Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (3): 596-607.doi: 10.3864/j.issn.0578-1752.2021.03.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice

ZHENG FengJun1(),WANG Xue2(),LI ShengPing1,LIU XiaoTong1,LIU ZhiPing4,LU JinJing1,4,WU XuePing1(),XI JiLong3,ZHANG JianCheng3(),LI YongShan3   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2People’s Government of Fangshan District Liulihetown, Beijing 102403
    3Institute of Cotton, Shanxi Agricultural University, Yuncheng 044000, Shanxi
    4Institute of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031
  • Received:2020-05-04 Accepted:2020-07-29 Online:2021-02-01 Published:2021-02-01
  • Contact: XuePing WU,JianCheng ZHANG E-mail:zfengjunhn@163.com;snow13366038169@163.com;wuxueping@caas.cn;zhangjc@126.com

Abstract:

【Objective】Based on an 8 year (2008-2015) long-term field experiment in Yuncheng, Shanxi Province, the characteristics of stability and active organic carbon contents in soil dry aggregate, water use efficiency and winter wheat yield under no-tillage with straw mulching were studied, and the synergistic effect among soil moisture, the stability and organic carbon components of soil aggregates and wheat grain yield were analyzed, so as to provide a theoretical basis for the best tillage practice in the dry farming area of the Loess Plateau in China.【Method】In this study, two tillage treatments in the long-term field experiment were selected, including CT-SP (convention tillage with straw plowing) and NT-SM (no-tillage with straw mulching). During the winter wheat harvest period, the soil aggregate fractions were measured by dry-sieving method, the contents soil organic carbon (SOC) and active organic carbon (dissolved organic carbon, DOC; easily oxidized organic carbon, EOC; microbial biomass carbon MBC) in soil dry aggregates were determined, and soil moisture (soil volumetric water content, θv; soil water storage before sowing, SA; soil water storage after harvesting, SB; water consumption during growing period, ET; precipitation use efficiency, PUE; water use efficiency, WUE) and crop yield were investigated too.【Result】(1) Compared with CT-SP treatment, NT-SM treatment significantly increased the proportions of aggregate 0.25-2 mm, the contents of macro-aggregates (R0.25) and geometric mean diameter (GMD) by 13.9%, 8.8 % and 9.6%, respectively. (2) Compared with CT-SP treatment, the contents of SOC and MBC in bulk soil, >2 mm and 0.25-2 mm in NT-SM treatment, increased by 17.7% and 23.6%, 18.4% and 18.2%, 22.4% and 39.2%, respectively. The contribution rates of 0.25-2 mm soil aggregate-associated carbons to SOC and MBC increased by 18.4% and 28.4%, respectively. (3) Compared with CT-SP treatment, NT-SM treatment increased the SA, PUE, WUE and wheat yield by 17.7%, 8.92%, 14.98% and 8.92%, respectively, and the Pearson correlation coefficients between yield and SOC, WUE, R0.25, MWD, GMD reached above 0.9. (4) By structural equation model analysis, it was found DOC and EOC affected MBC change by a synergistic in soil aggregates, and also the total effect of MBC content on SOC was 0.88, suggesting it was the dominant factor affecting SOC change. (5) The water storage, soil aggregate stability and SOC distribution affected wheat yield by a synergistic effect. Moreover, soil aggregates stability had a significant positive effect on winter wheat yield.【Conclusion】In the dry farming area of the Loess Plateau in China, the no-tillage with straw mulching could improve the stability of soil aggregates and the soil water environment, the contents of organic carbon and active organic carbon fractions in the topsoil, and increase soil carbon sequestration, water retention and crop yield.

Key words: no-tillage with straw mulching, soil aggregates, active organic carbon, soil water storage, WUE, winter yield, SEM

Fig. 1

Evolution of monthly precipitation (vertical bars) for 2008-2015, monthly precipitation and related temperature (three lines) for 2015"

Table 1

The stability analysis of soil aggregates under different tillage treatments"

处理
Treatment
团聚体分级质量分数 Aggregate fraction (%) R0.25
(%)
平均重量直径
MWD (mm)
几何平均直径
GMD (mm)
w>2mm w0.25-2mm w<0.25mm
CT-SP 23±0.01a 47±0.02b 28±0.02a 70±0.02b 1.72±0.06a 0.87±0.05b
NT-SM 23±0.01a 53±0.01a 23±0.01b 76±0.01a 1.77±0.04a 0.95±0.03a

Fig. 2

Change in soil volumetric water content before sowing and after harvesting under different tillage treatments (0-200 cm)"

Table 2

Effects of different tillage treatments on yield and water use of winter wheat"

处理
Treatment
播前土壤贮水量
(SB)(mm)
收获后土壤贮水量
(SA) (mm)
耗水量
ET (mm)
产量
Yield (kg·hm-2)
降雨利用效率
PUE (kg·hm-2·mm-1)
水分利用效率
WUE(kg·hm-2·mm-1
CT-SP 427±9.1a 225±4.6b 329±5.4a 4158±88b 33±0.7b 13±0.1b
NT-SM 449±3.5a 264±7.1a 312±4.6a 4529±98a 36±0.8a 15±0.4a

Fig. 3

The contents of organic carbon and active organic carbon in soil aggregates under different tillage treatments a and b indicate significant differences in the same soil aggregate between different treatments. The same as Fig.4"

Fig. 4

Contribution rates of different aggregate to SOC, DOC, EOC and MBC under different tillage treatments"

Fig. 5

The effect of soil active organic carbon on SOC in soil aggregates by structural equation model analysis The solid lines and dashed lines represent significant (P<0.001) positive and negative effects, respectively. Arrow widths is proportional to the strength of the relationship. The numbers near the lines are standardized path coefficients, which show the variables in the model. The same as Fig. 6"

Table 3

Correlation of SOC, wheat yield and soil aggregate stability indexes under different tillage treatments"

Yield SOC DOC EOC MBC SB SA WUE R0.25 MWD GMD
Yield 1 0.922** 0.855* 0.946** 0.892* 0.718 0.757 0.923** 0.925** 0.908* 0.987**
SOC 1 0.873* 0.988** 0.967** 0.684 0.808 0.926** 0.895* 0.723 0.930**
DOC 1 0.858* 0.865* 0.346 0.501 0.820* 0.661 0.772 0.840*
EOC 1 0.935** 0.674 0.795 0.938** 0.907* 0.742 0.938**
MBC 1 0.685 0.857* 0.951** 0.891* 0.701 0.936**
SB 1 0.876* 0.66 0.899* 0.633 0.759
SA 1 0.869* 0.936** 0.518 0.833**
WUE 1 0.916* 0.707 0.956**
R0.25 1 0.765 0.952**
MWD 1 0.873*
GMD 1

Fig. 6

The effects of soil organic carbon, soil aggregates stability, soil water storage on winter wheat yield by structural equation model analysis"

[1] JASTROW J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 1996,28(4/5):665-676.
[2] 张志毅, 熊桂云, 吴茂前, 范先鹏, 冯婷婷, 巴瑞先, 段申荣. 有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响. 中国生态农业学报(中英文), 2020,28(3):405-412.
ZHANG Z Y, XIONG G Y, WU M Q, FAN X P, FENG T T, BA R X, DUAN S R. Effects of organic fertilization and tillage method on soil aggregates and organic carbon fractions in a wheat-rice system. Chinese Journal of Eco-Agriculture, 2020,28(3):405-412.(in Chinese)
[3] 丁晋利, 魏红义, 杨永辉, 张洁梅, 武继承. 保护性耕作对农田土壤水分和冬小麦产量的影响. 应用生态学报, 2018,29(8):2501-2508.
DING J L, WEI H Y, YANG Y H, ZHANG J M, WU J C. Effects of conservation tillage on soil water condition and winter wheat yield in farmland. Chinese Journal of Applied Ecology, 2018,29(8):2501-2508. (in Chinese)
[4] 王峻, 薛永, 潘剑君, 郑宪清, 秦秦, 孙丽娟, 宋科. 耕作和秸秆还田对土壤团聚体有机碳及其作物产量的影响. 水土保持学报, 2018,32(5):121-127.
WANG J, XUE Y, PAN J J, ZHENG X Q, QIN Q, SUN L J, SONG K. Effects of tillage and straw incorporation on sequestration of organic carbon and crop yields. Journal of Soil and Water Conservation, 2018,32(5):121-127. (in Chinese)
[5] 张翰林, 郑宪清, 何七勇, 李双喜, 张娟琴, 吕卫光. 不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响. 水土保持学报, 2016,30(4):216-220.
ZHANG H L, ZHENG X Q, HE Q Y, LI S X, ZHANG J Q, LÜ W G. Effect of years of straw returning on soil aggregates and organic carbon in rice-wheat rotation systems. Journal of Soil and Water Conservation, 2016,30(4):216-220. (in Chinese)
[6] 杨敏芳, 朱利群, 韩新忠, 顾克军, 胡乃娟, 卞新民. 不同土壤耕作措施与秸秆还田对稻麦两熟制农田土壤活性有机碳组分的短期影响. 应用生态学报, 2013,24(5):1387-1393.
YANG M F, ZHU L Q, HAN X Z, GU K J, HU N J, BIAN X M. Short-term effects of different tillage modes combined with straw-returning on the soillabile organic carbon components in a farmland with rice-wheat double cropping. Chinese Journal of Applied Ecology, 2013,24(5):1387-1393. (in Chinese)
[7] 李琳, 伍芬琳, 张海林, 陈阜. 双季稻区保护性耕作下土壤有机碳及碳库管理指数的研究. 农业环境科学学报, 2008,27(1):248-253.
LI L, WU F L, ZHANG H L, CHEN F. Organic carbon and carbon pool management index in soil under conversation tillage in two-crop paddy field area. Journal of Agro-Environment Science, 2008,27(1):248-253. (in Chinese)
[8] HE Y T, ZHANG W J, XU M G, TONG X G, SUN F X, WANG J Z, HUANG S M, ZHU P, HE X H. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Science of the Total Environment, 2015,532:635-644.
[9] PAUL B K, VANLAUWE B, AYUKE F, GASSNER A, HOOGMOED M, HURISSO T T, KOALA S, LELEI D, NDABAMENYE T, SIX J, PULLEMANA M M. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agriculture, Ecosystems & Environment, 2013,164:14-22.
[10] 武均, 蔡立群, 罗珠珠, 李玲玲, 张仁陟. 保护性耕作对陇中黄土高原雨养农田土壤物理性状的影响. 水土保持学报, 2014,28(2):112-117.
WU J, CAI L Q, LUO Z Z, LI L L, ZHANG R Z. Effects of conservation tillage on soil physical properties of rainfed field of the Loess Plateau in central of Gansu. Journal of Soil and Water Conservation, 2014,28(2):112-117. (in Chinese)
[11] 王燕, 王小彬, 刘爽, 梁二, 蔡典雄. 保护性耕作及其对土壤有机碳的影响. 中国生态农业学报, 2008,16(3):766-771.
WANG Y, WANG X B, LIU S, LIANG E, CAI D X. Conservation tillage and its effect on soil organic carbon. Chinese Journal of Eco Agriculture, 2008,16(3):766-771. (in Chinese)
[12] 程科, 李军, 毛红玲. 不同轮耕模式对黄土高原旱作麦田土壤物理性状的影响. 中国农业科学, 2013,46(18):3800-3808.
CHENG K, LI J, MAO H L. Effects of different rotational tiIlage pattems on soil physical pmperties in rained wheat fields of the Loess Plateau. Scientia Agricultura Sinica, 2013,46(18):3800-3808. (in Chinese)
[13] 庄恒扬, 刘世平, 沈新平, 陈后庆, 陆建飞. 长期少免耕对稻麦产量及土壤有机质与容重的影响. 中国农业科学, 1999,32(4):39-44.
ZHUANG H Y, LIU S P, SHEN X P, CHEN H Q, LU J F. Effect of long-term minimal and zero tillages on rice and wheat yields, soil organic matter and bulk density. Scientia Agricultura Sinica, 1999,32(4):39-44. (in Chinese)
[14] 谢瑞芝, 李少昆, 金亚征, 李小君, 汤秋香, 王克如, 高世菊. 中国保护性耕作试验研究的产量效应分析. 中国农业科学, 2008,41(2):397-404.
XIE R Z, LI S K, JIN Y Z, LI X J, TANG Q X, WANG K R, GAO S J. The trends of crop yield responses to conservation tillage in China. Scientia Agricultura Sinica, 2008,41(2):397-404. (in Chinese)
[15] 江晓东, 迟淑筠, 李增嘉, 宁堂原, 王芸, 邵国庆. 少免耕模式对冬小麦花后旗叶衰老和产量的影响. 农业工程学报, 2008,24(4):55-58.
JIANG X D, CHI S Y, LI Z J, NING T Y, WANG Y, SHAO G Q. Effects of minimum tillage and no-tillage patterns on flag leaf senescence after anthesis and yield of winter wheat. Transactions of the CSAE, 2008,24(4):55-58. (in Chinese)
[16] 张斯梅, 杨四军, 顾克军, 于建光, 张恒敢, 许博. 少免耕与秸秆机械全量原位还田对稻茬小麦出苗及产量的影响. 农学学报, 2015,5(5):81-84.
ZHANG S M, YANG S J, GU K J, YU J G, ZHANG H G, XU B. Effects of less tillage and no-tillage patterns and total rice straw mechanized returning in situ on seed germination and grain yield of wheat. Journal of Agriculture, 2015,5(5):81-84. (in Chinese)
[17] 张英英, 蔡立群, 武均, 齐鹏, 罗珠珠, 张仁陟. 不同耕作措施下陇中黄土高原旱作农田土壤活性有机碳组分及其与酶活性间的关系. 干旱地区农业研究, 2017,35(1):1-7.
ZHANG Y Y, CAI L Q, WU J, QI P, LUO Z Z, ZHANG R Z. The relationship between soil labile organic carbon fraction and the enzyme activities under different tillage measures in the Loess Plateau of central Gansu province. Agricultural Research in the Arid Areas, 2017,35(1):1-7. (in Chinese)
[18] LI S P, WU X P, LIANG G P, GAO L L, WANG B S, LU J J, ABDELRHMAN A A, SONG X J, ZHANG M N, ZHENG F J, DEGRE A. Is least limiting water range a useful indicator of the impact of tillage management on maize yield? Soil and Tillage Research, 199(2020) 104602.
[19] 黄昌勇. 土壤学. 北京: 中国农业出版社, 2000.
HUANG C Y. Soil. Beijing: China Agricultural Press, 2000. (in Chinese)
[20] 马阳, 吴敏, 王艳群, 周加森, 张世卿, 王继唯, 彭正萍, 郭丽果. 不同耕作施肥方式对夏玉米氮素利用及土壤容重的影响. 水土保持学报, 2019,33(5):171-176.
MA Y, WU M, WANG Y Q, ZHOU J S, ZHANG S Q, WANG J W, PENG Z P, GUO L G. Effects of different tillage and fertilization methods on nitrogen utilization and soil bulk density of summer maize. Journal of Soil and Water Conservation, 2019,33(5):171-176. (in Chinese)
[21] BACH E M, HOFMOCKEL K S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity. Soil Biology & Biochemistry, 2014,69:54-62.
[22] 郑凤君, 王雪, 李景, 王碧胜, 宋霄君, 张孟妮, 武雪萍, 刘爽, 席吉龙, 张建诚, 李永山. 免耕条件下施用有机肥对冬小麦土壤酶及活性有机碳的影响. 中国农业科学, 2020,53(6):1202-1213.
ZHENG F J, WANG X, LI J, WANG B S, SONG X J, ZHANG M N, WU X P, LIU S, XI J L, ZHANG J C, LI Y S. Effect of no-tillage with manure on soil enzyme activities and soil active organic carbon. Scientia Agricultura Sinica, 2020,53(6):1202-1213. (in Chinese)
[23] 李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系. 土壤学报, 2004,7(4):544-552.
LI Z P, ZHANG T L, CHEN B Y. Dynamics of soluble organic carbon and its relation to mineralization to mineralization of soil organic carbon. Acta Pedologica Sinica, 2004,7(4):544-552. (in Chinese)
[24] 林启美, 吴玉光, 刘焕龙. 熏蒸法测定土壤微生物量碳的改进. 生态学杂志, 1999,18(2):64-67.
LIN Q M, WU Y G, LIU H L. Modification of fumigation extraction method for measuring soil microbial biomass carbon. Chinese Journal of Ecology, 1999,18(2):64-67. (in Chinese)
[25] BLAIR G J, LISLE R L A L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Crop and Pasture Science, 1995(7):1459-1466.
[26] WANG X B, DAI K, ZHANG D C, ZHANG X M, WANG Y, ZHAO Q S, CAI D X, HOOGMOED W B, OENEMA O. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crops Research, 2011(120):47-57.
[27] 周虎, 吕贻忠, 杨志臣, 李保国. 保护性耕作对华北平原土壤团聚体特征的影响. 中国农业科学, 2007,40(9):1973-1979.
ZHOU H, LÜ Y Z, YANG Z C, LI B G. Effects of conservation tillage on soil aggregatesin Huabei Plain. Scientia Agricultura Sinica, 2007,40(9):1973-1979. (in Chinese)
[28] 中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1983: 511-523.
Nanjing Institute of Soil Science, Chinese Academy of Sciences. Soil Physical and Chemical Analysis. Shanghai: Shanghai Science and Technology Press, 1983: 511-523. (in Chinese)
[29] 毛鑫, 杨建利, 周翔, 王乃江, 姬祥祥, 冯浩, 何建强. 基于结构方程模型的油菜性状和产量关系研究. 中国油料作物学报, 2019,41(1):33-39.
MAO X, YANG J L, ZHOU X, WANG N J, JI X X, FENG H, HE J Q. Relationships between traits and yields of rapeseed based on the structural equation modeling. Chinese Journal of Oil Crop Sciences, 2019,41(1):33-39. (in Chinese)
[30] SIX J, ELLIOTT E T, PAUSTIAN K. Soil structure and soil organic matter: A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 2000,64(3):1042-1049.
[31] 张鹏, 贾志宽, 王维, 路文涛, 高飞, 聂俊峰. 秸秆还田对宁南半干旱地区土壤团聚体特征的影响. 中国农业科学, 2012,45(8):1513-1520.
ZHANG P, JIA Z K, WANG W, LU W T, GAO F, NIE J F. Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China. Scientia Agricultura Sinica, 2012,45(8):1513-1520. (in Chinese)
[32] ZHANG P, WEI T, JIA Z H, HAN Q F, REN X L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma, 2014,230/231:41-49.
[33] GARCÍA-ORENES F, GUERRERO C, ROLDÁN A. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research, 2010,109:110-115.
[34] 李委涛, 李忠佩, 刘明, 江春玉, 吴萌, 陈晓芬. 秸秆还田对瘠薄红壤水稻土团聚体内酶活性及养分分布的影响. 中国农业科学, 2016,49(20):3886-3895.
LI W T, LI Z P, LIU M, JIANG C Y, WU M, CHEN X F. Enzyme activities and soil nutrient status associated with different aggregate fractions of paddy soils fertilized with returning straw for 24 years. Scientia Agricultura Sinica, 2016,49(20):3886-3895. (in Chinese)
[35] HAYNES R J. Labile organic matter fractions as central components of the quality of agricultural soil: An overview. Advances in Agronomy, 2005,85:221-268.
[36] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展. 中国生态农业学报, 2011,19(2):447-455.
LIU Z L, YU W T. Review of researches on soil aggregate and soil organic carbon. Chinese Journal of Eco-Agriculture, 2011,19(2):447-455. (in Chinese)
[37] BARTO E K, ALT F, OELMANN Y, WILCKE W, RILLIG M C. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biology & Biochemistry, 2010,42(12):2316-2324.
[38] COPPENS F, GARNIER P, FINDELING A, MERCKX R, RECOUS S. Decomposition of mulched versus incorporated crop residues: Modelling with PASTIS clarifies interactions between residue quality and location. Soil Biology & Biochemistry , 2007,39(9):2339-2350.
[39] FONTAINE S, BAROT S, BARRÉ P, BDIOUI N, MARY B, RUMPEL C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 2007,450(7167):277-280.
[40] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover andmicroaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 2000,32:2099-2103.
[41] HUSNJAK S, FILIPOVIC D, KOSUTIC S. Influence of different tillage systems on soil physical properties and crop yields. Rostlinna Vyroba, 2002,48(6):249-254.
[42] CHEN H Q, HOU R X, GONG Y S, LI H W, FAN M S, KUZYAKOV Y. Effects of ll years of conservation tillage on soil organic matter fractions in wheat monocuhure in Loess Plateau of China. Soil and Tillage Research, 2009,106(1):85-94.
[43] 陈晓芬, 李忠佩, 刘明, 江春玉. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013,46(5):950-960.
CHEN X F, LI Z P, LIU M, JIANG C Y. Effects of different fertilizationson organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China. Scientia Agricultura Sinica, 2013,46(5):950-960. (in Chinese)
[44] BLANCO-CANQUI H, LAL R, Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil and Tillage Research, 2007,95(1/2):240-254.
[45] 魏欢欢, 王仕稳, 杨文稼, 孙海妮, 殷俐娜, 邓西平. 免耕及深松耕对黄土高原地区春玉米和冬小麦产量及水分利用效率影响的整合分析. 中国农业科学, 2017,50(3):461-473.
WEI H H, WANG S W, YANG W J, SUN H N, YIN L N, DENG X P. Meta analysis on impact of no-tillage and subsoiling tillage on spring maize and winter wheat yield and water use efficiency on the Loess Plateau. Scientia Agricultura Sinica, 2017,50(3):461-473. (in Chinese)
[46] 王晓娟, 黄高宝, 李卿沛, 马剑, 高亚琴, 刘博. 不同耕作措施下旱地春小麦田和豌豆田的蒸发蒸腾特征及产量效应. 干旱区资源与环境, 2010,24(5):172-177.
WANG X J, HUANG G B, LI Q Y, MA J, GAO Y Q, LIU B. Evaporation transpiration characteristics and yield effect of spring wheat field and pea field under different tillage measures. Journal of Arid Land Resources and Environment, 2010,24(5):172-177. (in Chinese)
[47] BACIGALUPPO S, BODRERO M, BALZARINI M, GERSTER G, ANDRIANI J, ENRICO J, DARDANELLI J. Main edaphic and climatic variables explaining soybean yield in Argiudolls under no-tilled systems. European Journal of Agronomy, 2011,35:247-254.
[1] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[2] NUERHATI·Silafuer ,WUSIMAN·Yimiti . Effects of Amino Acid By-Products on Fermentation Quality and Digestibility of White Sorghum Silage [J]. Scientia Agricultura Sinica, 2022, 55(20): 4065-4074.
[3] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[4] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[5] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[6] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[7] XingXiang GAO,Jian LI,Shuai ZHANG,YueLi ZHANG,Feng FANG,Mei LI,LianYang BAI,ShuangYing ZHANG. Spread and Resistance Level of Aegilops tauschii to Mesosulfuron- Methyl in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 969-979.
[8] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[9] YANG FengKe,HE BaoLin,DONG Bo,WANG LiMing. Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region [J]. Scientia Agricultura Sinica, 2021, 54(20): 4312-4325.
[10] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
[11] FengJun ZHENG,Xue WANG,Jing LI,BiSheng WANG,XiaoJun SONG,MengNi ZHANG,XuePing WU,Shuang LIU,JiLong XI,JianCheng ZHANG,YongShan LI. Effect of No-Tillage with Manure on Soil Enzyme Activities and Soil Active Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1202-1213.
[12] DENG HaoLiang,ZHANG HengJia,XIAO Rang,ZHANG YongLing,TIAN JianLiang,LI FuQiang,WANG YuCai,ZHOU Hong,LI Xuan. Effects of Different Covering Planting Patterns on Soil Moisture, Temperature Characteristics and Maize Yield in Semi-Arid Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(2): 273-287.
[13] ZHOU JiXiang,ZHANG He,YANG Jing,LI GuiHua,ZHANG JianFeng. Effects of Continuous Application of Soil Amendments on Fluvo- Aquic Soil Fertility and Active Organic Carbon Components [J]. Scientia Agricultura Sinica, 2020, 53(16): 3307-3318.
[14] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[15] ZHANG Qi,WANG ShuLan,WANG Hao,LIU PengZhao,WANG XuMin,ZHANG YuanHong,LI HaoYu,WANG Rui,WANG XiaoLi,LI Jun. Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!