Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3289-3302.doi: 10.3864/j.issn.0578-1752.2022.17.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area

HOU HuiZhi(),ZHANG XuCheng*(),YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing   

  1. Institute of Dryland Farming, Gansu Academy of Agricultural Sciences/Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070
  • Received:2021-11-02 Accepted:2022-01-28 Online:2022-09-01 Published:2022-09-07
  • Contact: XuCheng ZHANG E-mail:houhuizhi666@163.com;gszhangxuch@163.com

Abstract:

【Objective】 The field experiment was conducted from 2018 to 2020, in order to determine the optimized fertilization amount and methods of spring wheat, and to improve yield and water use efficiency on rain-fed area of northwest China. 【Method】 The spring wheat (Longchun 35) was selected as test material. Three fertilization depths with nitrogen reduction application included shallow application (PM-N), deep application (PMD), and layered application (PMA), and the control was traditional nitrogen shallow application (PM). The soil water content in 0-300 cm profile, aboveground biomass, leaf SPAD value, canopy temperature and leaf area index (LAI) in different growth stages, as well as grain yield of wheat were recorded. The soil water storage (SWS), periodical evapotranspiration (ET), water use efficiency (WUE), plant nitrogen accumulation (PNA) and nitrogen partial productivity (PFPN) were calculated to understand the effects of the deeper and layered application of chemical fertilizer on nutrient and water utilization from the aspect of soil moisture, canopy development and grain yield. 【Result】 PMA and PMD significantly regulated the process of water consumption during the growth period of spring wheat. From seedling to jointing stage, the water consumption in 0-300 cm profile of PMA and PMD increased by 11.8-20.4 mm and 15.1-25.4 mm compared with PM, respectively, and increased by 10.7-14.6 mm and 9.3-20.0 mm compared with PM-N, respectively. From heading to filling stage, the water consumption increased by 15.1-39.8 mm and 16.5-26.5 mm compared with PM, increased by 18.1-48.7 mm and 19.5-35.4 mm compared with PM-N, respectively. Correspondingly, the average SPAD value, LAI and biomass during the growth period of spring wheat of PMA and PMD were increased by 7.2% and 4.2%, 23.0% and 19.4%, 34.6% and 17.8% compared with PM, respectively, and increased by 7.6% and 5.4%, 17.7% and 10.8%, 38.5% and 23.4% compared with PM-N, respectively. However, the canopy temperature of PMA after jointing, and that of PMD after heading was decreased by 8.5% and 4.5% compared with PM, respectively, and decreased by 8.6% and 4.8% compared with PM-N, respectively. The grain number was increased by 4.3% and 4.0% compared with PM, respectively, and increased by 4.8% and 4.2% compared with PM-N, respectively. The spike number was increased by 10.1% and 6.2% compared with PM, respectively, and increased by 11.0% and 7.8% compared with PM-N, respectively. The yield, WUE, PNA and PFPN of PMA and PMD were increased by 10.5% and 5.1%, 11.8% and 6.2%, 48.0% and 35.7%, 38.2% and 31.3% compared with PM, respectively, and increased by 15.7% and 10.0%, 14.1% and 8.0%, 51.8% and 40.4%, 15.7% and 10.0% compared with PM-N, as compared with PM-N, respectively. The yield, WUE and PFPN of PMA were increased by 5.2%, 4.8% and 5.2% compared to PMD, respectively. The significant difference of the indices between PM-N and PM were not observed, except the PFPN of PM-N was significantly increased by 21.0% compared to PM. 【Conclusion】 While the amount of chemical N application was reduced from 150 kg·hm-2 to 120 kg·hm-2, both PMD and PMA could increase the grain yield, nitrogen and water utilization, which should be widely extend on the northwest loess plateau.

Key words: arid area of northwest, spring wheat, nitrogen reduction and chemical fertilizer deep application, nitrogen reduction and chemical fertilizer layered application, water use efficiency, nitrogen partial productivity

Table 1

Description of the test treatments"

处理
Treatment
处理描述
Description of treatments
氮肥
Nitrogen fertilizer
(kg N·hm-2)
磷肥
Phosphate fertilizer
(kg P2O5·hm-2)
钾肥
Potassium fertilizer
(kg K2O·hm-2)
氮肥常量浅施
Traditional nitrogen application (PM)
施肥深度15 cm
Apply on 15 cm depth
150 120 90
氮肥减量浅施
Nitrogen reduction apply on 15 cm depth (PM-N)
施肥深度15 cm
Apply on 15 cm depth
120 120 90
氮肥减量深施
Nitrogen reduction apply on 30 cm depth (PMD)
施肥深度30 cm
Apply on 30 cm depth
120 120 90
氮肥减量分层施肥
Nitrogen reduction averagely apply on 15 cm and 30 cm depths (PMA)
在15 cm和30 cm施肥量=1:1
Averagely apply on 15 cm and
30 cm depths
120 120 90

Fig. 1

Distribution of precipitation and average air temperature in test areas from 2018 to 2020"

Table 2

Effects of different treatments on soil water storage in 0-300 cm during spring wheat growth stages"

年份
Year
处理
Treatment
播种期
Sowing
苗期
Seeding
拔节期
Jointing
抽穗期
Heading
灌浆期
Filling
成熟期
Harvesting
2018 PM 572.5±5.0a 576.1±4.4a 546.1±7.9a 530.1±4.3a 519.7±8.0a 614.8±5.6a
PM-N 572.5±5.0a 574.8±6.8a 539.4±4.7a 526.0±8.1a 518.5±8.5a 615.6±9.0a
PMD 572.5±5.0a 589.2±7.2a 533.8±7.2a 536.4±19.8a 509.5±12.8a 614.5±8.6a
PMA 572.5±5.0a 584.8±5.5a 534.8±9.6a 534.3±8.1a 508.7±8.4a 615.5±13.0a
2019 PM 558.8±7.0a 533.2±13.9b 549.5±10.7b 495.8±9.3b 512.8±12.9a 467.3±5.6b
PM-N 562.5±6.7a 535±10.1b 550.2±7.5ab 492.7±9.0b 518.6±6.8a 478.7±6.2b
PMD 580.7±18.8a 562.9±8.1a 564.1±7.3ab 515.3±10.7ab 505.8±7.5a 502.6±7.0a
PMA 579.5±10.7a 568.8±7.3a 573.4±10.0a 526.1±6.8a 503.3±9.4a 498.2±6.6a
2020 PM 542.5±8.7b 508.4±8.0b 529.8±9.5ab 481.7±9.9a 471.6±7.2a 450.9±9.2b
PM-N 546.6±12.7ab 514.1±7.4b 528.1±5.5b 476.0±7.6a 474.2±7.8a 464.6±5.6ab
PMD 568.6±7.6a 546.7±8.5a 551.3±7.3a 500.8±11.5a 472.5±11.8a 473.9±9.3a
PMA 564.3±8.2ab 544.9±8.1a 545.8±11.7ab 496.7±10.1a 470.0±8.0a 470.4±10.1ab

Table 3

Effects of different treatments on seasonal evaportranspiration of spring wheat growth stages"

年份
Year
处理
Treatment
播种—苗期
Sowing-Seeding
苗期—拔节期
Seeding-Jointing
拔节—抽穗期
Jointing-Heading
抽穗—灌浆期
Heading-Filling
灌浆—成熟期
Filling-Harvesting
2018 PM 48.7±1.3ab 41.2±4.4b 67.9±3.7a 72.7±3.8b 39.8±4.9a
PM-N 49.9±3.6a 46.6±2.2b 65.4±4.0ab 69.7±6.2b 37.8±4.4a
PMD 35.5±7.1c 66.6±0.1a 49.3±12.6b 89.2±7.0a 30.0±11.1a
PMA 40.0±4.0bc 61.2±4.4a 52.4±2.5ab 87.8±1.1a 28.2±6.9a
2019
PM 55.8±12.8a 36.8±3.7b 64.8±1.4ab 81.4±8.1b 100.9±9.4a
PM-N 57.7±12.3a 37.9±4.6b 68.6±4.0a 72.5±2.2b 95.1±6.4a
PMD 48.0±9.7a 51.9±2.9a 59.9±3.8ab 107.9±7.3a 58.5±5.4b
PMA 40.9±5.8a 48.5±2.7a 58.4±5.0b 121.2±4.1a 60.4±5.8b
2020 PM 48.8±3.3a 32.5±2.1c 68.5±4.6a 49.2±3.0b 147.1±3.5a
PM-N 47.1±7.4a 39.9±2.0b 72.5±2.8a 40.9±2.3c 136.0±2.4b
PMD 36.7±3.2b 49.2±1.3a 70.9±4.7a 67.4±1.9a 125.1±2.8c
PMA 34.1±4.0b 52.9±4.2a 69.4±7.1a 65.8±4.4a 126.1±4.2c

Fig. 2

Effects of different treatments on SPAD of spring wheat leaf SE: Seeding; JO: Jointing; HE: Heading; FI: Filling; HA: Harvesting. Different lowercase letters in the same growth stage means significant difference among treatments at 0.05 level. The same as below"

Fig. 3

Effects of different treatments on canopy temperature of spring wheat"

Fig. 4

Effects of different treatments on LAI of spring wheat leaf"

Table 4

Effects of different treatments on yield components, yield, evaportranspiration and WUE of spring wheat"

年份
Year
处理
Treatment
穗粒数
Grain number
千粒重
1000-grain weight (g)
公顷穗数
Spike number (×104·hm-2)
产量
Yield
(kg·hm-2)
耗水量
Evaportranspiration (mm)
水分利用效率
WUE (kg·hm-2·mm-1)
2018 PM 31.6b 40.7a 219.5c 2621.3c 270.2a 9.7b
PM-N 31.5b 40.3a 216.8c 2578.9c 269.4a 9.6b
PMD 32.7a 40a 230.9b 2769.1b 270.6a 10.2ab
PMA 32.5a 39.9a 240.5a 2883.6a 269.6a 10.7a
2019 PM 34.2b 42.1a 265.2b 3784.9c 339.6a 11.1b
PM-N 34.2b 41.2a 265.8b 3626.2b 331.8a 10.9b
PMD 35.9a 41.4a 284.1a 3872.6b 326.2a 11.9a
PMA 36.1a 41.4a 288.6a 4019.7a 329.4a 12.2a
2020 PM 35.5c 41.3a 246.2c 3513.5c 346.1ab 10.2bc
PM-N 35.2c 41.7a 241.6bc 3345.1c 336.4b 9.9c
PMD 36.4b 41.3a 263.4ab 3786.4b 349.3a 10.8b
PMA 37.5a 41.2a 274.0a 4032.3a 348.4a 11.6a
显著性值
P
年份Year 0.0001 0.0012 0.0001 0.0001 0.0001 0.0001
处理Treatment 0.0028 0.2202 0.0001 0.0037 0.5617 0.0001
年份×处理Year×Treatment 0.0067 0.5731 0.5388 0.0001 0.0319 0.6736

Fig. 5

Effects of different treatments on biomass of spring wheat"

Fig. 6

Effects of different treatments on nitrogen accumulation and nitrogen partial productivity of spring wheat ** indicated significant difference at 0.01 level"

[1] 金继运, 李家康, 李书田. 化肥与粮食安全. 植物营养与肥料学报, 2006, 12(5): 601-609.
JIN J Y, LI J K, LI S T. Chemical fertilizer and food security. Plant Nutrition and Fertilizer Science, 2006, 12(5): 601-609. (in Chinese)
[2] ERISMAN J W, SUTTON M A, GALLOWAY J, KLIMONT Z, WINIWARTER W. How a century of ammonia synthesis changed the world. Nature Geoscience, 2008, 1(10): 636-639.
doi: 10.1038/ngeo325
[3] 谭德水, 刘兆辉, 江丽华. 中国冬小麦施肥历史演变及阶段特征研究进展. 中国农学通报, 2016, 32(12): 13-19.
TAN D S, LIU Z H, JIANG L H. Fertilization history evolution and stage characteristics of winter wheat in China. Chinese Agricultural Science Bulletin, 2016, 32(12): 13-19. (in Chinese)
[4] 王朝辉. 我国小麦施肥问题与化肥减施. 中国农业科学, 2020, 53(23): 4813-4815.
WANG Z H. Problems in fertilization and fertilizer reduction in wheat production of China. Scientia Agricultura Sinica, 2020, 53(23): 4813-4815. (in Chinese)
[5] JU X T, XING G X, CHEN X P, ZHANG S L, ZHANG L J, LIU X J, CUI Z L, YIN B, CHRISTIE P, ZHU Z L, ZHANG F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046.
[6] KAHRL F, LI Y J, SU Y F, TENNIGKEIT T, WILKES A, XU J C. Greenhouse gas emissions from nitrogen fertilizer use in China. Environmental Science & Policy, 2010, 13(8): 688-694.
[7] ZHANG X, DAVIDSON E A, MAUZERALL D L, SEARCHINGER T D, DUMAS P, SHEN Y. Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51-59.
doi: 10.1038/nature15743
[8] GARRIDO-LESTACHEA E, LOPEZ-BELLIDOB R J, LOPEZ- BELLIDOA L. Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rainfed Mediterranean conditions. Field Crops Research, 2004, 85: 213-236
doi: 10.1016/S0378-4290(03)00167-9
[9] LOPEZ-BELLIDOA L, MUNOZ-ROMEROA V, BENITEZ-VEGAA J, FERNAN-DEZ-GARCIAA P, REDONDOB R, LOPEZ-BELLIDOA R J. Wheat response to nitrogen splitting applied to a Vertisols in different tillage systems and cropping rotations under typical Mediterranean climatic conditions. European Journal of Agronomy, 2012, 43: 24-32.
doi: 10.1016/j.eja.2012.05.002
[10] 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香. 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018, 51(8): 1518-1526.
YANG Y M, SUN Y M, JIA L L, JIA S L, MENG C X. Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Scientia Agricultura Sinica, 2018, 51(8): 1518-1526. (in Chinese)
[11] 刘威, 周剑雄, 谢媛圆, 徐祥玉, 袁家富, 徐芳森, 熊汉锋, 熊又升. 控释尿素不同条施深度下鲜食玉米产量和氮素利用效应. 水土保持学报, 2018, 32(1): 246-251, 258.
LIU W, ZHOU J X, XIE Y Y, XU X Y, YUAN J F, XU F S, XIONG H F, XIONG Y S. Yield and nitrogen utilization efficiency of fresh edible maize under different fertilization depth of control-release urea. Journal of Soil and Water Conservation, 2018, 32(1): 246-251, 258. (in Chinese)
[12] 段文学, 于振文, 石玉, 张永丽, 赵俊晔. 施氮深度对旱地小麦耗水特性和干物质积累与分配的影响. 作物学报, 2013, 39(4): 657-664.
doi: 10.3724/SP.J.1006.2013.00657
DUAN W X, YU Z W, SHI Y, ZHANG Y L, ZHAO J Y. Effects of nitrogen application depth on water consumption characteristics and dry matter accumulation and distribution in rainfed wheat. Acta Agronomica Sinica, 2013, 39(4): 657-664. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00657
[13] 石岩, 位东斌, 于振文, 余松烈. 施肥深度对旱地小麦氮素利用及产量的影响. 核农学报, 2001, 15(3): 180-183.
SHI Y, WEI D B, YU Z W, YU S L. Effects of fertilizer application depth on nitrogen utilization and yield in dry land wheat. Acta Agriculturae Nucleatae Sinica, 2001, 15(3): 180-183. (in Chinese)
[14] 张永清, 苗果院. 冬小麦根系对施肥深度的生物学响应研究. 中国生态农业学报, 2006, 14(4): 72-75.
ZHANG Y Q, MIAO G Y. Biological response of winter wheat root system to fertilization depth. Chinese Journal of Eco-Agriculture, 2006, 14(4): 72-75. (in Chinese)
[15] 姜超强, 王火焰, 卢殿君, 周健民, 王世济, 祖朝龙. 一次性根区穴施尿素提高夏玉米产量和养分吸收利用效率. 农业工程学报, 2018, 34(12): 146-153.
JIANG C Q, WANG H Y, LU D J, ZHOU J M, WANG S J, ZU C L. Single fertilization of urea in root zone improving crop yield, nutrient uptake and use efficiency in summer maize. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 146-153. (in Chinese)
[16] 梁海, 陈宝成, 韩慧芳, 王少博, 王桂伟, 陈剑秋. 普通肥、控释掺混肥分层施肥对小麦生长的影响. 水土保持学报, 2018, 32(4): 240-245.
LIANG H, CHEN B C, HAN H F, WANG S B, WANG G W, CHEN J Q. Effects of layered application of common fertilizer and controlled- release bulk-blend fertilizer on wheat growth. Journal of Soil and Water Conservation, 2018, 32(4): 240-245. (in Chinese)
[17] 申建波, 张福锁. 水稻养分资源综合管理理论与实践. 北京: 中国农业大学出版社, 2006: 37-62.
SHEN J B, ZHANG F S. Theory and Practice of Comprehensive Management of Rice Nutrient Resources. Beijing: China Agricultural University Press, 2006: 37-62. (in Chinese)
[18] 郭新送, 丁方军, 陈士更, 孟庆羽. 控释肥不同施肥位置及深度对小麦产量及根区土壤养分的影响. 中国农学通报, 2018, 34(4): 9-15.
GUO X S, DING F J, CHEN S G, MENG Q Y. Effect of application depth and location of controlled-release fertilizer on wheat yield and soil nutrients of root zone. Chinese Agricultural Science Bulletin, 2018, 34(4): 9-15. (in Chinese)
[19] 李娟茹, 刘强, 张广辉, 李中健, 宋小颖, 邰风雷, 刘鑫翠, 常苑苑, 李光. 深松旋耕分层施肥对冬小麦产量和土壤磷素分布的影响. 河北农业科学, 2020, 24(2):90-93.
LI J R, LIU Q, ZHANG G H, LI Z J, SONG X Y, TAI F L, LIU X C, CHANG Y Y, LI G. Effects of layered fertilization by subsoiling and rotary tillage on winter wheat yield and soil phosphorus distribution. Journal of Hebei Agricultural Science, 2020, 24(2): 90-93. (in Chinese)
[20] 张璐鑫, 辛秀竹, 王益, 王志杰, 未祎, 代一斐, 尹宝重. 深松分层施肥播种对小麦旗叶特征及干物质积累的影响. 河北农业科学, 2020, 24(2): 84-89.
ZHANG L X, XIN X Z, WANG Y, WANG Z J, WEI Y, DAI Y F, YIN B Z. Effects of layered fertilization and sowing of subsoiling on flag leaf characteristics and dry matter accumulation of wheat. Journal of Hebei Agricultural Science, 2020, 24(2): 84-89. (in Chinese)
[21] 李奔, 王贵彦, 陈召月, 薛佳欣, 陈宗培, 宫宇, 张江伟, 段巍巍. 不同灌水条件下分层施肥对冬小麦产量和水分利用效率的影响. 水土保持学报, 2021, 35(3): 326-332.
LI B, WANG G Y, CHEN Z Y, XUE J X, CHEN Z P, GONG Y, ZHANG J W, DUAN W W. Effects of layered fertilization on yield and water use efficiency of winter wheat under different irrigation conditions. Journal of Soil and Water Conservation, 2021, 35(3): 326-332. (in Chinese)
[22] 沈玉芳, 李世清, 邵明安. 水肥空间组合对冬小麦生物学性状及生物量的影响. 中国农业科学, 2007, 40(8): 1822-1829.
SHEN Y F, LI S Q, SHAO M A. Effects of water and fertilizer spatial coupling on biological characteristics and biomass of winter wheat. Scientia Agricultura Sinica, 2007, 40(8): 1822-1829. (in Chinese)
[23] 赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014, 47(17): 3359-3371.
ZHAO Y L, XUE Z W, GUO H B, MU X Y, LI C H. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system. Scientia Agricultura Sinica, 2014, 47(17): 3359-3371. (in Chinese)
[24] 张维乐, 戴志刚, 任涛, 周先竹, 王忠良, 李小坤, 丛日环. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响. 中国农业科学, 2016, 49(7): 1254-1266.
ZHANG W L, DAI Z G, REN T, ZHOU X Z, WANG Z L, LI X K, CONG R H. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems. Scientia Agricultura Sinica, 2016, 49(7): 1254-1266. (in Chinese)
[25] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agricultural Press, 2000. (in Chinese)
[26] 王伟妮, 鲁剑巍, 鲁明星, 李小坤, 李云春, 李慧. 湖北省早、中、 晚稻施氮增产效应及氮肥利用率研究. 植物营养与肥料, 2011, 17(3): 545-553.
WANG W N, LU J W, LU M X, LI X K, LI Y C, LI H. Effect of nitrogen fertilizer application and nitrogen use efficiency of early, middle and late rice in Hubei province. Plant Nutrition and Fertilizer Science, 2011, 17(3): 545-553. (in Chinese)
[27] PATRICK H, ARMELLE G, TERRY R. Assessment of Fertilizer Use by Crop at the Global Level. P aris: International Fertilizer Association (IFA) and International Plant Nutrition Institute (IPNI), 2017.
[28] 张平良, 郭天文, 许婷, 吕军峰. 全膜覆土穴播及施肥对旱地春小麦养分、干物质积累及土壤水分变化的影响. 西北农业学报, 2014, 23(5): 65-69.
ZHANG P L, GUO T W, XU T, LÜ J F. Effects of all film casing mode bunch and fertilization nutrients and dry matter accumulation of spring wheat and changes of soil moisture in the semi-arid area. Acta Agriculture Boreali-Occidentalis Sinice, 2014, 23(5): 65-69. (in Chinese)
[29] 吕殿青, 高华, 方日尧, 谷洁, 李旭晖. 渭北旱塬冬小麦产区提前深耕一次深施肥料的肥水效应与理论分析. 植物营养与肥料学报, 2009, 15(2): 269-275.
LÜ D Q, GAO H, FANG R Y, GU J, LI X H. Effect of water-fertilizer and theoretical analysis of deep plough-deep fertilization at one earlier time in winter wheat-growing regions of Weibei rainfed croplands. Plant Nutrition and Fertilizer Science, 2009, 15(2): 269-275. (in Chinese)
[30] 于显枫, 张绪成, 缪平贵, 方彦杰, 马一凡, 王红丽, 侯慧芝. 深施肥对立式深旋耕马铃薯水分利用效率及产量的影响. 中国农业科技导报, 2021, 23(7): 182-190.
YU X F, ZHANG X C, MIAO P G, FANG Y J, MA Y F, WANG H L, HOU H Z. Effect of deep fertilization on water use efficiency and yield of potato under vertical rotary tillage. Journal of Agricultural Science and Technology, 2021, 23(7): 182-190. (in Chinese)
[31] LIU X J, MOSIER A R, HALVORSON A D, ZHANG F S. The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2fluxes from a clay loam soil. Plant and Soil, 2006, 280: 177-188.
doi: 10.1007/s11104-005-2950-8
[32] EBELHAR S A, VARSA E C. Applications in sustainable production. Communications in Soil Science and Plant Analysis, 2000, 31(11-14) : 2367-2377.
doi: 10.1080/00103620009370591
[33] 俞洪燕, 钱晓刚, 罗绪强, 张胜爽, 欧阳金美, 张珍明. 氮肥施用深度对玉米苗期植株生长及养分吸收的影响. 江苏农业科学, 2017, 45(8): 44-48.
YU H Y, QIAN X G, LUO X Q, ZHANG S S, OUYANG J M, ZHANG Z M. The effect of nitrogen fertilizer application depth on plant growth and nutrient absorption in maize seedling stage. Jiangsu Agricultural Science, 2017, 45(8): 44-48. (in Chinese)
[34] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44(11): 1694-1703.
doi: 10.3724/SP.J.1006.2018.01694
ZHAO C, WANG Q M, GUO Y, YIN W, FAN Z L, HU F L, YU A Z, CHAI Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize. Acta Agronomica Sinica, 2018, 44(11): 1694-1703. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01694
[35] 李国生, 吴小宾, 魏建林, 李燕, 郑福丽, 崔荣宗, 刘兆辉, 谭德水. 分层施肥对玉米产量及氮肥利用率的影响. 山东农业科学, 2020, 52(3): 66-71.
LI G S, WU X B, WEI J L, LI Y, ZHENG F L, CUI R Z, LIU Z H, TAN D S. Effect of stratified fertilization on yield and nitrogen use efficiency of corn. Shandong Agricultural Science, 2020, 52(3): 66-71. (in Chinese)
[36] 王应君, 王淑珍, 郑义. 肥料深施对小麦生育性状、养分吸收及产量的影响. 中国农学通报, 2006, 22(9): 276-280.
WANG Y J, WANG S Z, ZHENG Y. Effects of deep application of fertilizer on growth character, absorption of nutrition and yield in wheat. Chinese Agricultural Science Bulletin, 2006, 22(9): 276-280. (in Chinese)
[1] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[2] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[3] BiJiao MA,ZhiWen GOU,Wen YIN,AiZhong YU,ZhiLong FAN,FaLong HU,Cai ZHAO,Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[4] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[5] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[6] XIONG RuoYu,XIE JiaXin,TAN XueMing,YANG TaoTao,PAN XiaoHua,ZENG YongJun,SHI QingHua,ZHANG Jun,CAI Shuo,ZENG YanHua. Effects of Irrigation Management on Grain Yield and Quality of High-Quality Eating Late-Season Indica Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1512-1524.
[7] ZHANG ZhanJun,YANG HongWei,FAN ZhiLong,YU AiZhong,HU FaLong,YIN Wen,FAN Hong,GUO Yao,CHAI Qiang,ZHAO Cai. Water-Carrying Potential of No-Tillage with Plastic Film Mulching for 2-Year Coupled with Maize High-Density Planting in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(16): 3406-3416.
[8] JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368.
[9] MIAO FangFang,MIAN YouMing,PU XueKe,WU ChunHua,ZHOU YongJin,HOU XianQing. Effects of Tillage with Mulching on Soil Aggregate Structure and Water Use Efficiency of Potato in Dry-Farming Area of Southern Ningxia [J]. Scientia Agricultura Sinica, 2021, 54(11): 2366-2376.
[10] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[11] MA DengKe,YIN LiNa,LIU YiJian,YANG WenJia,DENG XiPing,WANG ShiWen. A Meta-Analysis of the Effects of Nitrogen Application Rates on Yield and Water Use Efficiency of Winter Wheat in Dryland of Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(3): 486-499.
[12] JIA LiGuo,SHI XiaoHua,SUYALA Qiqige,QIN YongLin,YU Jing,CHEN Yang,FAN MingShou. Potential Analysis of Organic Fertilizer Substitution for Chemical Fertilizer in Spring Wheat Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4855-4865.
[13] WANG XiNa,YU JinMing,TAN JunLi,ZHANG JiaQun,WEI ZhaoQing,WANG ZhaoHui. Requirement of Nitrogen, Phosphorus and Potassium and Potential of Reducing Fertilizer Application of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2020, 53(23): 4891-4903.
[14] HUANG QiuWan,LIU ZhiJuan,YANG XiaoGuang,BAI Fan,LIU Tao,ZHANG ZhenTao,SUN Shuang,ZHAO Jin. Analysis of Suitable Irrigation Schemes with High-Production and High-Efficiency for Spring Maize to Adapt to Climate Change in the West of Northeast China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4470-4484.
[15] XIANG JiShan,LIU PengPeng,SANG Wei,CUI FengJuan,HAN XinNian,NIE YingBin,KONG DeZhen,ZOU Bo,XU HongJun,MU PeiYuan. Allelic Variations of Pins Genes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang Hand-Stretched Noodles [J]. Scientia Agricultura Sinica, 2020, 53(19): 3857-3866.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!