Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3264-3278.doi: 10.3864/j.issn.0578-1752.2021.15.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple

LIU Xing(),CAO HongXia(),LIAO Yang,ZHOU ChenGuang,LI HuangTao   

  1. College of Water Conservancy and Architectural Engineering, Northwest A&F University/Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Yangling 712100, Shaanxi
  • Received:2020-09-08 Accepted:2020-12-25 Online:2021-08-01 Published:2021-08-10
  • Contact: HongXia CAO E-mail:507612359@qq.com;nschx225@nwafu.edu.cn

Abstract:

【Objective】 The aim of this study was to explore a high-efficient production drip irrigation model of apple tree in Loess Plateau.【Method】 In this study, 8-year-old Hanfu apple trees were took as the research object with different irrigation amount and pattern experiments. These experiments were divided into three treatment groups of root-divided alternative irrigation(ADI), single pipe drip irrigation(UDI) and double pipe drip irrigation(BDI). ADI, UDI and BDI were supplied with three different irrigation levels: high water (W1), middle water (W2) and low water (W3), respectively. Therefore, there were nine treatments based on orthogonal experiment design in number. Then, the responses of the important apple tree parameters, including canopy structure, photosynthetic characteristics, yield and irrigation efficiency, were studied.【Result】 The results showed that less irrigation amount (W2 and W3) significantly reduced leaf area index, leaf inclination angle and clumping index (P<0.05), and increase the irrigation water use efficiency. Compared with single pipe drip irrigation, the drip pattern of alternate root division significantly increased leaf area index (P<0.05), and significantly decreased leaf inclination angle and clumping index (P<0.05). The net photosynthetic rate, transpiration rate, stomatal conductance and carboxylation efficiency of apple leaves at 11:00 increased at first and then decreased with the increase of DAF. At the fruit expansion stage (DAF=80 d), the net photosynthetic rate, carboxylation efficiency and leaf instantaneous water use efficiency under ADI-W2 were higher than that under other patterns. The diurnal variation curve of net photosynthetic rate of apple leaves under different water treatments showed “M” pattern. The phenomenon of “midday depression” of net photosynthetic rate under ADI treatment was not obvious. The peak value of instantaneous water use efficiency of leaves of all treatments appeared at 10:00 a.m, besides the treatment of ADI-W2. ADI-W2 delayed the emergence of peak value, and exhibited a highest daily average instantaneous water use efficiency (3.22 μmol·mmol-1). Furthermore, ADI-W2 had the best hardness (9.09 kg·cm-2), fruit shape index (0.88), big fruit rate (63.46%), single fruit weight (224.12 g) and yield (33 010.15 kg·hm-2). The combination with W3 could improve the irrigation water use efficiency, and the irrigation water use efficiency under ADI-W3 treatment (36.21 kg·m-3) was the highest.【Conclusion】 Finally, ADI-W2 treatment could be defined to be the best drip irrigation mode of water-saving and yield increasing of apple comprehensive scoring method in Loess Plateau area in this study. The results provided a scientific theoretical support for apple drip irrigation management in Loess Plateau.

Key words: drip irrigation method, irrigation amount, photosynthetic characteristics, yield, root-divided alternative irrigation, comprehensive evaluation, Loess Plateau region

Fig. 1

Temperature and rainfall during the trial period of 2018-2019"

Table 1

Irrigation amount of each treatment in 2018-2019"

灌水水平
Irrigation level
灌溉定额
Irrigation quota (m3·hm-2)
灌水次数
Irrigation frequency
2018 2019 2018 2019
W1 1363 1453 7 8
W2 1023 1089 7 8
W3 749 800 7 8

Table 2

Effects of drip irrigation methods and irrigation amount on canopy structure parameters of apple trees"

冠层指标
Canopy index
滴灌方式
Drip irrigation
灌水量
Irrigation amount
开花后天数 Days after flowering (d)
2018 2019
20 80 140 20 80 140
叶面积指数
Leaf area index

BDI W1 1.19abc 1.79bcd 2.08bc 1.19bc 1.77abcd 2.06b
W2 1.13c 1.71cd 2.12bc 1.06d 1.66cd 2.08b
W3 1.12c 1.73cd 1.94d 1.19bc 1.71bcd 1.96bc
ADI W1 1.24ab 1.81abc 2.13b 1.27ab 1.81abc 2.03bc
W2 1.27ab 1.92a 2.24a 1.35a 1.92a 2.35a
W3 1.17bc 1.76bcd 2.04c 1.15cd 1.87ab 1.95bc
UDI W1 1.28a 1.86ab 2.05bc 1.25b 1.82abc 2.05bc
W2 1.17bc 1.8abc 1.92d 1.11cd 1.81abc 1.9bc
W3 1.10c 1.67d 1.86d 1.18bc 1.62d 1.87c
叶倾角
Leaf inclination
BDI W1 23.59a 18.43b 16.89ab 23.44a 19.11a 17.02a
W2 23.46a 17.3cd 16.68abc 22.98a 17.12c 16.97a
W3 22.27bc 16.01e 14.19f 22.61ab 15.72e 14.48b
ADI W1 23.27ab 17.71bc 17.30ab 24.17a 18.01b 17.34a
W2 21.72cd 19.57a 17.36a 22.23b 19.44a 17.79a
W3 20.32e 16.26de 15.60de 19.63c 16.24de 14.81b
UDI W1 23.44a 16.80cde 16.38bcd 22.48ab 17.04cd 16.84a
W2 20.15e 16.68cde 15.83cde 20.30c 16.89cd 15.59b
W3 20.96de 16.40de 14.97ef 19.33c 16.7cd 15.51b
丛生指数
Clumping index
BDI W1 0.80a 0.74ab 0.60ab 0.77ab 0.76a 0.66a
W2 0.65bcd 0.63d 0.58ab 0.71bc 0.66ab 0.53cd
W3 0.63cd 0.61d 0.55bc 0.67c 0.57b 0.52d
ADI W1 0.71b 0.71bc 0.59ab 0.75ab 0.73c 0.56bcd
W2 0.62d 0.60d 0.50c 0.66c 0.61c 0.52d
W3 0.61d 0.53e 0.49c 0.56d 0.53cd 0.42e
UDI W1 0.81a 0.78a 0.63a 0.82a 0.80cd 0.57bcd
W2 0.71b 0.71bc 0.61ab 0.71bc 0.65de 0.59bc
W3 0.70bc 0.65cd 0.57ab 0.67c 0.62e 0.62ab
叶面积指数 Leaf area index 叶倾角 Leaf inclination 丛生指数 Clumping index
开花后天数 Days after flowering (d) 开花后天数 Days after flowering (d) 开花后天数 Days after flowering (d)
2018 2019 2018 2019 2018 2019
20 80 140 20 80 140 20 80 140 20 80 140 20 80 140 20 80 140
滴灌方式Method ns * * ns * ** ns * ** ns ns * ns ** * ns * ns
灌水量Irrigation amount * * ns ns * ** ns * ** ns * ** ** ** * ** ** *
滴灌方式×灌水量
Method×Irrigation amount
ns ns * ns ns ** ns ns * ns ns * ns ns ns ns ns ns

Fig. 2

Effects of drip irrigation methods and irrigation amount on photosynthetic characteristics of apple trees in different periods"

Fig. 3

Effects of drip irrigation methods and irrigation amount on diurnal variation of photosynthetic characteristics of apple trees"

Table 3

Correlation analysis of average day photosynthetic characteristic index"

LAI LI CI Pn Ci Tr Gs CE LWUE
LAI 1
LI 0.41 1
CI 0.13 0.44 1
Pn 0.66* 0.80** 0.59 1
Ci -0.65* -0.79** -0.46 -0.93** 1
Tr 0.67* 0.39 0.82** 0.55 -0.30 1
Gs 0.47 0.34 0.84** 0.47 -0.26 0.85** 1
CE 0.53 0.83** 0.53 0.85** -0.69* 0.43 0.35 1
LWUE 0.68* 0.67* 0.11 0.80** -0.91** -0.16 -0.12 0.87** 1

Table 4

Effects of different treatments on apple appearance, yield and water use efficiency"

年份
Year
处理
Treatment
着色度
Coloring degree
硬度
Fruit firmness
(kg·cm-2)
果形指数
Fruit shape index
大果率
Big fruit percentage (%)
单株果实数量
Fruit number per tree
单果质量
Single fruit weight (g)
产量
Fruit yield (kg·hm-2)
灌溉水分利用效率
Irrigation water use efficiency (kg·m-3)
2018 BDI-W1 1.93ab 7.25cde 0.85ab 61.03a 141ab 200.84abc 28374.67b 20.82d
BDI-W2 1.95ab 7.67cd 0.85ab 51.76c 132abcd 194.58bc 25720.15d 25.14c
BDI-W3 1.97ab 8.08bc 0.84ab 47.66cd 128bcd 193.22bc 24731.36e 33.02ab
ADI-W1 1.91ab 8.04bcd 0.88a 60.06a 136ab 214.57ab 29120.15b 21.37d
ADI-W2 2.11a 9.09a 0.88a 63.46a 147a 224.12a 33010.15a 32.27b
ADI-W3 2.12a 9.04ab 0.86ab 53.55bc 133abc 204.48abc 27120.15c 36.21a
UDI-W1 1.96ab 6.03f 0.78bc 58.01ab 130abcd 193.5bc 25131.36de 18.44de
UDI-W2 1.83b 6.56ef 0.8abc 43.67d 118cd 195.36bc 23131.36f 15.92e
UDI-W3 1.79b 7.04de 0.75c 43.04d 115d 184.45c 21131.36g 19.40de
2019 BDI-W1 2.22a 7.01d 0.82abc 55.97bc 203a 195.42bc 39670.85c 27.30e
BDI-W2 2.11ab 7.28d 0.85abc 58.15ab 174bc 193.26bc 33649.83e 30.90de
BDI-W3 2.06abc 8.38bc 0.84abc 52.08cd 162cd 186.96c 30210.90f 37.76bc
ADI-W1 2.08ab 8.91ab 0.88a 62.02a 198ab 213.43ab 42249.43b 29.08de
ADI-W2 2.15ab 9.01ab 0.86ab 63.65a 196ab 223.88a 43970.58a 40.38b
ADI-W3 2.08ab 9.51a 0.88a 54.66bc 186abc 199.03bc 37089.37d 46.36a
UDI-W1 1.98bcd 5.65e 0.81abc 53.03bcd 169cd 188.65c 31931.06ef 21.98f
UDI-W2 1.88cd 7.39cd 0.8bc 47.49de 147d 193.79bc 28489.92g 26.16ef
UDI-W3 1.83d 7.27d 0.77c 42.01e 147d 182.46c 26769.12g 33.46cd
双因素方差分析(F 值检验)Two-Way ANOVA (F value test)
2018 M ns ** ns * * * ** **
I ns ** ns * ns ns ** **
M×I ns ns ns * ns ns * **
2019 M ns * ns * * ** ** **
I ns * ns * * ns * **
M×I ns ns ns * * ns ** **

Table 5

Comprehensive evaluation of subordinate function on Apple appearance, yield and water use efficiency"

年份
Year
滴灌方式
Drip irrigation
灌水量
Irrigation amount
着色度
Coloring degree
硬度
Fruit firmness
果形指数
Fruit shape index
大果率
Big fruit percentage
挂果数
Fruit number
单果质量
Single fruit weight (g)
产量
Fruit yield
灌溉水分利用效率
Irrigation water use efficiency
综合得分
Comprehensive score
排名
Rank
2018 BDI W1 0.42 0.40 0.77 0.88 0.81 0.41 0.61 0.24 0.55 4
W2 0.48 0.54 0.77 0.43 0.53 0.26 0.39 0.45 0.47 5
W3 0.55 0.67 0.69 0.23 0.41 0.22 0.30 0.84 0.47 6
ADI W1 0.36 0.66 1.00 0.83 0.66 0.76 0.67 0.27 0.73 3
W2 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.89 1
W3 1.00 0.98 0.85 0.51 0.56 0.50 0.50 1.00 0.78 2
UDI W1 0.52 0.00 0.23 0.73 0.47 0.23 0.34 0.12 0.22 7
W2 0.12 0.17 0.38 0.03 0.09 0.28 0.17 0.00 0.20 8
W3 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.17 0.06 9
CV 0.06 0.16 0.04 0.12 0.12 0.07 0.18 0.24
权重 Weight 0.06 0.16 0.05 0.13 0.12 0.07 0.18 0.24
2019 BDI W1 1.00 0.35 0.45 0.65 1.00 0.31 0.75 0.22 0.53 4
W2 0.72 0.42 0.73 0.75 0.48 0.26 0.40 0.37 0.46 6
W3 0.59 0.71 0.64 0.47 0.27 0.11 0.20 0.65 0.52 5
ADI W1 0.64 0.84 1.00 0.92 0.91 0.75 0.90 0.29 0.59 3
W2 0.82 0.87 0.82 1.00 0.88 1.00 1.00 0.75 0.95 1
W3 0.64 1.00 1.00 0.58 0.70 0.40 0.60 1.00 0.75 2
UDI W1 0.38 0.00 0.36 0.51 0.39 0.15 0.30 0.00 0.30 7
W2 0.13 0.45 0.27 0.25 0.00 0.27 0.10 0.17 0.12 8
W3 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.47 0.03 9
CV 0.06 0.14 0.05 0.14 0.08 0.06 0.13 0.30
权重 Weight 0.06 0.14 0.06 0.14 0.08 0.06 0.13 0.30
[1] 张义, 谢永生, 郝明德. 黄土高原沟壑区塬面苹果园土壤水分特征分析. 土壤, 2011, 43(2):293-298.
ZHANG Y, XIE Y S, HAO M D. Analysis on soil moisture characteristics of apple orchard on tableland in gully region of Loess Plateau. Soils, 2011, 43(2):293-298. (in Chinese)
[2] 宋小林, 吴普特, 赵西宁, 高晓东. 黄土高原肥水坑施技术下苹果树根系及土壤水分布. 农业工程学报, 2016, 32(7):121-128.
SONG X L, WU P T, ZHAO X N, GAO X D. Root system and soil water distribution of apple trees under pit fertilization in Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7):121-128. (in Chinese)
[3] 毕润霞, 杨洪强, 杨萍萍, 范伟国, 陈锦璞, 樊树雷, 吴瑞刚. 地下穴灌对苹果冠下土壤水分分布及叶片水分利用效率的影响. 中国农业科学, 2013, 46(17):3651-3658.
BI R X, YANG H Q, YANG P P, FAN W G, CHEN J P, FAN S L, WU R G. Effects of underground hole irrigation on soil water distribution and leaf water use efficiency under apple canopy. Scientia Agricultura Sinica, 2013, 46(17):3651-3658. (in Chinese)
[4] 康绍忠, 潘英华, 石培泽, 张建华. 控制性作物根系分区交替灌溉的理论与试验. 水利学报, 2001(11):80-86.
KANG S Z, PAN Y H, SHI P Z, ZHANG J H. Controlled root-divided alternative irrigation—Theory and experiments. Journal of Hydraulic Engineering, 2001(11):80-86. (in Chinese)
[5] KANG S Z, ZHANG J H. Controlled alternate partial rootzone irrigation: Its physiological consequences and impact on water use efficiency. Journal of Experimental Botany, 2004, 55(407):2437-2446.
doi: 10.1093/jxb/erh249
[6] 张强, 徐飞, 王荣富, 束良佐, 刘瑞, 张德雨. 控制性分根交替灌溉下氮形态对番茄生长、果实产量及品质的影响. 应用生态学报, 2014, 25(12):3547-3555.
ZHANG Q, XU F, WANG R F, SU L Z, LIU R, ZHANG D Y. Effects of nitrogen forms on tomato growth, fruit yield and quality under controlled alternate root splitting irrigation. Journal of Applied Ecology, 2014, 25(12):3547-3555. (in Chinese)
[7] 苏旺, 屈洋, 冯佰利, 柴岩. 沟垄覆膜集水模式提高糜子光合作用和产量. 农业工程学报, 2014, 30(13):137-145.
SU W, QU Y, FENG B L, CHAI Y. Improving photosynthesis and yield of broomcorn millet by furrow ridge mulching with plastic film. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13):137-145. (in Chinese)
[8] SANTOS M R, DONATO S L R, COELHO E F. Irrigation deficit strategies on physiological and productive parameters of ‘Tommy Atkins’ mango. Revista Caatinga, 2016, 29(1):173-182.
doi: 10.1590/1983-21252016v29n120rc
[9] DAI Z G, FEI L J, HUANG D L, ZENG J, CHEN L, CAI Y H. Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region. Agricultural Water Management, 2019, 213:146-154.
doi: 10.1016/j.agwat.2018.09.035
[10] 韩小虎, 王雷, 王钰馨, 李玲, 陈修德, 肖伟, 高东升. 分根交替灌溉对桃树13C分配和光合能力的影响. 核农学报, 2016, 30(6):1218-1226.
HANG X H, WANG L, WANG Y X, LI L, CHEN X D, XIAO W, GAO D S. Effects of alternate root splitting irrigation on 13C distribution and photosynthetic capacity of peach. Journal of Nuclear Agricultural Sciences, 2016, 30(6):1218-1226. (in Chinese)
[11] 刘贤赵, 宿庆, 刘德林. 根系分区不同灌水上下限对茄子生长与产量的影响. 农业工程学报, 2010, 26(6):52-57.
LIU X Z, SU Q, LIU D L. Effects of different irrigation upper and lower limits of root zone on growth and yield of eggplant. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6):52-57. (in Chinese)
[12] 赵志成, 杨显贺, 李清明, 刘彬彬, 杨振超. 不同膜下滴灌方式对设施黄瓜生理特性及水分利用效率的影响. 生态学报, 2014, 34(22):6597-6605.
ZHAO Z C, YANG X H, LI Q M, LIU B B, YANG Z C. Effects of different drip irrigation methods under plastic film on physiological characteristics and water use efficiency of greenhouse cucumber. Acta Ecologica Sinica, 2014, 34(22):6597-6605. (in Chinese)
[13] 何海兵, 杨茹, 廖江, 武立权, 孔令聪, 黄义德. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展. 中国农业科学, 2016, 49(2):305-318.
HE H B, YANG R, LIAO J, WU L Q, KONG L C, HUANG Y D. Research progress on regulation mechanism of water and nitrogen management on quality, yield and efficiency of irrigated rice. Scientia Agricultura Sinica, 2016, 49(2):305-318. (in Chinese)
[14] 李巧珍, 郝卫平, 龚道枝, 王庆锁. 不同灌溉方式对苹果园土壤水分动态、耗水量和产量的影响. 干旱地区农业研究, 2007(2):128-133.
LI Q Z, HAO W P, GONG D Z, WANG Q S. Effects of different irrigation methods on soil water dynamics, water consumption and yield of apple orchard. Agricultural Research in the Arid Areas, 2007(2):128-133. (in Chinese)
[15] 田歌, 李慧峰, 田蒙, 刘晓霞, 陈倩, 朱占玲, 姜远茂, 葛顺峰. 不同水肥一体化方式对苹果氮素吸收利用特性及产量和品质的影响. 应用生态学报, 2020, 31(6):1867-1874.
TIAN G, LI H F, TIAN M, LIU X X, CHEN Q, ZHU Z L, JIANG Y M, GE S F. Effects of different water and fertilizer integration methods on nitrogen absorption and utilization characteristics, yield and quality of apple. Chinese Journal of Applied Ecology, 2020, 31(6):1867-1874. (in Chinese)
[16] 李银坤, 武雪萍, 吴会军, 武其甫, 张彦才, 李若楠, 王丽英. 水氮条件对温室黄瓜光合日变化及产量的影响. 农业工程学报, 2010, 26(S1):122-129.
LI Y K, WU X P, WU H J, WU Q P, ZHANG Y C, LI R L, WANG L Y. Effects of water and nitrogen on diurnal variation of photosynthesis and yield of cucumber in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1):122-129. (in Chinese)
[17] 郝琨, 刘小刚, 韩志慧, 余宁, 程金焕, 刘闯, 李义林, 杨启良. 不同荫蔽栽培下亏缺灌溉对干热区小粒咖啡水光利用和产量的影响. 应用生态学报, 2018, 29(11):3550-3558.
HAO K, LIU X G, HAN Z H, YU N, CHENG J H, LIU C, LI Y L, YANG Q L. Effects of deficit irrigation on water and light utilization and yield of Coffea arabica under different shade cultivation. Chinese Journal of Applied Ecology, 2018, 29(11):3550-3558. (in Chinese)
[18] 刘小刚, 孙光照, 彭有亮, 杨启良, 何红艳. 水肥耦合对芒果光合特性和产量及水肥利用的影响. 农业工程学报, 2019, 35(16):125-133.
LIU X G, SUN G Z, PENG Y L, YANG Q L, HE H Y. Effects of water and fertilizer coupling on photosynthetic characteristics, yield and water and fertilizer utilization of mango. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16):125-133. (in Chinese)
[19] 金剑, 刘晓冰, 王光华, 李艳华. 大豆生殖生长期冠层结构及其与冠层辐射的关系研究. 东北农业大学学报, 2004(4):412-417.
JIN J, LIU X B, WANG G H, LI Y H. Study on the relationship between canopy structure and canopy radiation during reproductive growth of soybean. Journal of Northeast Agricultural University, 2004(4):412-417. (in Chinese)
[20] 郑春莲, 冯棣, 李科江, 马俊永, 党红凯, 曹彩云, 孙景生, 张俊鹏. 咸水沟灌对土壤水盐变化与棉花生长及产量的影响. 农业工程学报, 2020, 36(13):92-101.
ZHENG C L, FENG D, LI K J, MA J Y, DANG H K, CAO C Y, SUN J S, ZHANG J P. Effect of saline water furrow irrigation on soil water and salt change and cotton growth and yield. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13):92-101. (in Chinese)
[21] 蔺芳, 刘晓静, 童长春, 吴勇. 基于产量效应的间作紫花苜蓿/禾本科牧草光能利用特征. 应用生态学报, 2020, 31(9):2963-2976.
LIN F, LIU X J, TONG C C, WU Y. Characteristics of light energy utilization of intercropping alfalfa/gramineae forage based on yield. Chinese Journal of Applied Ecology, 2020, 31(9):2963-2976. (in Chinese)
[22] 周宇飞, 王德权, 陆樟镳, 王娜, 王艺陶, 李丰先, 许文娟, 黄瑞冬. 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK含量的影响. 中国农业科学, 2014, 47(4):655-663.
ZHOU Y F, WANG D Q, LU Z B, WNAG N, WANG Y T, LI F X, XU W J, HUANG R D. Effects of drought stress on photosynthetic characteristics and contents of endogenous hormones ABA and CTK in green sorghum. Scientia Agricultura Sinica, 2014, 47(4):655-663. (in Chinese)
[23] 曹小闯, 李晓艳, 朱练峰, 张均华, 禹盛苗, 吴良欢, 金千瑜. 水分管理调控水稻氮素利用研究进展. 生态学报, 2016, 36(13):3882-3890.
CAO X C, LI X Y, ZHU L F, ZHANG J H, YU S M, WU L H, JIN Q Y. Research progress on water management regulating nitrogen use in rice. Acta Ecologica Sinica, 2016, 36(13):3882-3890. (in Chinese)
[24] 刘小飞, 李彪, 孟兆江, 刘祖贵, 张寄阳. 隔沟调亏灌溉对冬小麦旗叶生理特性与产量形成的影响. 农业机械学报, 2019, 50(9):320-328.
LIU X F, LI B, MENG Z J, LIU Z G, ZHANG J Y. Effects of furrow regulated deficit irrigation on physiological characteristics of flag leaf and yield formation of winter wheat. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9):320-328. (in Chinese)
[25] HU T T, KANG S Z, LI F S, ZHANG J H. Effects of partial root-zone irrigation on hydraulic conductivity in the soil-root system of maize plant. Journal of Experimental Botany, 2011, 62(12):4163-4172.
doi: 10.1093/jxb/err110
[26] 许大全, 高伟, 阮军. 光质对植物生长发育的影响. 植物生理学报, 2015, 51(8):1217-1234.
XU D Q, GAO W, RUAN J. Effects of light quality on plant growth and development. Plant Physiology Communications, 2015, 51(8):1217-1234. (in Chinese)
[25] 潘丽萍, 李彦, 唐立松. 局部根区灌溉对棉花主要生理生态特性的影响. 中国农业科学, 2009, 42(8):2982-2986.
PAN L P, LI Y, TANG L S. Effects of partial root zone irrigation on main physiological and ecological characteristics of cotton. Scientia Agricultura Sinica, 2009, 42(8):2982-2986. (in Chinese)
[26] 李文娆, 李永竞, 冯士珍. 不同施氮量和分施比例对棉花幼苗生长和水分利用效率的影响及其根源ABA调控效应. 生态学报, 2017, 37(20):6712-6723.
LI W Y, LI Y J, FENG S Z. Effects of different nitrogen rates and ratios on cotton seedling growth and water use efficiency and its root ABA regulation effect. Acta Ecologica Sinica, 2017, 37(20):6712-6723. (in Chinese)
[27] 陆文娟, 李伏生, 农梦玲. 不同水肥条件下分根区交替灌溉对玉米生理特性和水分利用的影响. 生态学报, 2014, 34(18):5257-5265.
LU W J, LI F S, NONG M L. Effects of alternate root zone irrigation on physiological characteristics and water use efficiency of Maize under different water and fertilizer conditions. Acta Ecologica Sinica, 2014, 34(18):5257-5265. (in Chinese)
[30] 陈丽楠, 刘秀春, 荣传胜, 韩晓日, 孙占祥. 交替根区灌溉对葡萄幼树生长及干物质分配的影响. 中国农业科技导报, 2019, 21(5):152-158.
CHEN L N, LIU X C, RONG C S, HAN X R, SUN Z X. Effect of alternate partial root-zone irrigation on growth and distribution of dry matter in young grape tree. Journal of Agricultural Science and Technology, 2019, 21(5):152-158. (in Chinese)
[31] 胡笑涛, 康绍忠, 张建华, 张富仓, 李志军, 周良臣. 番茄垂向分根区交替控制滴灌室内试验及节水机理. 农业工程学报, 2005(7):1-5.
HU X T, KANG S Z, ZHANG J H, ZHANG F C, LI Z J, ZHOU L C. Laboratory experiment and water saving mechanism of tomato vertical root zone alternate control drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2005(7):1-5. (in Chinese)
[32] 勉有明, 李荣, 侯贤清, 李培富, 王西娜. 秸秆还田配施腐熟剂对砂性土壤性质及滴灌玉米生长的影响. 核农学报, 2020, 34(10):2343-2351.
MIAN Y M, LI R, HOU X Q, LI P F, WANG X N. Effects of straw returning combined with humic agent on sandy soil properties and maize growth under drip irrigation. Journal of Nuclear Agricultural Sciences, 2020, 34(10):2343-2351. (in Chinese)
[33] 马旭凤. 水分亏缺对玉米生理指标、形态特性及解剖结构的影响[D]. 杨凌: 西北农林科技大学, 2010.
MA X F. Effects of water deficit on physiological indexes, morphological characteristics and anatomical structure of maize[D]. Yangling: Northwest A & F University, 2010. (in Chinese)
[34] CUI N B, DU T S, KANG S Z, LI F S, ZHANG J H, WANG M X, LIZ J. Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees. Agricultural Water Management, 2008, 95:489-497.
doi: 10.1016/j.agwat.2007.11.007
[35] EBEL R C, PROEBSTING E L, EVANS R G. Deficit irrigation to control vegetative growth in apple and monitoring fruit growth to schedule irrigation. Hortscience, 2005, 30(6):1229-1232.
doi: 10.21273/HORTSCI.30.6.1229
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!