Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3155-3169.doi: 10.3864/j.issn.0578-1752.2022.16.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China

MA Yue1(),TIAN Yi1,MU WenYan1,ZHANG XueMei1,ZHANG LuLu1,YU Jie1,LI YongHua1,WANG HaoLin1,HE Gang1,SHI Mei1,WANG ZhaoHui1,2(),QIU WeiHong1()   

  1. 1College of Natural Resources and Environment, Northwest A & F University/Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2Northwest A & F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2021-06-25 Accepted:2021-09-15 Online:2022-08-16 Published:2022-08-11
  • Contact: ZhaoHui WANG,WeiHong QIU E-mail:381495288@qq.com;w-zhaohui@263.net;qwh@nwsuaf.edu.cn

Abstract:

【Objective】It is of great importance to clarify the relationships of changes in wheat grain yield and grain nutrients absorption and distribution to test-integrated potassium (K) fertilizer application and soil available K, for the purpose of high yield, high quality, green production of wheat and saving K resources in northern wheat production region of China. 【Method】In this research, a 43-site field experiment was conducted in northern wheat region of China from 2018 to 2020, to investigate effects of test-integrated K application on grain yield, yield components, grain nitrogen (N), phosphorus (P), and K concentrations, and nutrients uptake and absorption of wheat at different soil available K levels. 【Result】The insufficient and excessive K application occurred widely in northern wheat production region. With the increase of soil available K level, the wheat yield increased significantly and reached the maximum value of 6 340 kg·hm-2 at the available K of 150-180 mg·kg-1. Excessive soil available K was not able to further increase the grain yield, and it significantly decreased to 5 409 kg·hm-2 when soil available K was higher than 180 mg·kg-1. Compared with the farmers’ fertilizer application rate (FF), the recommended K fertilizer rate (RF) by the test-integrated fertilizer application was decreased at the soil available K level of 150-180 mg·kg-1, and increased at the other levels. The RF was found to have increased the wheat yield in comparison to FF with the yield increase significant at soil available K lower than 90 mg·kg-1 and higher than 180 mg·kg-1. When the soil available P was higher than 30 mg·kg-1 and the soil available K was at 120-150 mg·kg-1 or higher than 180 mg·kg-1, the wheat yield of no K application (RF-K) showed a tendency to decrease in comparison to RF. With the increase of soil available K level, wheat grain N concentration increased significantly, but no significant difference was observed in the grain N, P, and K concentrations between FF and RF. Compared with RF, the grain N, P, and K concentrations under RF-K significantly decreased when the soil available K was higher than 180 mg·kg-1. When the soil available K was higher than 180 mg·kg-1, the K partial factor productivity and K fertilizer uptake efficiency under RF were significantly higher than those under FF. 【Conclusion】The reasonable fertilization could get high wheat yield when the soil available K was at 150-180 mg·kg-1, but the wheat yield might be reduced without K fertilization when the soil available P was higher than 30 mg·kg-1. Therefore, the K fertilizer rate should be recommended based on the target wheat yield and soil available P and K levels, for the purpose of yield stabilization, quality improvement, and efficiency increase in the northern wheat production regions of China.

Key words: soil available K, wheat, grain yield, grain N, P and K concentrations, test-integrated K application

Fig. 1

Frequency distribution of soil available K concentrations in 0-20 cm soils of 53 farmers’ fields in northern wheat region of China"

Fig. 2

Response of grain yield (A), aboveground biomass (B) and harvest index (C) of wheat to test-integrated K application at different soil available K levels in northern wheat production region of China Error bars are standard deviations of the means. Different lowercase and capital letters represent significant differences among three treatments and different ranges of soil available K levels at P<0.05 level, respectively. The same as below"

Table 1

Spike number, grain per spike and 1000 grain weight of wheat at different soil available K levels in northern wheat production region of China"

速效钾Available K
(mg·kg-1)
穗数Spike number (×104 ·hm-2) 穗粒数Grain per spike 千粒重1000 grain weight (g)
农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average 农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average 农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average
<90 451 b 538 a 517 ab 502 B 29 a 27 ab 27 b 28 BC 43.9 b 45.4 ab 45.7 a 45.0 A
90-120 475 a 481 a 468 a 475 B 29 a 29 a 29 a 29 AB 43.0 a 43.4 a 43.2 a 43.2 B
120-150 527 ab 549 a 501 b 525 A 30 a 30 a 30 a 30 A 39.3 ab 38.5 b 39.8 a 39.2 D
150-180 535 a 582 a 540 a 552 A 28 a 27 a 28 a 28 C 41.3 a 40.7 a 41.2 a 41.1 C
>180 469 ab 503 a 447 b 473 B 28 a 27 a 29 a 28 C 41.0 a 41.1 a 40.7 a 40.9 C
平均Average 492 b 524 a 487 b 29 a 28 a 29 a 41.5 a 41.5 a 41.8 a

Fig. 3

Response of grain N concentration (A), grain P concentration (B) and grain K concentration (C) of wheat to test-integrated K application at different soil available K levels in northern wheat production region of China"

Table 2

N, P and K uptake in aboveground part, and grain N, P and K harvest index of wheat at different soil available K levels in northern wheat production region of China"

速效钾Available K
(mg·kg-1)
地上部吸氮量
N uptake in aboveground part (kg·hm-2)
地上部吸磷量
P uptake in aboveground part (kg·hm-2)
地上部吸钾量
K uptake in aboveground part (kg·hm-2)
农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average 农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average 农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average
<90 164 a 164 a 160 a 163 B 24.6 b 27.4 a 25.2 ab 25.7 A 101 a 103 a 97 a 100 D
90-120 179 a 179 a 171 a 177 A 25.5 ab 26.5 a 24.5 b 25.5 A 123 ab 125 a 114 b 120 C
120-150 176 ab 185 a 167 b 176 A 25.4 ab 26.3 a 24.2 b 25.3 A 143 ab 147 a 135 b 142 A
150-180 181 a 181 a 176 a 179 A 23.2 a 24.8 a 23.1 a 23.7 B 132 a 137 a 130 a 133 B
>180 163 a 165 a 156 a 161 B 23.0 b 24.6 a 21.5 c 23.1 B 131 ab 136 a 123 b 130 BC
平均Average 173 a 175 a 166 b 24.4 b 25.8 a 23.5 c 129 a 132 a 122 b
速效钾 Available K
(mg·kg-1)
氮收获指数 N harvest index (%) 磷收获指数 P harvest index (%) 钾收获指数 K harvest index (%)
农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average 农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average 农户施肥FF 监控施肥RF 监控无钾RF-K 平均Average
<90 77.9 a 79.7 a 81.2 a 79.6 B 83.4 a 83.6 a 85.4 a 84.2 BC 25.2 a 24.0 a 24.7 a 24.7 A
90-120 74.0 a 73.9 a 74.9 a 74.3 E 81.1 a 81.5 a 82.2 a 81.6 D 20.3 a 20.4 a 21.8 a 20.8 B
120-150 77.5 ab 75.5 b 78.2 a 77.1 C 85.1 a 83.1 b 85.3 a 84.5 B 18.7 a 18.1 a 18.7 a 18.5 C
150-180 80.9 a 80.1 a 81.0 a 80.6 A 88.6 a 87.3 a 88.5 a 88.1 A 20.8 a 20.2 a 20.4 a 20.5 B
>180 76.0 a 75.6 a 76.9 a 76.2 D 82.3 a 81.9 a 83.2 a 82.5 CD 17.3 a 16.9 a 17.7 a 17.3 D
平均Average 76.8 ab 76.3 b 77.8 a 83.7 ab 83.1 b 84.5 a 19.8 a 19.3 ab 20.1 b

Fig. 4

Response of soil nitrate-N concentration (A), available P concentration (B) and available K concentration (C) to test-integrated K application at different soil available K levels in northern wheat production region of China"

Fig. 5

N rate (A), P2O5 rate (B) and K2O rate (C) at different soil available K levels in northern wheat production region of China"

Fig. 6

Response of K partial factor productivity (A), K fertilizer uptake efficiency (B), and K utilization efficiency (C) to test-integrated K application at different soil available K levels in northern wheat production region of China"

[1] 汪宁. 浅议我国钾肥生产技术现状及未来展望. 中国石油和化工标准与质量, 2020, 40(21): 160-161, 164.
WANG N. Discussion on the current situation and future prospects of potash fertilizer production technology in my country. China Petroleum and Chemical Standard and Quality, 2020, 40(21): 160-161, 164. (in Chinese)
[2] 屈小荣, 亓昭英. 我国钾肥行业现状及未来发展趋势分析. 肥料与健康, 2020, 47(5): 7-11.
QU X R, QI Z Y. Analysis of current situation and future development trend of China's potash fertilizer industry. Fertilizer & Health, 2020, 47(5): 7-11. (in Chinese)
[3] 王鑫, 李恩泽, 程芳琴. 国内外钾资源及钾肥生产现状. 广州化工, 2018, 46(14): 9-10.
WANG X, LI E Z, CHENG F Q. Present situation of domestic and abroad potassium resources and potash production. Guangzhou Chemical Industry, 2018, 46(14): 9-10. (in Chinese)
[4] 国家发展和改革委员会价格司. 全国农产品成本收益资料汇编. 北京: 中国统计出版社, 2011.
National Development and Reform Commission. Compilation of National Agricultural Products Cost-benefit Data. Beijing: China Statistics Press, 2011. (in Chinese)
[5] 谷贺贺, 李静, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 钾肥与我国主要作物品质关系的整合分析. 植物营养与肥料学报, 2020, 26(10): 1749-1757.
GU H H, LI J, ZHANG Y Y, LI X K, CONG R H, REN T, LU J W. Meta-analysis of the relationship between potassium fertilizer and the quality of main crops in China. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1749-1757. (in Chinese)
[6] MARSCHNER P. Mineral Nutrition of Higher Plants, 3rd. London: Academic Press, 2011.
[7] 王道中, 郭熙盛, 何传龙, 刘枫. 砂姜黑土长期定位施肥对小麦生长及土壤养分含量的影响. 土壤通报, 2007, 38(1): 55-57.
WANG D Z, GUO X S, HE C L, LIU F. Effect of long-term fertilization on wheat growth and soil nutrition status in Shajiang black soil. Chinese Journal of Soil Science, 2007, 38(1): 55-57. (in Chinese)
[8] 武际, 郭熙盛, 王允青, 汪建来, 杨晓虎. 不同土壤供钾水平下施钾对弱筋小麦产量和品质的调控效应. 麦类作物学报, 2007, 27(1): 102-106.
WU J, GUO X S, WANG Y Q, WANG J L, YANG X H. Effects of potassium on grain yield and quality of soft-gluten wheat on soil with different K supplying levels. Journal of Triticeae Crops, 2007, 27(1): 102-106. (in Chinese)
[9] 韩宝文, 邢竹, 郭建华, 李春杰. 冬小麦—夏玉米轮作中的施钾效应及钾素平衡. 河北农业科学, 2004, 8(3): 25-27.
HAN B W, XING Z, GUO J H, LI C J. The experiment research of yield increasing and circulating of potassium in winter wheat-summer corn rotation. Journal of Hebei Agricultural Sciences, 2004, 8(3): 25-27. (in Chinese)
[10] 谭金芳, 洪坚平, 赵会杰, 韩燕来, 王宜伦. 不同施钾量对旱作冬小麦产量、品质和生理特性的影响. 植物营养与肥料学报, 2008, 14(3): 456-462.
TAN J F, HONG J P, ZHAO H J, HAN Y L, WANG Y L. Effects of different potassium application rates on yield, quality and physiological characteristics of dryland winter wheat. Plant Nutrition and Fertilizer Science, 2008, 14(3): 456-462. (in Chinese)
[11] LIU Y X, MA J C, DING W C, HE W T, LEI Q L, GAO Q, HE P. Temporal and spatial variation of potassium balance in agricultural land at national and regional levels in China. PLoS ONE, 2017, 12(9): e0184156.
doi: 10.1371/journal.pone.0184156
[12] 李欢欢, 黄玉芳, 王玲敏, 张立花, 叶优良. 河南省小麦生产与肥料施用状况. 中国农学通报, 2009, 25(18): 426-430.
LI H H, HUANG Y F, WANG L M, ZHANG L H, YE Y L. Wheat production and fertilizers application in Henan Province. Chinese Agricultural Science Bulletin, 2009, 25(18): 426-430. (in Chinese)
[13] 彭艳. 西北旱区小麦养分资源投入调研与分析[D]. 杨凌: 西北农林科技大学, 2018.
PENG Y. Investigation and analysis of wheat nutrients resource inputting on northwest arid regions[D]. Yangling: Northwest A & F University, 2018. (in Chinese)
[14] 赵护兵, 王朝辉, 高亚军, 张卫峰. 陕西省农户小麦施肥调研评价. 植物营养与肥料学报, 2016, 22(1): 245-253.
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F. Investigation and evaluation of household wheat fertilizer application in Shaanxi Province. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 245-253. (in Chinese)
[15] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国农业出版社, 2019.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Agriculture Press, 2019. (in Chinese)
[16] 马悦, 田怡, 苑爱静, 王浩琳, 李永华, 黄婷苗, 黄宁, 李超, 党海燕, 邱炜红, 何刚, 王朝辉, 石美. 北方麦区小麦产量与蛋白质含量变化对土壤硝态氮的响应. 中国农业科学, 2021, 54(18): 3903-3918.
MA Y, TIAN Y, YUAN A J, WANG H L, LI Y H, HUANG T M, HUANG N, LI C, DANG H Y, QIU W H, HE G, WANG Z H, SHI M. Response of wheat yield and protein concentration to soil nitrate in northern wheat production region of China. Scientia Agricultura Sinica, 2021, 54(18): 3903-3918. (in Chinese)
[17] 中华人民共和国农业农村部. 农业农村部办公厅关于推介发布2018年农业主推技术的通知. 北京:农办科〔2018〕12号,2018年5月4日发布.
The Ministry of Agriculture and Rural Affairs of the People's Republic of China. Notice of the General Office of the Ministry of Agriculture and Rural Affairs on the promotion and release of the main agricultural technologies in 2018. Beijing: Agriculture Office [2018] No. 12, issued on May 4, 2018.
[18] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51(14): 2722-2734.
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018, 51(14): 2722-2734. (in Chinese)
[19] 章孜亮, 刘金山, 王朝辉, 赵护兵, 杨宁, 杨荣, 曹寒冰. 基于土壤氮素平衡的旱地冬小麦监控施氮. 植物营养与肥料学报, 2012, 18(6): 1387-1396.
ZHANG Z L, LIU J S, WANG Z H, ZHAO H B, YANG N, YANG R, CAO H B. Nitrogen recommendation for dryland winter wheat by monitoring nitrate in 1 m soil and based on nitrogen balance. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1387-1396. (in Chinese)
[20] 蒋龙刚, 黄明, 宋庆赟, 苑爱静, 李嘉华, 邱炜红, 王朝辉. 基于土壤有机质含量推荐的旱地冬小麦施氮量研究. 中国农业科学, 2020, 53(10): 2020-2033.
JIANG L G, HUANG M, SONG Q Y, YUAN A J, LI J H, QIU W H, WANG Z H. Research on nitrogen fertilizer application recommended method based on soil organic matter in dryland wheat production. Scientia Agricultura Sinica, 2020, 53(10): 2020-2033. (in Chinese)
[21] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53(1): 81-93.
HUANG N, WANG Z H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(1): 81-93. (in Chinese)
[22] FATHOLAHI S, EHSANZADEH P, KARIMMOJENI H. Ancient and improved wheats are discrepant in nitrogen uptake, remobilization, and use efficiency yet comparable in nitrogen assimilating enzymes capabilities. Field Crops Research, 2020, 249: 107761.
doi: 10.1016/j.fcr.2020.107761
[23] 裴雪霞, 党建友, 张定一, 张晶, 程麦凤, 王姣爱. 化肥减施下有机替代对小麦产量和养分吸收利用的影响. 植物营养与肥料学报, 2020, 26(10): 1768-1781.
PEI X X, DANG J Y, ZHANG D Y, ZHANG J, CHENG M F, WANG J A. Effects of organic substitution on the yield and nutrient absorption and utilization of wheat under chemical fertilizer reduction. Journal of Plant Nutrition and Fertilizers, 2020, 26(10): 1768-1781. (in Chinese)
[24] 彭浩, 邵明安, 张兴昌. 黄土区土壤钾素径流流失机理研究进展. 土壤与环境, 2002, 11(2): 172-177.
PENG H, SHAO M A, ZHANG X C. Mechanism of soil potassium loss by erosion in loess area. Soil and Environmental Sciences, 2002, 11(2): 172-177. (in Chinese)
[25] 董莉霞, 李广, 闫丽娟, 刘强, 燕振刚, 罗珠珠. 不同耕作措施旱地春小麦产量对温度变化的响应. 干旱地区农业研究, 2015, 33(2): 56-61.
DONG L X, LI G, YAN L J, LIU Q, YAN Z G, LUO Z Z. Reponses of spring wheat yield to temperature variations with different tillage measures in dryland. Agricultural Research in the Arid Areas, 2015, 33(2): 56-61. (in Chinese)
[26] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[27] 葛玮健, 常艳丽, 刘俊梅, 张树兰, 孙本华, 杨学云. 土区长期施肥对小麦-玉米轮作体系钾素平衡与钾库容量的影响. 植物营养与肥料学报, 2012, 18(3): 629-636.
GE W J, CHANG Y L, LIU J M, ZHANG S L, SUN B H, YANG X Y. Potassium balance and pool as influenced by long-term fertilization under continuous winter wheat-summer maize cropping system in a manural loess soil. Plant Nutrition and Fertilizer Science, 2012, 18(3): 629-636. (in Chinese)
[28] 李秋梅, 陈新平, 张福锁, V.R mheld. 冬小麦-夏玉米轮作体系中磷钾平衡的研究. 植物营养与肥料学报, 2002, 8(2): 152-156.
LI Q M, CHEN X P, ZHANG F S, MHELD V R. Study on balance of phosphorus and potassium in winter wheat and summer maize rotation system. Plant Nutrition and Fertilizer Science, 2002, 8(2): 152-156. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[14] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[15] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!