Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (3): 514-528.doi: 10.3864/j.issn.0578-1752.2022.03.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain

LI YaFei(),SHI JiangLan,WU TianQi,WANG ShaoXia,LI YuNuo,QU ChunYan,LIU CongHui,NING Peng,TIAN XiaoHong()   

  1. College of Natural Resource and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agro- environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2020-12-30 Accepted:2021-04-14 Online:2022-02-01 Published:2022-02-11
  • Contact: XiaoHong TIAN E-mail:1525671107@qq.com;txhong@hotmail.com

Abstract:

【Objective】 The aim of this study was to investigate the effects of combined foliar application of zinc (Zn) and pesticide on Zn concentration, protein components content, and the estimated Zn bioavailability intake (TAZ) in whole grain and flour of wheat plants, and to clarify the possible reasons for the differences in Zn enrichment. This study was conducted to provide a basis and highly cost-effective approach for grain Zn fortification agronomic strategies in wheat plants. 【Method】 The consecutive two-season field experiments were conducted during 2016 and 2018 with six treatments, i.e., foliar application of distilled water (CK), 0.1% imidacloprid (P), 0.4% ZnSO4·7H2O (Zn), 0.23% glycine zinc (Gly-Zn, GZn), ZnSO4·7H2O+imidacloprid (ZnP), glycine zinc+imidacloprid (GZnP). The concentration of Zn, protein, protein components, and phytic acid in whole grain, flour, and bran were determined, and the TAZ was calculated. 【Result】 There was no significant difference in grain yield among different treatments. But, the grain Zn uptake and Zn concentration substantially increased in whole grain, flour and bran by foliar spray of Zn. Compared with CK, the foliar Zn application alone resulted in a 71% and 120% increase of Zn concentration in flour in 2017 and 2018, respectively; the foliar spray of Zn plus imidacloprid resulted in a 103% and 127% increase in 2017 and 2018, respectively. Compared with foliar Zn application alone, foliar spray of Zn plus imidacloprid did not affect the Zn enrichment in wheat, and the Zn concentration was increased in whole grain and flour. Compared with the foliar application of Gly-Zn, the foliar application of ZnSO4·7H2O significantly enhanced grain Zn concentration, while the Zn concentration was the highest in whole grain and flour within foliar ZnP application. A positive correlation was found between Zn concentration and the concentration of protein, gliadin and glutenin in whole grain and flour, respectively. The Zn plus imidacloprid treatment increased the protein concentration in whole grain and flour. Compared with CK, foliar application of ZnP and GZnP resulted in a 19% and 20% increase of protein concentration in flour during 2016 and 2018. There was no significant difference in the albumin and globulin content in whole grain and flour among different treatments. The contents of gliadin and glutenin in whole grain and flour were significantly increased by foliar application of ZnP and GZnP. Foliar Zn application obviously improved grain Zn bioavailability, and the Zn bioavailability was the highest in whole grain and flour under foliar ZnP application treatment.【Conclusion】 The ZnSO4·7H2O plus imidacloprid treatment significantly increased the concentration of Zn, protein, gliadin, and glutenin and Zn bioavailability in whole grain and flour. Therefore, combining foliar application of Zn and neonicotinoid insecticide could enhance protein concentration and further improve Zn concentration and Zn bioavailability in wheat grain, so this was an effective and useful practice to overcome human Zn deficiency.

Key words: flour, foliar application, Zn, imidacloprid, gliadin, glutenin, Zn bioavailability

Fig. 1

The monthly precipitation and mean temperature during wheat growing seasons in 2016-2018"

Table 1

Significance level of the fixed effects for each of measured variables"

指标<break/>Index 变异来源Source of variation
年份Year 处理Treatment Year × Treatment
籽粒产量Grain yield (t·hm-2) <0.0001 n.s. n.s.
籽粒锌携出量 Grain Zn uptake (g·hm-2) <0.0001 <0.0001 0.001
全粒锌含量Grain Zn concentration (mg·kg-1) <0.0001 <0.0001 <0.0001
面粉锌含量Flour Zn concentration (mg·kg-1) <0.0001 <0.0001 0.008
麸皮锌含量Bran Zn concentration (mg·kg-1) <0.0001 <0.0001 <0.0001
全粒蛋白质含量Grain protein concentration (%) <0.0001 n.s. n.s.
面粉蛋白质含量Flour protein concentration (%) <0.0001 n.s. n.s.
麸皮蛋白质含量Bran protein concentration (%) <0.0001 0.007 n.s.
全粒锌生物有效性Zn bioavailability in grain (mg·d-1) <0.0001 <0.0001 <0.0001
面粉锌生物有效性Zn bioavailability in flour (mg·d-1) <0.0001 <0.0001 <0.0001
麸皮锌生物有效性Zn bioavailability in bran (mg·d-1) <0.0001 <0.0001 <0.0001

Fig. 2

Effects of different foliar spray treatments on the grain yield and grain Zn uptake in wheatTreatments: CK (foliar application of distilled water), P (foliar application of imidacloprid), Zn (foliar application of ZnSO4·7H2O), GZn (foliar application of glycine zinc), ZnP (foliar application of ZnSO4·7H2O+imidacloprid), GZnP (foliar application of glycine zinc+ imidacloprid). The same as Fig.3, Fig.4, Fig.5, Fig.6, Fig.7, Fig.8, Fig.9. Asterisks indicate significant differences between years, ***: P<0.001, **: P<0.01; Different letters indicate significant differences among treatments each growing season (P<0.05). The same as Fig.3, Fig.5, Fig.9"

Fig. 3

Zn concentrations in whole grain, flour, and bran in wheat of different foliar spray treatments"

Fig. 4

The correlation analysis of grain yield and Zn concentrations in wheat grains with nil Zn spray (CK, P) and foliar Zn spray (Zn, GZn, ZnP, and GZnP) in 2017 and 2018"

Fig. 5

Protein concentrations in whole grain, flour, and bran in wheat of different foliar treatments"

Fig. 6

The correlation analysis of whole grain and flour protein concentration against the concentrations of Zn in wheat with nil Zn spray (CK, P) and foliar Zn application alone (Zn, GZn) and plus imidacloprid (ZnP, GZnP) in 2017 and 2018"

Fig. 7

Effects of different foliar treatments on the content of protein components in whole grain of wheatDifferent letters indicate significant differences among treatments for the same component in the same growing season (P<0.05). The same as Fig. 8"

Fig. 8

Effects of different foliar spray treatments on the content of protein components in wheat flour"

Table 2

Pearson correlation coefficients between Zn concentrations and content of protein components in whole grain and flour"

蛋白质组分<break/>Protein component 全粒 Whole grain 面粉 Flour
2016-2017 2017-2018 2016-2017 2017-2018
白蛋白Albumins 0.694** 0.109 0.192 0.507*
球蛋白Globulins 0.120 0.544** 0.413 0.100
醇溶蛋白Gliadins 0.660** 0.586** 0.664** 0.742**
谷蛋白Glutenin 0.723** 0.740** 0.454* 0.555**

Fig. 9

TAZ content in whole grain, flour and bran of wheat"

Fig. 10

Zinc transfer in wheat [59,60,61]"

[1] GIBSON R S.Zinc deficiency and human health: Etiology, health consequences, and future solutions. Plant and Soil, 2012, 361(1/2): 291-299.
doi: 10.1007/s11104-012-1209-4
[2] DEGRYSE F, SILVA R C D, BAIRD R, CAKMAK I, YAZICI M A, MCLAUGHLIN M J. Comparison and modelling of extraction methods to assess agronomic effectiveness of fertilizer zinc. Journal of Plant Nutrition and Soil Science, 2020, 183(2): 248-259.
doi: 10.1002/jpln.v183.2
[3] STEIN A J.Rethinking the measurement of under nutrition in a broader health context: Should we look at possible causes or actual effects? Global Food Security, 2014, 3: 193-199.
doi: 10.1016/j.gfs.2014.09.003
[4] KREBS N F, MILLER L V, MICHAEL H K.Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Annals of Tropical Paediatrics, 2014, 34(4): 279-288.
[5] WANG M, KONG F M, LIU R, FAN Q Q, ZHANG X C.Zinc in wheat grain, processing, and food. Frontiers in Nutrition, 2020, 7: 124-134.
doi: 10.3389/fnut.2020.00124
[6] CAKMAK I, MCLAUGHLIN M J, WHITE P.Zinc for better crop production and human health. Plant and Soil, 2017, 411(1/2): 1-4.
doi: 10.1007/s11104-016-3166-9
[7] GARCIA-BANUELOS M L, SIDA-ARREOLA J P, SANCHEZ E. Biofortification- promising approach to increasing the content of iron and zinc in staple food crops. Journal of Elementology, 2014, 19(3): 865-888.
[8] PERSSON D P, BANG T C D, PEDAS P R, KUTMAN U B, CAKMAK I, ANDERSEN B, FINNIE C, SCHJOERRING J K, HUSTED S. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytologist, 2016, 211(4): 1255-1265.
doi: 10.1111/nph.2016.211.issue-4
[9] CAKMAK I.Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 2008, 302(1/2): 1-17.
doi: 10.1007/s11104-007-9466-3
[10] MA G, JIN Y, LI Y, ZHAI F, KOK F J, JACOBSEN E, YANG X.Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy? Public Health Nutrition, 2008, 11(6): 632-638.
doi: 10.1017/S1368980007001085
[11] 张明艳, 杨宜豪, 封超年, 郭文善, 李春燕, 朱新开, 彭永欣. 小麦籽粒矿质元素的基因型差异及对锌强化的响应. 麦类作物学报, 2014, 34(4): 489-494.
ZHANG M Y, YANG Y H, FENG C N, GUO W S, LI C Y, ZHU X K, PENG Y X.Responses of concentration of mineral elements to zinc biofortification in different wheat genotypes. Journal of Triticeae Crops, 2014, 34(4): 489-494. (in Chinese)
[12] LIU H, WANG Z H, LI F, LI K, YANG N, YANG Y, HUANG D, LIANG D, ZHAO H, MAO H.Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Research, 2014, 156(1): 151-160.
doi: 10.1016/j.fcr.2013.11.011
[13] MYERS S S, ZANOBETTI A, KLOOG I, HUYBERS P,LEAKEY A D B, BLOOM A J, CARLISLE E, DIETTERICH L H, FITZGERALD G, HASEGAWA T, HOLBROOK N M, NELSON R L, OTTMAN M J, RABOY V, SAKAI H, SARTOR K A, SCHWARTZ J, SENEWEERA S, TAUSZ M, USUI Y. Increasing CO2 threatens human nutrition. Nature, 2014, 510(7503): 139-142.
doi: 10.1038/nature13179
[14] ZOU C Q, ZHANG Y Q, RASHID A, RAM H, SAVASLI E, ARISOY R Z, ORTIZ-MONASTERIO I, SIMUNJI S, WANG Z H, SOHU V.Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 2012, 361(1/2): 119-130.
doi: 10.1007/s11104-012-1369-2
[15] GHASEMI S, KHOSHGOFTARMANESH A H, AFYUNI M, HADAZADEH H.The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy, 2013, 45(2): 68-74.
doi: 10.1016/j.eja.2012.10.012
[16] 陈娟, 王少霞, 田霄鸿, 陈艳龙, 朱文玲, 李秀双, 刘珂, 杨畅. 锌与农药配合喷施对小麦锌累积分配及转移的影响. 西北农林科技大学学报(自然科学版), 2019, 47(3): 67-76.
CHEN J, WANG S X, TIAN X H, CHEN Y L, ZHU W L, LI X S, LIU K, YANG C.Effect of combined foliar application of zinc and pesticides on accumulation, distribution and transfer of zinc in wheat. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(3): 67-76. (in Chinese)
[17] 赵广才, 常旭虹, 王德梅, 杨玉双, 马少康, 杨万深. 小麦一喷三防技术. 作物杂志, 2013(2): 128-130.
ZHAO G C, CHANG X H, WANG D M, YANG Y S, MA S K, YANG W S.One spraying and three prevention of wheat. Crops, 2013(2): 128-130. (in Chinese)
[18] RAM H, RASHID A, ZHANG W, DUARTE A P, PHATTARAKUL N, SIMUNJI S, KALAYCI M, FREITAS R, RERKASEM B, BAL R S.Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant and Soil, 2016, 403: 389-401.
doi: 10.1007/s11104-016-2815-3
[19] WANG Y H, ZOU C Q, MIRZA Z, LI H, ZHANG Z Z, LI D P, XU C L, ZHOU X B, SHI X J, XIE D T.Cost of agronomic biofortification of wheat with zinc in China.Agronomy for Sustainable Development, 2016, 36(7): 44-50.
doi: 10.1007/s13593-016-0382-x
[20] 刘珂, 赵吉红, 王少霞, 李萌, 陈艳龙, 田霄鸿. 锌肥与三唑酮配合喷施对冬小麦锌营养品质的影响. 干旱地区农业研究, 2017, 35(4): 34-38.
LIU K, ZHAO J H, WANG S X, LI M, CHEN Y L, TIAN X H.Effects of combined foliar Zn application with triadimefon on Zn nutritional quality of winter wheat. Agricultural Research in the Arid Areas, 2017, 35(4): 34-38. (in Chinese)
[21] NING P, WANG S X, FEI P W, ZHANG X Y, DONG J J, SHI J L, TIAN X H.Enhancing zinc accumulation and bioavailability in wheat grains by integrated zinc and pesticide application. Agronomy, 2019, 9(9): 530-542.
doi: 10.3390/agronomy9090530
[22] WANG S X, ZHANG X Y, LIU K, FEI P W, CHEN J, LI X S, NING P, CHEN Y L, SHI J L, TIAN X H.Improving zinc concentration and bioavailability of wheat grain through combined foliar applications of zinc and pesticides.Agronomy Journal, 2019, 111(18): 1478-1487.
doi: 10.2134/agronj2018.09.0597
[23] LI M, WANG S X, TIAN X H, ZHAO J H, LI H Y, GUO C H, CHEN Y L, ZHAO A Q.Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P.Journal of Cereal Science, 2015, 61: 26-32.
doi: 10.1016/j.jcs.2014.09.009
[24] CAKMAK I, PFEIFFER W H, MCCLAFFERTY B.Review: Biofortification of durum wheat with zinc and iron.Cereal Chemistry, 2010, 87(1): 10-20.
doi: 10.1094/CCHEM-87-1-0010
[25] KUTMAN U B, KUTMAN B Y, CEYLAN Y, OVA E A, CAKMAK I.Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil, 2012, 361(1/2): 177-187.
doi: 10.1007/s11104-012-1300-x
[26] 靳静静, 王朝辉, 戴健, 王森, 高雅洁, 曹寒冰, 于荣. 长期不同氮、磷用量对冬小麦籽粒锌含量的影响. 植物营养与肥料学报, 2014, 20(6): 1358-1367.
JIN J J, WANG Z H, DAI J, WANG S, GAO Y J, CAO H B, YU R.Effects of long-term N and P fertilization with different rates on Zn concentration in grain of winter wheat. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1358-1367. (in Chinese)
[27] 董明, 王琪, 周琴, 蔡剑, 王笑, 戴廷波, 姜东. 花后5天喷施锌肥有效提高小麦籽粒营养和加工品质. 植物营养与肥料学报, 2018, 24(1): 63-70.
DONG M, WANG Q, ZHOU Q, CAI J, WANG X, DAI T B, JIANG D.Efficient promotion of the nutritional and processing quality of wheat grain by Zn forliar spraying at 5 days after anthesis. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 63-70. (in Chinese)
[28] 张笑媛. 锌与农药、磷钾及生物刺激素配合喷施对小麦籽粒富锌效果的影响[D]. 杨陵: 西北农林科技大学, 2019.
ZHANG X Y.Effects of foliar Zn combined with pesticides, KH2PO4 and biostimulants on Zn-enrichment of wheat grain[D].Yangling: Northwest A&F University, 2019. (in Chinese)
[29] 夏玉荣, 封超年, 沈燕, 王正贵, 郭文善. 化学杀虫剂对弱筋小麦籽粒安全性和品质的影响. 麦类作物学报, 2008, 28(6): 1093-1099.
XIA Y R, FENG C N, SHEN Y, WANG Z G, GUO W S.Effect of the pesticides on edible safety and grain quality of weak-gluten wheat. Journal of Triticeae Crops, 2008, 28(6): 1093-1099. (in Chinese)
[30] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000: 286.
BAO S D.Soil and Agrochemical Analysis. 3rd ed. Beijing: China Agriculture Press, 2000: 286. (in Chinese)
[31] TAO Z Q, WANG D M, CHANG X H, WANG Y J, YANG Y S, ZHAO G C.Effects of zinc fertilizer and short-term high temperature stress on wheat grain production and wheat flour proteins. Journal of Integrative Agriculture, 2018, 17(9): 1979-1990.
doi: 10.1016/S2095-3119(18)61911-2
[32] MILLER L V, KREBS N F, HAMBIDGE K M.A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. Journal of Nutrition, 2007, 137(1): 135-141.
doi: 10.1093/jn/137.1.135
[33] CAKMAK I, KUTMAN U B.Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science, 2018, 69(1): 172-180.
doi: 10.1111/ejss.2018.69.issue-1
[34] WANG X Z, LIU D Y, ZHANG W, WANG C J, CAKMAK I, ZOU C Q.An effective strategy to improve grain zinc concentration of winter wheat, aphids prevention and farmers’ income. Field Crop Research, 2015, 184: 74-79.
doi: 10.1016/j.fcr.2015.08.015
[35] JOZSEF P, KAROLY P, JANOS N.Pesticide productivity and food security, a review. Agronomy for Sustainable Development, 2013, 33(1): 243-255.
doi: 10.1007/s13593-012-0105-x
[36] FAN M S, ZHAO F J,FAIRWEATHER-TAIT S J, POULTON P R, DUNHAM S J, MCGRATH S P,. Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace Elements in Medicine and Biology, 2008, 22: 315-324.
doi: 10.1016/j.jtemb.2008.07.002
[37] MORGOUNOV A I, BELAN I, ZELENSKIY Y, ROSEEVA L, TOEMOESKOEZI S, BEKES F, ABUGALIEVE A, CAKMAK I, VARGAS M, CROSSA J.Historical changes in grain yield and quality of spring wheat varieties cultivated in Siberia from 1900 to 2010. Canadian Journal of Plant Science, 2013, 93(3): 425-433.
doi: 10.4141/cjps2012-091
[38] CHEN X P, ZHANG Y Q, TONG Y P, XUE Y F, LIU D Y, ZHANG W, DENG Y, MENG Q F, CHAO Y S, PENG Y, CUI Z L, SHI X J, GUO S W, SUN Y X, YE Y L, WANG Z H, JIA L L, MA W Q, HE M R, ZHANG X Y, KOU C L, LI Y T, TAN D S, CAKMAK I, ZHANG F S, ZOU C Q.Harvesting more grain zinc of wheat for human health. Scientific Reports, 2017, 7(1): 7016-7024.
doi: 10.1038/s41598-017-07484-2
[39] ZHANG Y Q, SUN Y X, YE Y L, KARIM M R, XUE Y F, YAN P, MENG Q F, CUI Z L, CAKMAK I, ZHANG F S, ZOU C Q.Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Research, 2012, 125: 1-7.
doi: 10.1016/j.fcr.2011.08.003
[40] WANG Y X, SPECHT A, HORST W J.Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytologist, 2011, 189: 428-437.
doi: 10.1111/nph.2010.189.issue-2
[41] STOMPG T J, CHOI E Y, STANGOULIS J C R. Temporal dynamics in wheat grain zinc distribution: Is sink limitation the key? Annals of Botany, 2011, 107(6): 927-937.
doi: 10.1093/aob/mcr040
[42] 裴雪霞, 王姣爱, 党建友, 张定一. 4种杀虫剂对优质小麦产量和品质的影响. 中国生态农业学报, 2009, 17(1): 100-104.
PEI X X, WANG J A, DANG J Y, ZHANG D Y.Effect of pesticides on yield and quality of high quality wheat. Chinese Journal of Eco-Agriculture, 2009, 17(1): 100-104. (in Chinese)
[43] 张梦晗, 韩卫丽, 雷彩燕, 闫凤鸣. 吡虫啉种衣剂对小麦幼苗氮代谢的影响及机制研究. 种子, 2018, 37(12): 77-84.
ZHANG M H, HAN W L, LEI C Y, YAN F M.Influences of imidacloprid seed coating agent on nitrogen metabolism of wheat seedlings and its mechanism study. Seed, 2018, 37(12): 77-84. (in Chinese)
[44] JOHN N A, SPITZER E.X-ray analysis studies of elements stored in protein body globoid crystals of triticumgrains.Plant Physiology, 1980, 66: 494-499.
doi: 10.1104/pp.66.3.494
[45] LIN L, OCKENDEN I, LOTT J N.The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid1-1 (lpa 1-1) corn (Zea mays L.) grains and grain parts. Canadian Journal of Botany, 2011, 83(1): 131-141.
doi: 10.1139/b04-146
[46] CAKMAK I, KALAYCI M, KAYA Y, TORUN A A, AYDIN N, WANG Y, ARISOY Z, ERDEM H, YAZICI A, GOKMEN O.Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9092-9102.
doi: 10.1021/jf101197h
[47] AJIBOYE B, CAKMAK I, PATERSON D, JONGE M D, HOWARD D L, STACEY S P, TORUN A A, AYDIN N, MCLAUGHLIN M J.X-ray fluorescence microscopy of zinc localization in wheat grains biofortified through foliar zinc applications at different growth stages under field conditions. Plant and Soil, 2015, 392(1/2): 357-370.
doi: 10.1007/s11104-015-2467-8
[48] YILMAZ A, EKIZ H, TORUN B, GULTEKIN I, KARANLIK S, BAGCI S A, CAKMAK I.Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. Journal of Plant Nutrition, 1997, 20(4/5): 461-471.
doi: 10.1080/01904169709365267
[49] BECHER M, TALKE I N, KRALL L, KRAMER U.Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal, 2004, 37(2): 251-268.
doi: 10.1046/j.1365-313X.2003.01959.x
[50] TAURIS B, BORG S, GREGERSEN P L, HOLM P B.A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. Journal of Experimental Botany, 2009, 60(4): 1333-1347.
doi: 10.1093/jxb/erp023
[51] ERENOGLU E B, KUTMAN U B, CEYLAN Y, YILDIZ B, CAKMAK I.Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, 2011, 189(2): 438-448.
doi: 10.1111/nph.2010.189.issue-2
[52] OSBORNE T B, VOORHEES C L. Proteids of the wheat kernel. Journal of the American Chemical Society, 1894, 16(8): 524-535.
doi: 10.1021/ja02106a003
[53] LI C P, LARKINS B A.Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Molecular Biology, 1996, 30(5): 873-882.
doi: 10.1007/BF00020800
[54] JOHNSON J C, APPELS R, BHAVE M.The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice. Functional & Integrative Genomics, 2006, 6(2): 104-121.
[55] 陈珍, 江琼, 朱诚. 植物中的蛋白质二硫键异构酶及其类蛋白. 植物生理学报, 2013, 49(8): 715-721.
CHEN Z, JIANG Q, ZHU C.Protein disulfide isomerise and PDI-Like proteins in plant. Plant Physiology Journal, 2013, 49(8): 715-721. (in Chinese)
[56] STARKS T L, JOHNSON P E.Techniques for intrinsically labeling wheat with 65Zn. Journal of Agricultural and Food Chemistry, 1985, 33: 691-698.
doi: 10.1021/jf00064a032
[57] HE J, PENSON S, POWERS S J, HAWES C, SHEWRY P R, TOSI P.Spatial patterns of gluten protein and polymer distribution in wheat grain. Journal of Agricultural and Food Chemistry, 2013, 61(26): 6207-6215.
doi: 10.1021/jf401623d
[58] GIUSEPPE D, MOHAMMAD U, EVA V.Enrichment and identification of the most abundant zinc binding proteins in developing barley grains by zinc-IMAC capture and nano LC-MS/MS. Proteomes, 2018, 6(1): 3-24.
doi: 10.3390/proteomes6010003
[59] BORRILL P, CONNORTON J M, BALK J, MILLER A J, SANDERS D, UAUY C.Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Frontiers in Plant Science, 2014, 5: 53.
[60] CALDELAS C, WEISS D J.Zinc homeostasis and isotopic fractionation in plants: A review. Plant and Soil, 2017, 411: 17-46.
doi: 10.1007/s11104-016-3146-0
[61] ANDRESEN E, PEITER E, KUPPER H.Trace metal metabolism in plants. Journal of Experimental Botany, 2018, 69(5): 909-954.
doi: 10.1093/jxb/erx465
[62] WELCH R M, GRAHAM R D.Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experiment Botany, 2004, 55: 353-364.
doi: 10.1093/jxb/erh064
[63] HOTZ C, BROWN K H.Assessment of the risk of zinc deficiency in populations. Food and Nutrition Bulletin, 2004, 25: S130-S162.
doi: 10.1177/15648265040251S205
[1] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[2] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[3] Can CHEN,NanNan HAN,Yang LIU,XiaoWei SHI,HongQi SI,ChuanXi MA. Analysis of Copy Number Variation of Glu-3 Locus in Common Wheat [J]. Scientia Agricultura Sinica, 2021, 54(6): 1092-1103.
[4] WANG LiFeng,ZHU Jie,XIONG WenFei,ZHAO Meng,YUAN Jian,JU XingRong. Insight into the Impact of Heat Treatment on the Foamability and Structure of Gliadin Colloidal Particles [J]. Scientia Agricultura Sinica, 2021, 54(4): 820-830.
[5] ZHAI ShengNan,LIU AiFeng,LI FaJi,LIU Cheng,GUO Jun,HAN Ran,ZI Yan,WANG XiaoLu,LÜ YingYing,LIU JianJun. Improvement and Application of the Method for Determining Yellow Pigment Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(2): 239-247.
[6] HuiMin HU,XueFeng PAN,Heng YANG,Chen CHEN,YinJi CHEN. Wheat Gluten, Gliadins and Glutenin Content Changes During Germination Based on the Methods of R5 ELISA and RP-HPLC [J]. Scientia Agricultura Sinica, 2020, 53(6): 1247-1255.
[7] ZOU YanYu,FANG Yong,LI Peng,HUANG QinQin,XIA Ji,LIU Qin,XIE MinHao,HU QiuHui. Comparative Analysis of Alkylresorcinols Homologue Composition in Whole Wheat Flour and Refined Wheat Flour [J]. Scientia Agricultura Sinica, 2020, 53(10): 2055-2065.
[8] YiXuan LIU,DongLin HUANG,Na LIU,ZhiYuan YAO,Dan YIN,YuanYong MENG,HuBing ZHAO,YaYun GAO,ZhaoHui WANG. The Increasing Effect and Influencing Factors of Leguminous Green Manure on Wheat Grain Zn in Weibei Highland [J]. Scientia Agricultura Sinica, 2018, 51(21): 4030-4039.
[9] YANG ZiBo, WANG AnBang, LENG SuFeng, GU ZhengZhong, ZHOU YangMei. Genetic Analysis of the Novel High-Yielding Wheat Cultivar Huaimai33 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3237-3248.
[10] ZHANG FuYan, CHEN Feng, CHENG ZhongJie, YANG BaoAn, FAN JiaLin, CHEN XiaoJie, ZHANG JianWei, CHEN YunTang, CUI Long. Effects of TaLox-B Alleles on Lipoxygenase Activity and Flour Color in Wheats [J]. Scientia Agricultura Sinica, 2017, 50(8): 1370-1377.
[11] HE Jun, TIAN XinZhu, WANG XueDong, LIU Bin, LI Ning, ZHENG Han, MENG Nan, CHEN ShiBao. Zn-Toxicity Thresholds as Determined by Micro Morphological Endpoints of Barley Roots in Polluted Soils and Its Prediction Models [J]. Scientia Agricultura Sinica, 2017, 50(7): 1263-1270.
[12] LIU HongYan, GUO BoLi, WEI Shuai, JIANG Tao, ZHANG SenShen, WEI YiMin. Characteristics of Stable Carbon and Nitrogen Isotopic Ratios in Wheat Milling Fractions [J]. Scientia Agricultura Sinica, 2017, 50(3): 556-563.
[13] LI GuanNan, MIAO ChangJian, LI WeiZheng, WANG GaoPing, LIU XiaoLan, GUO XianRu, YAN FengMing. Effects of Imidacloprid Flowable Concentrate for Maize Seed Coating on the Arthropod Community and the Main Non-Targeted Insect Pests in Maize Field [J]. Scientia Agricultura Sinica, 2017, 50(24): 4735-4746.
[14] ZHU HaiSheng, LIU JianTing, CHEN MinDong, LI YongPing, WANG Bin, ZHANG QianRong, YE XinRu, LIN Hui, WEN QingFang. Cloning and Expression Analysis of Copper and Zinc Superoxide Dismutase Cu/Zn-SOD Gene Family from Luffa cylindrical [J]. Scientia Agricultura Sinica, 2017, 50(17): 3386-3399.
[15] HUI XiaoLi, WANG ZhaoHui, LUO LaiChao, MA QingXia, WANG Sen, DAI Jian, JIN JingJing. Winter Wheat Grain Yield and Zn Concentration Affected by Long-Term N and P Application in Dryland [J]. Scientia Agricultura Sinica, 2017, 50(16): 3175-3185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!