业工程学报, 2016,32(S2):94-102.
CHEN Y Q, SUI P, YAN L L, LONG P, LI Z J, WANG B B. Effects of different organic wastes incorporation on soil organic carbon and its fraction under wheat-maize cropping system in North China Plain. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(S2):94-102. (in Chinese)
[23] 李玮, 郑子成, 李廷轩, 王永东. 退耕植茶对川西低山丘陵区土壤有机碳库的影响. 中国农业科学, 2014,47(8):1642-1651.
LI W, ZHENG Z C, LI T X, WANG Y D. Effects of returning farmland to tea on soil organic carbon pool of hilly region in the western Sichuan. Scientia Agricultura Sinica, 2014,47(8):1642-1651. (in Chinese)
[24] WANG H, WANG S L, ZHANG Y J, WANG X L, WANG R, LI J. Tillage system change affects soil organic carbon storage and benefits land restoration on loess soil in North China. Land Degradation and Development, 2018,29:2880-2887.
[25] 李玉洁, 王慧, 赵建宁, 皇甫超河, 杨殿林. 耕作方式对农田土壤理化因子和生物学特性的影响. 应用生态学报, 2015,26(3):939-948.
pmid: 26211079
LI Y J, WANG H, ZHAO J N, HUANGFU C H, YANG D L. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland: A review. Chinese Journal of Applied Ecology, 2015,26(3):939-948. (in Chinese)
pmid: 26211079
[26] 李爱宗, 张仁陟, 王晶. 耕作方式对黄绵土水稳定性团聚体形成的影响. 土壤通报, 2008(3):480-484.
LI A Z, ZHANG R Z, WANG J. Effect of tillage methods on the formation of water-stable aggregates in loess soil. Chinese Journal of Soil Science, 2008(3):480-484. (in Chinese)
[27] 黄炳林, 王孟雪, 金喜军, 胡国华, 张玉先. 不同耕作处理对土壤微生物、酶活性及养分的影响. 作物杂志, 2019(6):104-113.
HUANG B L, WANG M X, JIN X J, HU G H, ZHANG Y X. Effect of different tillage treatment on soil microorganisms, enzyme activities and nutrients. Crops, 2019(6):104-113. (in Chinese)
[28] 张艺, 尹力初, 戴齐. 后续施肥措施改变对红壤性水稻土团聚体有机碳组分的影响. 水土保持学报, 2016,30(6):278-283, 324.
ZHANG Y, YIN L C, DAI Q. Effect of following-up reforming on the fractions of aggregate-associated organic carbon in red paddy soils. Journal of Soil and Water Conservation, 2016,30(6):278-283, 324. (in Chinese)
[29] 李昊昱, 孟兆良, 庞党伟, 陈金, 侯永坤, 崔海兴, 金敏, 王振林, 李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响. 作物学报, 2019,45(6):893-903.
LI H Y, MENG Z L, PANG D W, CHEN J, HOU Y K, CUI H X, JIN M, WANG Z L, LI Y. Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland. Acta Agronomica Sinica, 2019,45(6):893-903. (in Chinese)
[30] 梁伟, 崔德杰, 柳新伟, 蒋帅, 郭晓冬. 一年两作栽培模式下保护性耕作对土壤团聚体及微生物的影响. 山东农业科学, 2019,51(1):98-103, 127.
LIANG W, CUI D J, LIU X W, JIANG S, GUO X D. Effect of conservation tillage on soil aggregates and microorganism under double cropping cultivation mode. Shandong Agricultural Sciences, 2019,51(1):98-103, 127. (in Chinese)
[31] 金鑫鑫, 汪景宽, 孙良杰, 王帅, 裴久渤, 安婷婷, 丁凡, 高晓丹, 徐英德. 稳定13C同位素示踪技术在农田土壤碳循环和团聚体固碳研究中的应用进展. 土壤, 2017,49(2):217-224.
JIN X X, WANG J K, SUN L J, WANG S, PEI J B, AN T T, DING F, GAO X D, XU Y D. Progress of carbon cycle in farmland and sequestration in soil aggregates revealed by stable13C isotope. Soils, 2017,49(2):217-224. (in Chinese)
[32] 傅敏, 郝敏敏, 胡恒宇, 丁文超, 翟明振, 张海依. 土壤有机碳和微生物群落结构对多年不同耕作方式与秸秆还田的响应. 应用生态学报, 2019,30(9):3183-3194.
pmid: 31529894
FU M, HAO M M, HU H Y, DING W C, ZHAI M Z, ZHANG H Y. Responses of soil organic carbon and microbial community structure to different tillage patterns and straw returning for multiple years. Chinese Journal of Applied Ecology, 2019,30(9):3183-3194. (in Chinese)
pmid: 31529894
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[3] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[4] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[5] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[6] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[7] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[8] YAO FanYun,LIU ZhiMing,CAO YuJun,LÜ YanJie,WEI WenWen,WU XingHong,WANG YongJun,XIE RuiZhi. Diurnal Variation of N2O and CO2 Emissions in Spring Maize Fields in Northeast China Under Different Nitrogen Fertilizers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3680-3690.
[9] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[10] MA HongMei,CAO HanBing,XIE YingHe,LI TingLiang,LIU Kai,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin,WU WenYue,LI WenQi. Evaluation on Fertilizer Application and Its Economic-Environmental Benefits Associated with Fertilizer Reduction Potential for Dryland Wheat in Loess Plateau of Southern Shanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(13): 2804-2817.
[11] LIU Kai,XIE YingHe,LI TingLiang,MA HongMei,ZHANG QiRu,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Nitrogen Reduction and Film Mulching on Wheat Yield and Nutrient Absorption and Utilization in Loess Plateau [J]. Scientia Agricultura Sinica, 2021, 54(12): 2595-2607.
[12] HUANG QiuWan,LIU ZhiJuan,YANG XiaoGuang,BAI Fan,LIU Tao,ZHANG ZhenTao,SUN Shuang,ZHAO Jin. Analysis of Suitable Irrigation Schemes with High-Production and High-Efficiency for Spring Maize to Adapt to Climate Change in the West of Northeast China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4470-4484.
[13] DENG HaoLiang,ZHANG HengJia,XIAO Rang,ZHANG YongLing,TIAN JianLiang,LI FuQiang,WANG YuCai,ZHOU Hong,LI Xuan. Effects of Different Covering Planting Patterns on Soil Moisture, Temperature Characteristics and Maize Yield in Semi-Arid Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(2): 273-287.
[14] WANG Li,WANG ZhaoHui,GUO ZiKang,TAO ZhenKui,ZHENG MingJun,HUANG Ning,GAO ZhiYuan,ZHANG XinXin,HUANG TingMiao. Differences of Main Nutrient Concentration in Wheat Grain Between Typical Locations of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(17): 3527-3540.
[15] CAO YuJun,YAO FanYun,WANG Dan,LÜ YanJie,LIU XiaoDan,WANG LiChun,WANG YongJun,LI CongFeng. Effects of Different Agronomy Factors on Yield Gap and Nitrogen Efficiency Gap of Spring Maize Under Rain-Fed Conditions [J]. Scientia Agricultura Sinica, 2020, 53(15): 3036-3047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!