Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2360-2371.doi: 10.3864/j.issn.0578-1752.2022.12.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau

XU FangLei1(),ZHANG Jie1,LI Yang1,ZHANG WeiWei1,BO QiFei1,LI ShiQing1,2(),YUE ShanChao1,2()   

  1. 1College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
    2State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2021-04-07 Accepted:2021-07-19 Online:2022-06-16 Published:2022-06-23
  • Contact: ShiQing LI,ShanChao YUE E-mail:18306832361@163.com;sqli@ms.iswc.ac.cn;yueshanchao@nwafu.edu.cn

Abstract:

【Objective】 A two-year on-farm experiment was conducted to evaluate the effects of different fertilization application methods and nitrogen application rates on soil ammonia volatilization of spring maize in dry farming on the Loess Plateau. 【Method】The split zone test design was adopted in the experiment, the main factor included three nitrogen application rates of 0, 180 and 300 kg·hm-2 (namely N0, N180 and N300, respectively), and the sub-factors included three fertilization methods of solid granular urea one-time basal fertilization (UR), solid granular urea basal and top-dress fertilization (URT, 40% as basal fertilizer and 60% as top-dressing at 10 leaf stage), and common urea and controlled-release urea mixed in one-time basal application (CRU). Sponge absorption ventilation method was used for in-situ determination. 【Result】 (1) As for the ammonia volatilization after basal fertilizer, the three fertilization methods all showed the peak value of ammonia volatilization, and the peak value of ammonia volatilization under UR treatment was higher than that of the other two fertilization methods, especially under the condition of high nitrogen application rate. For the ammonia volatilization after topdressing, only the URT treatment showed the peak value, which was higher than that after basal fertilizer. (2) The accumulation of ammonia volatilization increased with the increase of nitrogen application rate. Under the same nitrogen application rate, the accumulation of ammonia volatilization under URT treatment was the highest (2.88-36.84 kg·hm-2), which was mainly concentrated in the top dressing period (72.24%-90.4% of the whole growth period). The second was UR treatment (1.08-10.07 kg·hm-2), while the cumulative ammonia volatilization under CRU treatment was the lowest (0.96-5.69 kg·hm-2). 3. The interaction between nitrogen application rate and fertilization method on ammonia volatilization was very significant. The annual difference of ammonia volatilization emission was mainly influenced by rainfall after fertilization. 【Conclusion】For spring maize covered with film in dry farming in northwest China, CRU could reduce both the artificial input of topdressing and the loss of ammonia volatilization, which could be used as a green fertilization method worthy of promotion in this area.

Key words: spring maize, ammonia volatilization, mixture of controlled-release urea, fertilization method, N rate, Loess Plateau

Fig. 1

Rainfall, soil water content and soil temperature at 10 cm depth in 2019 (a) and 2020 (b)"

Table 1

The detailed treatments of the experiment"

处理
Treatment
施氮量
N rate ( kg N·hm-2)
施肥方式
Fertilization method
磷肥用量(基施)
P rate (kg P·hm-2)
钾肥用量(基施)
K rate (kg K·hm-2)
UR N0 0 尿素一次性基施 UR 40 80
CRU N0 0 尿素与控释肥掺混一次性基施 CRU 40 80
URT N0 0 尿素分次施用(基肥40%,V10期追肥60%) URT 40 80
UR N180 180 尿素一次性基施 UR 40 80
CRU N180 180 尿素与控释肥掺混一次性基施 CRU 40 80
URT N180 180 尿素分次施用(基肥40%,V10期追肥60%) URT 40 80
UR N300 300 尿素一次性基施 UR 40 80
CRU N300 300 尿素与控释肥掺混一次性基施 CRU 40 80
URT N300 300 尿素分次施用(基肥40%,V10期追肥60%) URT 40 80

Fig. 2

Changes of soil ammonia volatilization rate at basal fertilizer stage under three nitrogen application rates (N0, N180 and N300) in 2019 (a, b, c) and in 2020 (d, e, f) The error bar represents the standard deviation of the mean (n=6)"

Fig. 3

Changes of soil ammonia volatilization rate during top-dressing under three nitrogen application rates (N0, N180 and N300) in 2019 (a, b, c) and in 2020 (d, e, f) The error bar represents the standard deviation of the mean (n=6)"

Table 2

Cumulative amount of ammonia volatilization and loss rate of fertilizer N in 2019 and 2020"

氮肥用量
N rate
(kg N·hm-2)
施肥方式
Fertilization
method
播种期基肥后氨挥发量
Ammonia volatilization after basal fertilizer
(kg·hm-2)
十叶期追肥后氨挥发量
Ammonia volatilization after topdressing at the ten-leaf stage (kg·hm-2)
累积氨挥发量
Accumulative NH3 volatilization (kg·hm-2)
氮肥相对损失率
Ratio of NH3 loss to applied N (%)
氮肥对氮挥发
的贡献率
Loss from fertilizer (%)
2019 2020 2019 2020 2019 2020 2019 2020 2019 2020
N0 UR 0.53±0.04ab 1.91±0.29a 0.33±0.02a 0.46±0.07a 0.86±0.02b 2.37±0.15a - - - -
CRU 0.54±0.05a 1.67±0.30a 0.32±0.03a 0.48±0.13a 0.86±0.04b 2.15±0.20ab - - - -
URT 0.55±0.07a 1.47±0.10ab 0.51±0.09a 1.15±0.17a 1.06±0.06a 2.62±0.07a - - - -
N180 UR 0.75±0.11a 3.16±0.58a 0.33±0.04b 0.51±0.12b 1.08±0.05b 3.67±0.30bc 0.12 0.72 20.37 35.42
CRU 0.65±0.06a 2.73±0.25a 0.32±0.01b 0.46±0.28b 0.96±0.03bc 3.19±0.08b 0.06 0.58 10.42 32.60
URT 0.67±0.05a 2.62±0.31a 2.21±0.17a 24.72±2.60a 2.88±0.10a 27.34±1.29a 1.01 13.73 63.19 90.42
N300 UR 0.94±0.11a 9.28±1.76a 0.33±0.01b 0.89±0.23b 1.27±0.05b 10.17±0.89b 0.14 2.6 32.28 76.70
CRU 0.77±0.07abc 5.06±1.12b 0.31±0.02b 0.63±0.43b 1.08±0.04c 5.69±0.66c 0.07 1.18 20.37 62.21
URT 0.88±0.07ab 4.37±0.49bc 2.29±0.10a 32.47±0.43a 3.17±0.06a 36.84±0.41a 0.70 11.41 66.56 92.89
变异来源Source of variation
氮肥用量N rate ** ** ** ** ** **
施肥方式
Fertilization method
ns * ** ** ** **
氮肥用量×施肥方式
N rate×Fertilization method
ns ns ** ** ** **

Fig. 4

Accumulation of ammonia volatilization in ten days after fertilization under different fertilization methods “ns” means no significant difference (P>0.05); * and **mean significant difference at 0.05 and 0.01 levels, respectively"

[1] TILMAN D, CASSMAN K G, MATSON P A, NAYLOR R, POLASKY S. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671-677. doi: https://doi.org/10.1038/nature01014.
doi: https://doi.org/10.1038/nature01014
[2] ZHANG X, DAVIDSON E A, MAUZERALL D L, SEARCHINGER T D, DUMAS P, SHEN Y. Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51-59. doi: https://doi.org/10.1038/nature15743.
doi: https://doi.org/10.1038/nature15743
[3] CAI G X, CHEN D L, DING H, PACHOLSKI A, FAN X H, ZHU Z L. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutrient Cycling in Agroecosystems, 2002, 63(2): 187-195. doi: 10.1023/A:1021198724250.
doi: 10.1023/A:1021198724250
[4] FU H, LUO Z B, HU S Y. A temporal-spatial analysis and future trends of ammonia emissions in China. Science of the Total Environment, 2020, 731: 138897. doi: 10.1016/j.scitotenv.2020.138897.
doi: 10.1016/j.scitotenv.2020.138897
[5] LIU L, ZHANG X Y, XU W, LIU X J, LI Y, WEI J, WANG Z, LU X H. Ammonia volatilization as the major nitrogen loss pathway in dryland agro-ecosystems. Environmental Pollution, 2020, 265: 114862. doi: 10.1016/j.envpol.2020.114862.
doi: 10.1016/j.envpol.2020.114862
[6] KANG Y N, LIU M X, SONG Y, HUANG X, YAO H A, CAI X H, ZHANG H S, KANG L, LIU X J, YAN X Y, HE H, ZHANG Q A, SHAO M, ZHU T. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmospheric Chemistry and Physics, 2016, 16(4): 2043-2058. doi: 10.5194/acp-16-2043-2016.
doi: 10.5194/acp-16-2043-2016
[7] 刘毅, 李世清, 陈新平, 白金顺. 黄土旱塬Hybrid-Maize模型适应性及春玉米生产潜力估算. 农业工程学报, 2008, 24(12): 302-308.
doi: 10.3321/j.issn:1002-6819.2008.12.062
LIU Y, LI S Q, CHEN X P, BAI J S. Adaptability of Hybrid-Maize model and potential productivity estimation of spring maize on dry highland of loess plateau. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(12): 302-308. doi: 10.3321/j.issn:1002-6819.2008.12.062. (in Chinese)
doi: 10.3321/j.issn:1002-6819.2008.12.062
[8] 杨晓云, 杨虎德. 不同施肥条件下北方夏玉米农田土壤氨挥发研究. 干旱区资源与环境, 2016, 30(11): 137-142.
doi: 10.13448/j.cnki.jalre.2016.361
YANG X Y, YANG H D. Soil ammonia volatilization under the different fertilization in summer corn farmland in North China. Journal of Arid Land Resources and Environment, 2016, 30(11): 137-142. doi: 10.13448/j.cnki.jalre.2016.361. (in Chinese)
doi: 10.13448/j.cnki.jalre.2016.361
[9] ROELCKE M, LI S X, TIAN X H, GAO Y J, RICHTER J. In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils. Nutrient Cycling in Agroecosystems, 2002, 62(1): 73-88. doi: 10.1023/A:1015186605419.
doi: 10.1023/A:1015186605419
[10] 上官宇先. 垄沟覆膜下土壤CO2和NH3排放研究[D]. 杨凌: 西北农林科技大学, 2012.
SHANGGUAN Y X. CO2 & NH3emission in winter wheat field with a plastic mulched-ridges and unmulched furrows[D]. Yangling: Northwest A & F University, 2012. (in Chinese)
[11] 王桂良. 中国三大粮食作物农田活性氮损失与氮肥利用率的定量分析[D]. 北京: 中国农业大学, 2014.
WANG G L. Quantitative analysis of reactive nitrogen losses and nitrogen use efficiency of three major grain crops in China[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[12] 董文旭, 胡春胜, 张玉铭. 华北农田土壤氨挥发原位测定研究. 中国生态农业学报, 2006, 14(3): 46-48.
DONG W X, HU C S, ZHANG Y M. In situ determination of ammonia volatilization in field of North China. Chinese Journal of Eco-Agriculture, 2006, 14(3): 46-48. (in Chinese)
[13] 苏芳, 丁新泉, 高志岭, 黄彬香, 陈新平, 张福锁, Martin Kogge, Volker Romheld. 华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发. 中国环境科学, 2007, 27(3): 409-413. doi: 10.3321/j.issn:1000-6923.2007.03.025.
doi: 10.3321/j.issn:1000-6923.2007.03.025
SU F, DING X Q, GAO Z L, HUANG B X, CHEN X P, ZHANG F S, KOGGE M, ROMHELD V. Ammonia volatilization from nitrogen fertilization of winter wheat-summer maize rotation system in the North China Plain. China Environmental Science, 2007, 27(3): 409-413. doi: 10.3321/j.issn:1000-6923.2007.03.025. (in Chinese)
doi: 10.3321/j.issn:1000-6923.2007.03.025
[14] 韩蔚娟, 陈海潇, 邹春野, 高强. 农田氨挥发的进展研究. 绿色科技, 2015(7): 199-200. doi: 10.3969/j.issn.1674-9944.2015.07.089.
doi: 10.3969/j.issn.1674-9944.2015.07.089
HAN W J, CHEN H X, ZOU C Y, GAO Q. Advances in ammonia volatilization from farmland. Journal of Green Science and Technology, 2015(7): 199-200. doi: 10.3969/j.issn.1674-9944.2015.07.089. (in Chinese)
doi: 10.3969/j.issn.1674-9944.2015.07.089
[15] 王朝辉, 刘学军, 巨晓棠, 张福锁. 田间土壤氨挥发的原位测定: 通气法. 植物营养与肥料学报, 2002, 8(2): 205-209. doi: 10.3321/j.issn:1008-505X.2002.02.014.
doi: 10.3321/j.issn:1008-505X.2002.02.014
WANG Z H, LIU X J, JU X T, ZHANG F S. Field in situ determination of ammonia volatilization from soil: Venting method. Plant Natrition and Fertilizen Science, 2002, 8(2): 205-209. doi: 10.3321/j.issn:1008-505X.2002.02.014. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2002.02.014
[16] YANG M, ZHU X Q, BAI Y, SUN D, ZOU H T, FANG Y T, ZHANG Y L. Coated controlled-release urea creates a win-win scenario for producing more staple grains and resolving N loss dilemma worldwide. Journal of Cleaner Production, 2021, 288: 125660. doi: 10.1016/J.JCLEPRO.2020.125660.
doi: 10.1016/J.JCLEPRO.2020.125660
[17] ABDO A I, SHI D P, LI J E, YANG T, WANG X F, LI H T, ABDEL-HAMED E M W, MERWAD A R M A, WANG L Q. Ammonia emission from staple crops in China as response to mitigation strategies and agronomic conditions: Meta-analytic study. Journal of Cleaner Production, 2021. doi: 10.1016/j.jclepro.2020.123835.
doi: 10.1016/j.jclepro.2020.123835
[18] 孙克君, 毛小云, 卢其明, 贾爱萍, 廖宗文. 几种控释氮肥减少氨挥发的效果及影响因素研究. 应用生态学报, 2004, 15(12): 2347-2350. doi: 10.3321/j.issn:1001-9332.2004.12.029.
doi: 10.3321/j.issn:1001-9332.2004.12.029
SUN K J, MAO X Y, LU Q M, JIA A P, LIAO Z W. Mitigation effect of several controlled-release N fertilizers on ammonia volatilization and related affecting factors. Chinese Journal of Applied Ecology, 2004, 15(12): 2347-2350. doi: 10.3321/j.issn:1001-9332.2004.12.029. (in Chinese)
doi: 10.3321/j.issn:1001-9332.2004.12.029
[19] 林立, 胡克林, 李光德, 王欢元. 高产粮区不同施肥模式下玉米季农田氮素损失途径分析. 环境科学, 2011, 32(9): 2617-2624. doi: 10.13227/j.hjkx.2011.09.013.
doi: 10.13227/j.hjkx.2011.09.013
LIN L, HU K L, LI G D, WANG H Y. Evaluation of nitrogen loss way in summer maize system under different fertilizer N managements. Environmental Science, 2011, 32(9): 2617-2624. doi: 10.13227/j.hjkx.2011.09.013. (in Chinese)
doi: 10.13227/j.hjkx.2011.09.013
[20] 刘煜. 缓控释肥料在我国的发展、种类与管理. 种业导刊, 2015(8): 25-27.
LIU Y. The development, type and management of the fertilizer in our country. Journal of Seed Industry Guide, 2015(8): 25-27. (in Chinese)
[21] 石宁, 李彦, 张英鹏, 罗加法, 仲子文, 孙明, 刘兆辉, 井永苹, 薄录吉. 控释肥对小麦/玉米农田土壤硝态氮累积和迁移的影响. 中国农业科学, 2018, 51(20): 3920-3927. doi: 10.3864/j.issn.0578-1752.2018.20.010.
doi: 10.3864/j.issn.0578-1752.2018.20.010
SHI N, LI Y, ZHANG Y P, LUO J F, ZHONG Z W, SUN M, LIU Z H, JING Y P, BO L J. Effects of the controlled release fertilizer on nitrate accumulation and migration in the soil of wheat-maize rotation system. Scientia Agricultura Sinica, 2018, 51(20): 3920-3927. doi: 10.3864/j.issn.0578-1752.2018.20.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.20.010
[22] 宋梓璇. 东北黑土区春玉米控释肥施用的生态环境效应研究[D]. 北京: 中国农业科学院, 2018.
SONG Z X. Study on the ecological environment effect of controlled release fertilizer application in spring maize in black soil region of northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[23] 刘延慧. 农田生态系统氮磷配施的氨挥发规律及机理研究[D]. 长春: 吉林农业大学, 2006.
LIU Y H. The law and mechanism of ammonia volatilization under various nitrogen and phosphorus proportions in farmland ecosystem[D]. Changchun: Jilin Agricultural University, 2006. (in Chinese)
[24] 周丽平, 杨俐苹, 白由路, 卢艳丽, 王磊, 倪露. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响. 植物营养与肥料学报, 2016, 22(6): 1449-1457. doi: 10.11674/zwyf.16039.
doi: 10.11674/zwyf.16039
ZHOU L P, YANG L P, BAI Y L, LU Y L, WANG L, NI L. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1449-1457. doi: 10.11674/zwyf.16039. (in Chinese)
doi: 10.11674/zwyf.16039
[25] SOARES J R, CANTARELLA H, MENEGALE M L D C. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 2012, 52: 82-89. doi: 10.1016/j.soilbio.2012.04.019.
doi: 10.1016/j.soilbio.2012.04.019
[26] 谢勇, 荣湘民, 张玉平, 何欣, 石敦杰, 刘强. 控释氮肥减量施用对春玉米土壤N2O排放和氨挥发的影响. 农业环境科学学报, 2016, 35(3): 596-603. doi: 10.11654/jaes.2016.03.025.
doi: 10.11654/jaes.2016.03.025
XIE Y, RONG X M, ZHANG Y P, HE X, SHI D J, LIU Q. Effects of reduced CRNF applications on N2O emissions and ammonia volatilization in spring maize soil. Journal of Agro-Environment Science, 2016, 35(3): 596-603. doi: 10.11654/jaes.2016.03.025. (in Chinese)
doi: 10.11654/jaes.2016.03.025
[27] SHOJI S, KANNO H. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions. Fertilizer Research, 1994, 39(2): 147-152. doi: 10.1007/BF00750913.
doi: 10.1007/BF00750913
[28] 刘宁, 孙振涛, 韩晓日, 战秀梅, 杨劲峰. 缓/控释肥料的研究进展及存在问题. 土壤通报, 2010, 41(4): 1005-1009. doi: 10.19336/j.cnki.trtb.2010.04.047.
doi: 10.19336/j.cnki.trtb.2010.04.047
LIU N, SUN Z T, HAN X R, ZHAN X M, YANG J F. Research progress and existing problems on slow/controlled release fertilizers. Chinese Journal of Soil Science, 2010, 41(4): 1005-1009. doi: 10.19336/j.cnki.trtb.2010.04.047. (in Chinese)
doi: 10.19336/j.cnki.trtb.2010.04.047
[29] 卢艳艳, 宋付朋. 不同包膜控释尿素对农田土壤氨挥发的影响. 生态学报, 2011, 31(23): 148-155.
LU Y Y, SONG F P. Effects of different coated controlled-release urea on soil ammonia volatilization in farmland. Acta Ecologica Sinica, 2011, 31(23): 148-155. (in Chinese)
[30] 蒋一飞, 张砚铭, 杨明, 虞娜, 张玉玲, 邹洪涛, 张玉龙. 不同材料包膜氮肥氮素挥发特征及对油菜产量的影响. 中国农业科学, 2018, 51(12): 2348-2356. doi: 10.3864/j.issn.0578-1752.2018.12.011.
doi: 10.3864/j.issn.0578-1752.2018.12.011
JIANG Y F, ZHANG Y M, YANG M, YU N, ZHANG Y L, ZOU H T, ZHANG Y L. Nitrogen volatilization characteristics of different materials coated nitrogen fertilizer and its effect on rape yield. Scientia Agricultura Sinica, 2018, 51(12): 2348-2356. doi: 10.3864/j.issn.0578-1752.2018.12.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.12.011
[31] 邹长明, 颜晓元, 八木一行. 淹水条件下的氨挥发研究. 中国农学通报, 2005, 21(2): 167-170.
ZOU C M, YAN X Y, YAGI K. Measurements of ammonia volatilization from paddy soils. Chinese Agricultural Science Bulletin, 2005, 21(2): 167-170. (in Chinese)
[32] 曹欢欢. 旱地夏玉米—冬小麦轮作体系尿素氨挥发研究[D]. 杨凌: 西北农林科技大学, 2018.
CAO H H. Ammonia volatilization of urea from summer maize-winter wheat rotation system in dryland[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[33] YAN L, ZHANG Z D, CHEN Y A, GAO Q A, LU W X, ABDELRAHMAN A M. Effect of water and temperature on ammonia volatilization of maize straw returning. Toxicological & Environmental Chemistry, 2016, 98(5/6): 638-647. doi: 10.1080/02772248.2015.1133382.
doi: 10.1080/02772248.2015.1133382
[34] 李欠欠, 李雨繁, 高强, 李世清, 陈新平, 张福锁, 刘学军. 传统和优化施氮对春玉米产量、氨挥发及氮平衡的影响. 植物营养与肥料学报, 2015, 21(3): 571-579. doi: 10.11674/zwyf.2015.0303.
doi: 10.11674/zwyf.2015.0303
LI Q Q, LI Y F, GAO Q, LI S Q, CHEN X P, ZHANG F S, LIU X J. Effect of conventional and optimized nitrogen fertilization on spring maize yield, ammonia volatilization and nitrogen balance in soil-maize system. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 571-579. doi: 10.11674/zwyf.2015.0303. (in Chinese)
doi: 10.11674/zwyf.2015.0303
[35] 王少杰. 黄土高原旱作覆膜玉米不同时期施氮效果及气态氮损失[D]. 杨凌: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2016.
WANG S J. Effects of nitrogen splits application to dry-land mulching maize on fate of nitrogen and gaseous nitrogen losses in the Loess Plateau[D]. Yangling: University of Chinese Academy of Sciences (Institute of soil and water conservation, CAS & MWR), 2016. (in Chinese)
[36] 陈海潇. 不同类型土壤氨挥发特性和硝态氮累积的研究[D]. 长春: 吉林农业大学, 2015.
CHEN H X. Ammonia volatilization characteristics and nitrate nitrogen accumulation of different types of soils[D]. Changchun: Jilin Agricultural University, 2015. (in Chinese)
[37] LI H T, WANG L, PENG Y, ZHANG S W, LÜ S Q, LI J, ABDO A I, ZHOU C J, WANG L Q. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools. Agriculture, Ecosystems & Environment, 2021, 308: 107272.
doi: 10.1016/j.agee.2020.107272
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[3] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[4] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[5] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[6] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[7] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[8] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[9] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[10] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[11] JING JianYuan,YUAN Liang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang. The Characteristics of Ammonia Volatilization of Humic Acid-Urea Complex Combined with Urea from Different Fertilized Soils [J]. Scientia Agricultura Sinica, 2022, 55(14): 2786-2796.
[12] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[13] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[14] LIU XiaXia,LI Yang,WANG Jing,HUANG MingXia,BAI Rui,SONG Yang,HU Qi,ZHANG JiaYing,CHEN RenWei. Adaptability Evaluation of Staple Crops Under Different Precipitation Year Types in Four Ecological Regions of Inner Mongolia Based on APSIM [J]. Scientia Agricultura Sinica, 2022, 55(10): 1917-1937.
[15] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!