Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (7): 1322-1337.doi: 10.3864/j.issn.0578-1752.2020.07.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Application of Plasmid Reference Molecule for Genetically Modified Rapeseed Screening

Jun LI1,Xia-ying LI2,Jing-qian WANG2,Shanshan Zhai1,Zi-yan CHEN2,Hong-fei GAO1,YunJing LI1,Gang WU1,Xiu-jie ZHANG2,Yu-hua WU1   

  1. 1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crop, Ministry of Agriculture, Wuhan 430062
    2. Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100025
  • Received:2019-08-07 Accepted:2019-11-13 Online:2020-04-01 Published:2020-04-14

Abstract: 【Objective】 Rapeseed is one of the four major genetically modified (GM) crops, the production and application of GM rapeseed must be regulated in China. Performance of GMO detection is the prerequisite to implement GMO regulations, screening is the first step to determine the presence or absence of GMO ingredients in testing samples. Appropriate selection of screening targets can effectively reduce the chance of missed detection of some GM ingredients. A technical platform, involving establishment of screening strategy for GM rapeseed and development of a common reference plasmid that is compatible with the screening strategy, would provide technical support for regulating GM rapeseed.【Method】 Both regulatory elements and marker genes commonly used in GM rapeseed are obtained by collecting and analyzing the GM rapeseed varieties registered in database, then the screening strategy for GM rapeseed can be determined based on the principle of maximum coverage of GM rapeseed varieties. The whole nucleotide sequences of screening elements are collected by searching nucleotide database or retrieving patent. One screening target usually has multiple standard detection methods, both the primer pairs for conventional PCR and the primers/probe combinations for real-time PCR are aligned with the nucleotide sequence of each screening target to determine the target sequence that would be integrated into plasmid. The fusion sequence of all screening elements together with rapeseed reference genes was artificially synthesized, and cloned into the plasmid pUC18 to construct a positive plasmid molecule. Both conventional PCR and real-time PCR are utilized to evaluate the applicability of constructed plasmid as positive control.【Result】 The screening strategy for transgenic rapeseed was established by detecting nine elements, involving two promoters of CaMV 35S and FMV 35S, five genes of Bar, PAT, CP4-EPSPS, NPTII, and HPT, two terminators of NOS and PinII. This screening strategy achieved full coverage of transgenic rapeseed varieties with known information. The screening plasmid pYCSC-1905 was constructed for GM rapeseed, carrying nine screening elements and 2 rapeseed reference genes of HMG I/Y and CruA. The amplification efficiencies of nine screening elements and two rapeseed reference genes were in the range from 90% to 110%, demonstrating that the amplification efficiency of screening target is not influenced due to the mutual interference of integrated fragments. The plasmid pYCSC-1905 can be used as a common positive control for nine screening targets and two rapeseed reference genes, applicable to national standards (GB/T and Declaration of Ministry of Agriculture and Rural Affairs), Entry-exit inspection and quarantine industry standards (SN/T) and European Union standards.【Conclusion】 The screening strategy covering 9 elements for GM rapeseed screening , can achieve the screening of GM rapeseed in all stages from commercialization to safety assessment, and significantly reduce the missed detection of GM rapeseed. The developed plasmid pYCSC-1905 provides a general positive control for rapeseed screening and the standard methods, and ensures the accuracy and comparability of test results between laboratories.

Key words: genetically modified rapeseed, screening, screening strategy, positive plasmid molecule, application

Table 1

GM rapeseed varieties registered in ISAAA database"

类型
Type
数目
Number
名称
Name
独立转化体
Event
26 23-18-17、23-198、61061、73496、DHA Canola、GT200、GT73、Topas 19/2(HCN10、HCN92)、T45、MON88302、MPS961、MPS962、MPS963、MPS964、MPS965、MS1、MS11、MS8、OXY235、PHY14、PHY23、PHY35、PHY36、RF1、RF2、RF3
复合性状品种
Gene-stacked variety
14 73496×RF3、HCN28×MON88302、MON88302×MS8×RF3、MON88302×RF3、MS1×MON88302、MS1×RF1、MS1×RF2、MS1×RF3、MS8×MON88302、MS8×RF3、MS8×RF3×GT73、RF1×MON88302、HCN92×MON88302、RF2×MON88302

Table 2

Distribution of 9 screening elements in rapeseed events"

编号
No.
转化体
Event
P-CaMV35S P-FMV35S Bar mCP4-EPSPS HPT NPTⅡ PAT T-NOS T-PinⅡ
1 T45
2 GT73 / RT73
3 GT200
4 MS8
5 MS1
6 RF1
7 RF2
8 RF3
9 OXY235
10 TOPAS19/2
11 Falcon GS40/ 90pHoe6/A
12 Liberator L62
13 23-18-17, 23-198
14 HCN10
15 PHY14,PHY35
16 PHY36
17 73496
18 MON88302
19 61061
20 MS11

Table 3

Information of nucleotide sequence and corresponding standardized method of screening elements and rapeseed reference genes"

元件/基因
Element/Gene
序列长度
Length (bp)
登录号
Accession No.
靶标长度
Target size (bp)
PCR类型
PCR type
引物/探针
Primer/Probe
序列
Sequence(5′-3′)
产物大小
Amplicon size (bp)
标准
Standards
P-CaMV35Sq 835 AF485783.1 250 CT-PCR F GCTCCTACAAATGCCATCATTGC 195 1782-3-2012 [4]
SN/T 1197-2016 [11]
ISO 21569:2005 [20]
R GATAGTGGGATTGTGCGTCATCCC
35S-cf3 CCACGTCTTCAAAGCAAGTGG 123 QL-ELE-00-004[21]
35S-cr4 TCCTCTCCAAATGAAATGAACTTCC
RT-PCR 35S-QF CGACAGTGGTCCCAAAGA 74 1782-3-2012[4]
SN/T 1201-2014[9]
SN/T 2705-2010[10]
35S-QR AAGACGTGGTTGGAACGTCTTC
35S-QP TGGACCCCCACCCACGAGGAGCATC
F GCCTCTGCCGACAGTGGT 82 GB/T 19495.4-2018[2]
SN/T 1197-2016[11]
SN/T 1204-2016[12]
QL-ELE-00-012[22]
R AAGACGTGGTTGGAACGTCTTC
P CAAAGATGGACCCCCACCCACG
p35s-F ATTGATGTGATATCTCCACTGACGT 101 GB/T 33526-2017[3]
p35s-R CCTCTCCAAATGAAATGAACTTCCT
p35s-P CCCACTATCCTTCGCAAGACCCTTCCT
NPTⅡ 795 AF485783.1 669 CT-PCR TN5-1 GGATCTCCTGTCATCT 173 QL-ELE-00-003[23]
TN5-2 GATCATCCTGATCGAC
APH2 short CTCACCTTGCTCCTGCCGAGA 215 SN/T 1197-2016[11]
APH2 reverse CGCCTTGAGCCTGGCGAACAG
NPTIIF68 ACTGGGCACAACAGACAATCG 289 1782-2-2012[7]
NPTIIR356 GCATCAGCCATGATGGATACTTT
RT-PCR F AGGATCTCGTCGTGACCCAT 183 GB/T 19495.4-2018[2]
SN/T 1197-2016[11]
SN/T 2705-2010[10]
SN/T 1201-2014[9]
SN/T 1204-2016[12]
R GCACGAGGAAGCGGTCA
P CACCCAGCCGGCCACAGTCGAT
qNPTIIF63 CTATGACTGGGCACAACAGACA 101 1782-2-2012[7]
qNPTIIR163 CGGACAGGTCGGTCTTGACA
qNPTIIFP90 CTGCTCTGATGCCGCCGTGTTCCG
P-FMV35S 596 JN400388.1 393 CT-PCR FMV-1 AAGCCTCAACAAGGTCAG 196 QL-ELE-00-010[25]
FMV-2 CTGCTCGATGTTGACAAG
FMV35S-F1 AAGACATCCACCGAAGACTTA 210 1782-3-2012 [4]
SN/T 1197-2016 [11]
ISO 21569:2005 [20]
FMV35S-R1 AGGACAGCTCTTTTCCACGTT
RT-PCR pFMV-F CAAAATAACGTGGAAAAGAGCT 78 QL-ELE-00-015[24]
SN/T 1197-2016[11]
pFMV-R TCTTTTGTGGTCGTCACTGC
pFMV CTGACAGCCCACTCACTAATGC
FMV35S-QF AAGACATCCACCGAAGACTTA 210 1782-3-2012[4]
SN/T 1201-2014[9]
SN/T 2705-2010[10]
FMV35S-QR AGGACAGCTCTTTTCCACGTT
FMV35S-Qp TGGTCCCCACAAGCCAGCTGCTCGA
F CGAAGACTTAAAGTTAGTGGGCATCT 79 GB/T 19495.4-2018[2]
SN/T 1204-2016[12]
R TTTTGTCTGGTCCCCACAA
P TGAAAGTAATCTTGTCAACATCGAGCAGCTGG
mCP4-EPSPS 1368 JN400388.1 793 CT-PCR CP4 Synthetic F GCATGCTTCACGGTGCAA 108 QL-ELE-00-019[26]
CP4 Synthetic R TGAAGGACCGGTGGGAGAT
F GACTTGCGTGTTCGTTCTTC 204 SN/T 1197-2016[11]
R AACACCGTTGAGCTTGAGAC
mCP4ESF ACGGTGAYCGTCTTCCMGTTAC 333 1861-5-2012[5]
mCP4ESR GAACAAGCARGGCMGCAACCA
RT-PCR F GCAAATCCTCTGGCCTTTCC 146 GB/T 19495.4-2018[2]
R CTTGCCCGTATTGATGACGTC SN/T 1204-2016[12]
P TCATGTTCGGCGGTCTCGCG- SN/T 1197-2016[11]
Bar 552 MH973511.1 433 CT-PCR Pat-Bar Fwd CGTCAACCACTACATCGAGACAA 69 QL-ELE-00-022[27]
Pat-Bar Rev GTCCACTCCTGCGGTTCCT
bar-F GAAGGCACGCAACGCCTACGA 262 1782-6-2012[6]
bar-R CCAGAAACCCACGTCATGCCA
F ACCATCGTCAACCACTACATCG 430 SN/T 1197-2016[11]
R GCTGCCAGAAACCCACGTCAT
RT-PCR RapB-F1 ACAAGCACGGTCAACTTCC 60 QL-ELE-00-014 [28]
SN/T 1204-2016 [12]
RapB-R1 GAGGTCGTCCGTCCACTC
RapB-S1 TACCGAGCCGCAGGAACC
F ACAAGCACGGTCAACTTCC 175 GB/T 19495.4-2018[2]
SN/T 1197-2016[11]
SN/T 2705-2010[10]
SN/T 1201-2014[9]
R ACTCGGCCGTCCAGTCGTA
P CCGAGCCGCAGGAACCGCAGGAG
PAT 579 DQ156557.1 499 CT-PCR Pat-Pat Fwd CCGCGGTTTGTGATATCGTT 109 QL-ELE-00-021[29]
Pat-Pat Rev TCTTGCAACCTCTCTAGATCATCAA
PAT-F GAAGGCTAGGAACGCTTACGA 262 1782-6-2012[6]
PAT-R CCAAAAACCAACATCATGCCA
F GTCGACATGTCTCCGGAGAG 191 SN/T 1197-2016[11]
R GCAACCAACCAAGGGTATC
RT PCR Pat-F CGCGGTTTGTGATATCGTTAAC 108 QL-ELE-00-025[30]
Pat-R TCTTGCAACCTCTCTAGATCATCAA
Pat-P AGGACAGAGCCACAAACACCACAAGAGTG
PAT-KVM-5 TTGAGGGTGTTGTGGCTGGTA 68 QT-ELE-00-002[31]
Pat1-p TGTCCAATCGTAAGCGTTCCT
PAT-KVM-6 CTTCCAGGGCCCAGCGTAAGCA
F GTCGACATGTCTCCGGAGAG 191 GB/T 19495.4-2018 [2]
SN/T 1197-2016 [11]
SN/T 2705-2010 [10]
SN/T 1201-2014 [9]
SN/T 1204-2016 [12]
R GCAACCAACCAAGGGTATC
P TGGCCGCGGTTTGTGATATCGTTAA
T-NOS 256 AF485783.1 256 CT-PCR tNOS_NN_Fwd GATTAGAGTCCCGCAATTATACATTTAA 69 QL-ELE-00-018[32]
tNOS D REV TTATCCTAGKTTGCGCGCTATATTT
HA-nos118-f GCATGACGTTATTTATGAGATGGG 118 SN/T 1197-2016[11]
HA-nos118-r GACACCGCGCGCGATAATTTATCC
NOS-F1 GAATCCTGTTGCCGGTCTTG 180 SN/T 1197-2016[11]
NOS-R1 TTATCCTAGTTTGCGCGCTA 1782-3-2012[4]
RT-PCR 180-F CATGTAATGCATGACGTTATTTATG 84 QL-ELE-00-011[33]
SN/T 1204-2016[12]
180-R TTGTTTTCTATCGCGTATTAAATGT
Tm-180 ATGGGTTTTTATGATTAGAGTCCCGCAA
NOS-F2 ATCGTTCAAACATTTGGCA 165 1782-3-2012 [4]
GB/T 19495.4-2018 [2]
GB/T 33526-2017 [3]
SN/T 1197-2016 [11]
SN/T 2705-2010 [10]
NOS-R2 ATTGCGGGACTCTAATCATA
NOS-P CATCGCAAGACCGGCAACAGG
T-PINⅡ 310 KP784700.1 310 RT-PCR F GACTTGTCCATCTTCTGGATTGG 105 未发表
Unpublished
R CACACAACTTTGATGCCCACAT
P AGTGATTAGCATGTCACTATGTGTGCATCC
HPT 1026 AF234296.1 474 CT-PCR HptF226 GAAGTGCTTGACATTGGGGAGT 472 1782-2-2012[7]
HptR697 AGATGTTGGCGACCTCGTATT
RT-PCR qHptF286 CAGGGTGTCACGTTGCAAGA 110
qHptR395 CCGCTCGTCTGGCTAAGATC
qHptFP308 TGCCTGAAACCGAACTGCCCGCTG
HMG I/Y 950 AF127919 206 RT-PCR HMG I/Y-F GGTCGTCCTCCTAAGGCGAAAG 99 2031-9-2013 [8]
HMG I/Y-R CTTCTTCGGCGGTCGTCCAC
HMG I/Y-P CGGAGCCACTCGGTGCCGCAACTT
CT-PCR hmg-F TCCTTCCGTTTCCTCGCC 206
hmg-R TTCCACGCCCTCTCCGCT
CruA 3113 X14555 150 RT-PCR QCRUAF GGCCAGGGCTTCCGTGAT 101
QCRUAR CCGTCGTTGTAGAACCATTGG
QCRUAP AGTCCTTATGTGCTCCACTTTCTGGTGCA
CT-PCR CruAF398 GGCCAGGGCTTCCGTGAT 150
CruAR547 CTGGTGGCTGGCTAAATCGA

Fig. 1

Schematic diagram of the fusion sequence of screening elements and the rapeseed reference genes"

Fig. 2

Schematic diagram of the plasmid molecular structure for transgenic rapeseed screening"

Fig. 3

Standard curves and amplification efficiencies of nine screening elements and two rapeseed reference genes E indicates amplification efficiency, R2 indicates regression coefficient, slope indicates the slope of standard curve, y-int indicates the intercept of standard curve"

Fig. 4

Screening of gene elements in 12 transgenic rapeseed varieties M: Marker; 1: p-YCSC-1905; 2: T45; 3: GT73; 4: MS8; 5: MS1; 6: RF1; 7: RF2; 8: RF3; 9: OXY235; 10: Topas 19/2; 11: 73496; 12: MON88302; 13: Negative control ZY821; 14: Blank"

[1] HOLST-JENSEN A, RØNNING S B, LOVSETH A, BERDAL K G. PCR technology for screening and quantification of genetically modified organisms (GMOs). Analytical and Bioanalytical Chemistry, 2003,375:985-993.
[2] 黄新, 高宏伟, 李想, 凌杏园, 朱水芳, 陈洪俊, 潘良文, 曹际娟, 章桂明 . GB/T 19495.4-2018 转基因产品检测实时荧光定性聚合酶链式反应(PCR)检测方法. 北京: 中国标准出版社, 2018.
HUANG X, GAO H W, LI X, LING X Y, ZHU S F, CHEN H J, PAN L W, CAO J J, ZHANG G M. GB/T 19495.4-2018 Detection of genetically modified organisms and derived products - Qualitative real-time polymerase chain reaction (PCR) methods. Beijing: China Standards Press, 2018. (in Chinese)
[3] 付伟, 杜智欣, 王勤, 许文涛, 吴刚, 朱水芳, 刘晓飞 . GB/T 33526-2017转基因植物产品数字PCR检测方法. 北京: 中国标准出版社, 2017.
FU W, DU Z X, WANG Q, XU W T, WU G, ZHU S F, LIU X F. GB/T 33526-2017 Genetically modified organism detection method by digital PCR. Beijing: China Standards Press, 2017. (in Chinese)
[4] 谢家建, 沈平, 彭于发, 李葱葱, 宋贵文, 孙爻 . 农业部1782号公告-3-2012转基因植物及其产品成分检测调控原件CAMV35S启动子、FMV35S启动子、NOS终止子和CaMV35S终止子定性PCR方法. 北京: 中国农业出版社, 2012.
XIE J J, SHEN P, PENG Y F, LI C C, SONG G W, SUN Y. Announcement by the Ministry of Agriculture No. 1782-3-2012 Detection of genetically modified plants and derived products - Qualitative PCR methods for the regulatory elements CaMV 35Spromoter, FMV35S promoter, NOS promoter, NOS terminator and CaMV35 terminator. Beijing: China Agriculture Press, 2012. (in Chinese)
[5] 杨立桃, 厉建萌, 刘勇, 张大兵, 宋贵文, 兰青阔, 郭金超, 朱君 . 农业部1861号公告-5-2012转基因植物及其产品成分检测CP4-epsps基因定性PCR方法. 北京: 中国农业出版社, 2012.
YANG L T, LI J M, LIU Y, ZHANG D B, SONG G W, LAN Q K, GUO J C, ZHU J. Announcement by the Ministry of Agriculture No. 1861-5-2012 Detection of genetically modified plants and derived products - Qualitative PCR method for CP4-epsps gene. Beijing: China Agriculture Press, 2012. (in Chinese)
[6] 路兴波, 宋贵文, 李凡, 沈平, 杨立桃, 孙红炜, 武海斌, 王敏, 王鹏 . 农业部1782号公告-6-2012, 转基因植物及其产品成分检测bar或pat基因定性PCR方法. 北京: 中国农业出版社, 2012.
LU X B, SONG G W, LI F, SHEN P, YANG L T, SUN H W, WU H B, WANG M, WANG P. Announcement by the Ministry of Agriculture No.1782-6-2012 Detection of genetically modified plants and derived products - Qualitative PCR method of bar or pat gene. Beijing: China Agriculture Press, 2012. (in Chinese)
[7] 卢长明, 宋贵文, 吴刚, 武玉花, 曹应龙, 厉建萌, 罗军玲 . 农业部1782号公告-2-2012 转基因植物及其产品成分检测标记基因NPTII、HPT和PMI. 北京: 中国农业出版社, 2012.
LU C M, SONG G W, WU G, WU Y H, CAO Y L, LI J M, LUO J L. Announcement by the Ministry of Agriculture No.1782-2-2012. 2012-06-06 Detection of genetically modified plants and derived products - Qualitative PCR methods for the marker genes NPTII, HPT and PMI. Beijing: China Agriculture Press, 2012. (in Chinese)
[8] 卢长明, 刘信, 武玉花, 吴刚, 沈平, 杨立桃, 张大兵 . 农业部2031号公告-9-2013 转基因植物及其产品成分检测油菜内标准基因定性PCR方法. 北京: 中国农业出版社, 2013.
LU C M, LIU X, WU Y H, WU G, SHEN P, YANG L T, ZHANG D B. Announcement by the Ministry of Agriculture No.2031-9-2013 Detection of genetically modified plants and derived products - Target-taxon-specific qualitative PCR method for rapeseed. Beijing: China Agriculture Press, 2012. (in Chinese)
[9] 章桂明, 凌杏园, 潘广, 向才玉, 程颖慧, 康林, 余道坚, 龙海, 郑耘, 陈枝楠, 杨伟东 . SN/T 1201-2014 饲料中转基因植物成份PCR检测方法. 北京: 中国标准出版社, 2014.
ZHANG G M, LING X Y, PAN G, XIANG C Y, CHENG Y H, KANG L, YU D J, LONG H, ZHENG Y, CHEN Z N, YANG W D. SN/T 1201-2014. Protocol of PCR for detection of genetically modified feed. Beijing: China Standards Press, 2014. (in Chinese)
[10] 李丹宁, 高东微, 钟玉清, 张隽, 万宇平 . SN/T 2705-2010 调味品中转基因植物成分实时荧光PCR定性检测方法. 北京: 中国标准出版社, 2010.
LI D N, GAO D W, ZHONG Y Q, ZHANG X, WAN Y P. SN/T 2705-2010 Protocol of the Real-time fluorescence qualitative polymerase chain reaction for detecting genetically modified plant components in condiments. Beijing: China Standards Press, 2010. (in Chinese)
[11] 潘良文, 李想, 吕蓉, 杨捷琳, 刘月明, 高琴 . SN/T 1197-2016 油菜中转基因成分检测普通PCR和实施荧光PCR方法. 北京: 中国标准出版社, 2016.
PAN L W, LI X, LV R, YANG J L, LIU Y M, GAO Q. SN/T 1197-2016 Detection of genetically modified ingredients in rapeseed conventional and real-time PCR methods. Beijing: China Standards Press, 2016. (in Chinese)
[12] 黄新, 高宏伟, 李想, 潘良文, 朱水芳, 陈洪俊, 段胜男 . SN/T 1204-2016 植物及其加工产品中转基因成分实时荧光PCR定性检验方法. 北京: 中国标准出版社, 2016.
HUANG X, GAO H W, LI X, PAN L W, ZHU S F, CHEN H J, DUAN S N. SN/T 1204-2016 Protocol of the real-time PCR for detecting genetically modified plants and their derived products. Beijing: China Standards Press, 2016. (in Chinese)
[13] 张丽, 武玉花, 吴刚, 曹应龙, 李均, 卢长明 . 转基因油菜筛查检测策略研究. 中国油料作物学报, 2012,34(1):74-81.
ZHANG L, WU Y H, WU G, CAO Y L, LI J, LU C M . Strategy of transgenic rapeseed screening based on exogenous gene elements. Chinese Journal of Oil Crop Sciences, 2012,34(1):74-81. (in Chinese)
[14] 刘冰 . 油菜中转基因成分的筛查检测策略. 西北农业学报, 2018,27(1):62-68.
LIU B . Screening strategy of genetically modified rapeseed based on inserted genetic elements. Acta Agriculturae Boreali-occidentalis Sinica, 2018,27(1):62-68. (in Chinese)
[15] WU Y, LI J, LI X, ZHAI S S, GAO H F, LI Y, ZHANG X, WU G . Development and strategy of reference materials for the DNA-based detection of genetically modified organisms. Analytical and Bioanalytical Chemistry, 2019,411(9):1729-1744.
[16] LI Z, LI X, WANG C, SONG G, PI L, ZHENG L, ZHANG D, YANG L . One novel multiple-target plasmid reference molecule targeting eight genetically modified canola events for genetically modified canola detection. Journal Agricultural and Food Chemistry, 2017,65(38):8489-8500.
[17] WU Y, LI J, WANG Y, LI X, LI Y, ZHU L, LI J, WU G . Development and application of a general plasmid reference material for GMO screening. Plasmid, 2016,87(88):28-36.
[18] 徐俊锋, 汪小福, 陈笑芸, 彭城, 徐晓丽, 朱青, 缪青梅 . 用于四种主要作物转基因筛查检测的标准质粒分子的构建及应用. 农业生物技术学报, 2015,23(9):1167-1177.
XU J F, WANG X F, CHEN X Y, PENG C, XU X L, ZHU Q, MIAO Q M . Construction and application of standard plasmid molecules for screening detection of four major genetically modified crops. Journal of Agricultural Biotechnology, 2015,23(9):1167-1177. (in Chinese)
[19] 牛丛丛, 文雯, 龙海飞, 张禹佳, 吴小文 . 基于文献计量学分析的我国转基因油菜研究进展. 科技情报开发与经济, 2015(25):156-157.
NIU C C, WEN W, LONG H F, ZHANG Y J, WU X W . Research progress of genetically modified rapeseed in China based on bibliometric analysis. Science and Technology Information Development and Economy, 2015(25):156-157. (in Chinese)
[20] ISO. Foodstuffs-Methods of analysis for the detection of genetically modified organisms and derived products-Qualitative nucleic acid based methods. ISO 21569: 2005, 1-69.
[21] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative PCR method for detection of Cauliflower Mosaic Virus 35S promoter. 2010, . Accessed 14 Aug 2018.
[22] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative duplex PCR method for detection of Cauliflower Mosaic Virus 35S promoter and nopaline synthase terminator (partim CaMV P-35S). 2010, . Accessed 14 Aug 2018.
[23] EUROPEAN COMMISSION. GMOMETHODS: EU database of reference methods - Qualitative PCR method for detection of neomycin phosphotransferase II gene. 2018, . Accessed 14 Aug 2018.
[24] EUROPEAN COMMISSION. GMOMETHODS: EU database of reference methods - Qualitative PCR method for detection of Figwort Mosaic Virus 35S promoter. . Accessed 14 Aug 2018.
[25] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative PCR method for detection of Figwort Mosaic Virus 35S promoter. . Accessed 14 Aug 2018.
[26] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative PCR method for detection of CP4 epsps gene. 2014, . Accessed 14 Aug 2018.
[27] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative PCR method for detection of phosphinothricin N-acetyltransferase (bar) gene. . Accessed 14 Aug 2018.
[28] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative PCR method for detection of phosphinothricin N-acetyltransferase gene. . Accessed 14 Aug 2018.
[29] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative PCR method for detection of phosphinothricin N-acetyltransferase (pat) gene. 2014, . Accessed 14 Aug 2018.
[30] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative duplex PCR method for detection of pat gene; bar gene (partimpat). . Accessed 14 Aug 2018.
[31] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Quantitative PCR method for detection of phosphinothricin N-acetyltransferase gene. 2010, . Accessed 14 Aug 2018.
[32] EUROPEAN COMMISSION. JRC compendium of reference methods for GMO analysis - Qualitative PCR method for detection of nopaline synthase terminator. 2014. . Accessed 14 Aug 2018.
[33] EUROPEAN COMMISSION. GMOMETHODS: EU database of reference methods - Qualitative PCR method for detection of nopaline synthase terminator. 2014, . Accessed 14 Aug 2018.
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] JIANG Hui,FENG Yu,QIN YuMing,ZHU LiangQuan,FAN XueZheng,DING JiaBo. Method Improvement and Its Application of Micro Complement Fixation Test for Brucellosis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1676-1684.
[3] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[4] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[5] LI YaFei, SHI JiangLan, WU TianQi, WANG ShaoXia, LI YuNuo, QU ChunYan, LIU CongHui, NING Peng, TIAN XiaoHong. Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(3): 514-528.
[6] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[7] REN ZiQi,KANG YuJie,LI HaiZhen,WANG LianGang,MA HaoYun,LI Hui,WANG LiuYang,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Trachea atriplicis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4640-4650.
[8] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[9] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[10] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[11] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[12] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[13] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[14] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[15] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!