Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 1891-1902.doi: 10.3864/j.issn.0578-1752.2022.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies

FAN WenJing1(),LIU Ming2,ZHAO Peng2,ZHANG QiangQiang2,WU DeXiang1,GUO PengYu1,ZHU XiaoYa2,JIN Rong2,ZHANG AiJun2,TANG ZhongHou2()   

  1. 1College of Agronomy, Anhui Agricultural University, Hefei 230036
    2Xuhuai Area of Jiangsu Province Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province/Xuzhou Sweetpotato Research Center of Jiangsu Province/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu
  • Received:2021-11-16 Accepted:2021-12-31 Online:2022-05-16 Published:2022-06-02
  • Contact: ZhongHou TANG E-mail:1394441094@qq.com;zhonghoutang@sina.com

Abstract:

【Objective】The objective of this article was to establish a low-N tolerance evaluation system for sweetpotato varieties, to screen low-N-tolerant genotypes and evaluate different N efficiency categories and to provide a theoretical basis for studying the low-N-tolerant physiological mechanism of sweetpotato varieties and mining N-efficient genes.【Method】Under the treatment of low N stress (0 mmol·L-1) and normal N application (14 mmol·L-1) of hydroponic experiment. Selected 126 sweetpotato varieties from different sweetpotato areas at home and abroad, we collected eleven indicators, including the shoot biomass, shoot biomass increase, root biomass increase, plant biomass increase ratio, root-to-shoot ratio, vine length, root length, leaf number, CCI, nitrogen accumulation, nitrogen physiological utilization efficiency, and calculated the low-N tolerance index of all indicators. The study carried out principal component analysis by using the comprehensive membership function method, regression analysis and cluster analysis to comprehensively evaluate the low-N-tolerant sweetpotato varieties and N efficiency types.【Result】1) Under low N level, the average of the shoot biomass, shoot biomass increase, root biomass increase, plant biomass increase ratio, vine length, root length, leaf number, CCI, and N accumulation of 126 tested sweetpotato varieties was lower than that under normal N level, while the average of root-to-shoot ratio and nitrogen physiological utilization efficiency were higher than that under normal N level; 2) The variation coefficient of shoot biomass, shoot biomass increase, root biomass increase, plant biomass increase ratio, root-to-shoot ratio, vine length, root length, leaf number, nitrogen accumulation, nitrogen physiological utilization efficiency at low-N stress was higher than that at normal N level, and the amplification of them were ranked as shoot biomass increase>plant biomass increase ratio>root biomass increase>leaf number>shoot biomass>nitrogen physiological utilization efficiency>nitrogen accumulation>root length> root-to-shoot ratio>Vine length; 3) The principal component analysis was carried out on the low-N-tolerant index of eleven indicators, extracted three principal components, the cumulative variance contribution rate of which was 72.67%, and calculated the comprehensive evaluation Y-value; 4) The correlation between the low-N-tolerant index of shoot biomass, shoot biomass increase, root biomass increase, plant biomass increase ratio, leaf number, vine length, root length, root-to-shoot ratio, nitrogen accumulation, nitrogen physiological utilization efficiency and the Y-value were highly significant(P<0.01), among them, the correlation of shoot biomass increase, root biomass increase, plant biomass increase ratio, nitrogen accumulation and shoot biomass was higher, with the correlation coefficients of 0.85, 0.86, 0.81, 0.79 and 0.73, respectively; 5) The regression equation of the Y-value screened eight indicators to evaluate low-N tolerance of sweetpotato varieties, and the cluster analysis on eight indicators showed that the sweetpotato genotypes were classified into three types, low-N-tolerant, intermediate, and low-N-sensitive. The agronomic traits and N efficiency traits of three sweetpotato categories were analyzed by variance analysis.【Conclusion】Shoot biomass, shoot biomass increase, root biomass increase, root length, vine length, leaf number, nitrogen accumulation and nitrogen physiological utilization efficiency were selected as the low-N tolerance evaluation indicators of sweetpotato; The study screened 7 low-N-tolerant sweetpotato varieties: 13104-2/Zishu1, Yibinhongxinshu, Zhezishu 2, Yuzi 3, Yuzi 6, Luozi 1 and Yuzixiang 10; The results of variance analysis showed that the low-N-tolerant varieties performed better than the intermediate and the low-N sensitive varieties, and there are significant difference in five traits: shoot biomass, shoot biomass increase, root biomass increase, vine length and nitrogen accumulation.

Key words: sweetpotato, low-N tolerance, screening indexes, comprehensive evaluation, N efficiency categories

Table 1

Variation analysis of various traits at different levels of nitrogen supply"

指标
Index
正常氮处理CK 低氮处理N0
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
地上干重 Shoot biomass (g) 0.83—4.44 2.27 33.68 0.50—4.38 1.87 48.27
地上干物质增加量 Shoot biomass increase (g) 0.26—3.39 1.45 45.40 0.01—2.75 0.79 70.52
地下干物质增加量 Root biomass increase (g) 0.10—1.57 0.66 46.31 0.12—1.61 0.60 52.57
总干物质增加率 Plant biomass increase ratio (%) 45.61—632.24 267.50 43.12 9.04—497.51 145.17 60.47
根冠比 Root shoot ratio 0.12—0.63 0.29 32.71 0.08—0.87 0.34 41.78
蔓长 Vine length (cm) 19.93—42.73 29.75 16.80 18.27—54.60 29.10 21.68
根长 Root length (cm) 11.10—68.33 41.37 29.68 7.80—91.60 37.33 39.19
叶数 Leaf number 4—11 6.53 19.96 4—17 6.23 33.45
CCI值 Chlorophyll content index 11.77—53.67 25.30 27.23 5.13—21.83 13.03 21.91
氮积累量 N accumulation (g/plant) 0.087—0.50 0.24 36.78 0.03—0.28 0.10 49.38
氮素生理利用效率
Nitrogen physiological utilization efficiency (%)
4.00—11.53 8.52 13.66 2.34—22.32 13.24 28.86

Fig. 1

PC dispersion points of low-nitrogen tolerance index of each indictor"

Table 2

Weighting coefficients, eigenvalues, variance contribution rate and cumulative variance contribution rate of the 3 principal components of each trait index"

性状
Index
主成分 Principal components
PC1 PC2 PC3
地上干重Shoot biomass 0.3703 -0.3193 -0.2293
地上干物质增加量Shoot biomass increase 0.3983 -0.0773 -0.2555
地下干物质增加量Root biomass increase 0.3795 0.0727 -0.0871
总干物质增加率Plant biomass increase ratio 0.3327 0.3361 -0.1239
根冠比Root shoot ratio 0.1134 0.5903 0.1480
蔓长Vine length 0.3174 -0.2588 0.3445
根长Root length 0.2092 0.0521 0.7267
叶数Leaf number 0.2753 0.0314 0.2342
CCI值Chlorophyll content index 0.7529 -0.1891 0.2893
氮积累量 N accumulation 0.3878 -0.2664 -0.1674
氮素生理利用效率 Nitrogen physiological utilization efficiency 0.2464 0.4977 -0.1568
特征值Eigenvalues 5.2190 1.7060 1.0680
方差贡献率 Variance contribution rate (%) 47.4460 15.5130 9.7060
累计方差贡献率 Cumulative variance contribution rate (%) 47.4460 62.9590 72.6650

Table 3

Correlations of the comprehensive value Y for low-N tolerance with index in sweetpotato"

指标
Trait
相关系数
Correlation coefficient
P
P value
地上干重Shoot biomass 0.730** 0.000
地上干物质增加量Shoot biomass increase 0.848** 0.000
地下干物质增加量Root biomass increase 0.858** 0.000
总干物质增加率Plant biomass increase ratio 0.812** 0.000
根冠比Root shoot ratio 0.408** 0.000
蔓长Vine length 0.680** 0.000
根长Root length 0.549** 0.000
叶数Leaf number 0.645** 0.000
CCI值Chlorophyll content index 0.150 0.093
氮积累量 N accumulation 0.788** 0.000
氮素生理利用效率
Nitrogen physiological utilization efficiency
0.655** 0.000

Fig. 2

Cluster analysis diagram of 8 related indexes of low nitrogen stress tolerance index"

Table 4

Evaluation of traits of low-nitrogen-tolerant, intermediate, and low nitrogen susceptible sweetpotatoes"

指标
Index
地上干重
Shoot
biomass
地上部干
物质增加量
Shoot biomass increase
地下部干
物质增加量
Root biomass increase
叶数
Leaf
number
蔓长
Vine
length
根长
Root
length
氮积累量
N accumulation
氮素生理利用效率
Nitrogen physiological utilization efficiency
耐低氮型
Low nitrogen tolerance
2.33±0.37a 2.81±0.84a 3.67±1.49a 1.45±0.76a 1.57±0.24a 1.42±0.38a 1.39±0.23a 2.10±0.39a
中间型
Intermediate
1.627±0.45b 1.23±0.45b 2.33±0.64b 1.39±0.47a 1.26±0.34b 1.09±0.46b 0.92±0.24b 1.77±0.55ab
不耐低氮型
Low nitrogen
sensitive
0.76±0.37c 0.51±0.35c 0.86±0.42c 0.91±0.25b 0.94±0.20c 0.90±0.35b 0.40±0.19c 1.52±0.47b
[1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 483-492.
WANG X, LI Q, CAO Q H, MA D F. Current status and future prospective of sweetpotato production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 483-492. (in Chinese)
[2] 唐忠厚, 李洪民, 张爱君, 史新敏, 魏猛, 陈晓光, 丁艳锋. 甘薯叶光合特性与块根主要性状对氮素供应形态的响应. 植物营养与肥料学报, 2013, 19(6):1495-1501.
TANG Z H, LI H M, ZHANG A J, SHI X M, WEI M, CHEN X G, DING Y F. Responses of nitrogen supply forms on leaf photosynthetic characteristics and root characters of sweetpotato. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1494-1501. (in Chinese)
[3] URBAN A, ROGOWSKI P, WASILEWSKA-DEBOWSKA W, ROMANOWSKA E. Understanding maize response to nitrogen limitation in different light conditions for the improvement of photosynthesis. Plants, 2021, 10(9): 1932.
doi: 10.3390/plants10091932
[4] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-923.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-923. (in Chinese)
[5] 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43(7): 993-1002.
doi: 10.3724/SP.J.1006.2017.00993
ZHONG S R, CHEN R X, TAO Y, GONG S Y, HE K X, ZHANG Q M, ZHANG S C, LIU Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agronomica Sinica, 2017, 43(7): 993-1002. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00993
[6] 李强, 罗延宏, 龙文靖, 孔凡磊, 杨世民, 袁继超. 低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响. 草业学报, 2014, 23(4): 204-212.
LI Q, LUO Y H, LONG W J, KONG F L, YANG S M, YUAN J C. Effects of low nitrogen stress on seedling growth and physiological characteristics of Maize varieties with different low-nitrogen-tolerance. Acta Prataculturae Sinica, 2014, 23(4): 204-212. (in Chinese)
[7] 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53(16): 3214-3224.
CHEN L, WANG J J, WANG H G, CAO X N, LIU S C, TIAN X, QIN H B, QIAO Z J. Screening of broomcorn Millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Scientia Agricultura Sinica, 2020, 53(16): 3214-3224. (in Chinese)
[8] 刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018, 51(1): 3074-3083.
LIU P, WU A L, WANG J S, NAN J K, DONG E W, JIAO X Y, PING J A, BAI W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Scientia Agricultura Sinica, 2018, 51(1): 3074-3083. (in Chinese)
[9] 姜琪, 陈志伟, 刘成洪, 何婷, 郭桂梅, 高润红, 徐红卫, 李颖波, 陆瑞菊, 黄剑华. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究. 华北农学报, 2019, 34(1):148-155.
JIANG Q, CHEN Z W, LIU C H, HE T, GUO G M, GAO R H, XU H W, LI Y B, LU R J, HUANG J H. Screening and identification indices of low-nitrogen tolerance for barley landraces at seedling stage. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 148-155. (in Chinese)
[10] 阮新民, 从夕汉, 施伏芝, 罗志祥. 氮素高效利用水稻新品种筛选与评价. 上海农业学报, 2020, 36(5): 7-11.
RUAN X M, CONG X H, SHI F Z, LUO Z X. Screening and evaluation of rice cultivars with high nitrogen use efficiency. Acta Agriculturae Shanghai, 2020, 36(5): 7-11. (in Chinese)
[11] 葛礼姣, 方馨妍, 张云月, 罗孟婷, 管志勇, 陈素梅, 房伟民, 陈发棣, 赵爽. 菊花苗期氮高效品种资源筛选及氮效率评价体系建立. 南京农业大学学报, 2021, 44(6): 1054-1062.
GE L J, FANG X Y, ZHANG Y Y, LUO M T, GUAN Z Y, CHEN S M, FANG W M, CHEN F D, ZHAO S. Screening of nitrogen efficient varieties and its assessment system construction at seedling stage of chrysanthemum. Journal of Nanjing Agricultural University, 2021, 44(6): 1054-1062. (in Chinese)
[12] KANT S, BI Y M, ROTHSTEIN S J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany, 2011, 62(4): 1499-1509.
doi: 10.1093/jxb/erq297
[13] 陈二影, 杨延兵, 秦岭, 张华文, 刘宾, 王海莲, 陈桂玲, 于淑婷, 管延安. 谷子苗期氮高效品种筛选及相关特性分析. 中国农业科学, 2016, 49(17): 3287-3297.
CHEN E Y, YANG Y B, QIN L, ZHANG H W, LIU B, WANG H L, CHEN G L, YU S T, GUAN Y A. Evaluation of nitrogen efficient cultivars of foxtail millet and analysis of the related characters at seedling stage. Scientia Agricultura Sinica, 2016, 49(17): 3287-3297. (in Chinese)
[14] MUCHOW R C. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment: III. Grain yield and nitrogen accumulation. Field Crops Research, 1988, 18(1): 31-43.
doi: 10.1016/0378-4290(88)90057-3
[15] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54(7): 1397-1409.
LIU Q Y, ZHOU L, TIAN J Y, CHENG S, TAO Y, XING Z P, LIU G D, WEI H Y, ZHANG H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409. (in Chinese)
[16] 张婷婷, 孟丽丽, 陈有君, 蒙美莲. 不同马铃薯品种的氮效率差异研究. 中国土壤与肥料, 2021(1): 63-69.
ZHANG T T, MENG L L, CHEN Y J, MENG M L. Study on the difference of nitrogen efficiency of different potato varieties. Soil and Fertilizer Sciences in China, 2021(1): 63-69. (in Chinese)
[17] 宁运旺, 马洪波, 许仙菊, 汪吉东, 张辉, 许建平, 陈杰, 张永春. 氮磷钾缺乏对甘薯前期生长和养分吸收的影响. 中国农业科学, 2013, 46(3): 486-495.
NING Y W, MA H B, XU X J, WANG J D, ZHANG H, XU J P, CHEN J, ZHANG Y C. Effects of deficiency of N, P, or K on growth traits and nutrient uptakes of sweetpotato at early growing stage. Scientia Agricultura Sinica, 2013, 46(3): 486-495. (in Chinese)
[18] 陈晓光, 丁艳锋, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛, 靳容. 施氮量对甘薯块根产量和氮素利用的影响. 西南农业学报, 2015, 28(5): 2158-2161.
CHEN X G, DING Y F, LI H M, ZHANG A J, SHI X M, TANG Z H, WEI M, JIN R. Effects of nitrogen rates on yield and nitrogen utilization of sweetpotato. Southwest China Journal of Agricultural Sciences, 2015, 28(5): 2158-2161. (in Chinese)
[19] OSAKI M, UEDA H, SHINANO T, MITSUI H, TADANO T. Accumulation of carbon and nitrogen compounds in sweet potato plants grown under deficiency of N, P, or K nutrients. Japanese Society of Soil and Plant Nutrition, 1995, 41(3): 557-566.
[20] 刘明, 李洪民, 张爱君, 陈晓光, 靳容, 蒋薇, 唐忠厚. 不同氮肥与密度水平对鲜食甘薯产量和品质的影响. 华北农学报, 2020, 35(1): 122-130.
LIU M, LI H M, ZHANG A J, CHEN X G, JIN R, JIANG W, TANG Z H. Effects of nitrogen fertilizer and density on yield and quality of fresh edible type sweetpotato. Acta Agriculturae Boreali-Sinica, 2020, 35(1): 122-130. (in Chinese)
[21] 权宝全, 吕瑞洲, 王贵江. 不同施氮量对甘薯生长发育及产量的影响. 东北农业科学, 2019, 44(06):14-17.
QUAN B Q, LÜ R Z, WANG G J. Effects of different nitrogen application rates on growth and yield of sweetpotato. Journal of Northeast Agricultural Sciences, 2019, 44(6): 14-17. (in Chinese)
[22] 宁运旺, 马洪波, 张辉, 汪吉东, 许仙菊, 张永春. 甘薯源库关系建立、发展和平衡对氮肥用量的响应. 作物学报, 2015, 41(3): 432-439.
doi: 10.3724/SP.J.1006.2015.00432
NING Y W, MA H B, ZHANG H, WANG J D, XU X J, ZHANG Y C. Response of sweetpotato in source-sink relationship establishment, expanding, and balance to nitrogen application rates. Acta Agronomica Sinica, 2015, 41(3): 432-439. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00432
[23] 吴春红, 刘庆, 孔凡美, 李欢, 史衍玺. 氮肥施用量对不同紫甘薯品种产量和氮素效率的影响. 作物学报, 2016, 42(1): 113-122.
doi: 10.3724/SP.J.1006.2016.00113
WU C H, LIU Q, KONG F M, LI H, SHI Y X. Effects of different nitrogen levels on nutritional quality of different varieties purple sweetpotato storage roots. Acta Agronomica Sinica, 2016, 42(1): 113-122. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00113
[24] 徐国华. 提高农作物养分利用效率的基础和应用研究. 植物生理学报, 2016, 52(12): 1761-1763.
XU G H. Basic and application research of improving crop nutrient utilization efficiency. Plant Physiology Journal, 2016, 52(12): 1761-1763. (in Chinese)
[25] GIROND E A, PORET M, ETIENNE P, TROUVERIE J, BOUCHEREAU A, CAHEREC L F, LEPORT L, ORSEL M, NIOGRET M F, DELEU C, AVICE J C. A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape. Journal of Experimental Botany, 2015, 66(9): 2461-2473.
doi: 10.1093/jxb/erv031
[26] 万春雁, 糜林, 郭达, 乔玉山, 霍恒志, 陈丙义, 李金凤, 陈雪平. 基于果实品质模糊综合评判的砂梨熟期配套品种初步筛选. 西北农林科技大学学报(自然科学版), 2018, 46(9): 99-107.
WAN C Y, MI L, GUO D, QIAO Y S, HUO H Z, CHEN B Y, LI J F, CHEN X P. Preliminary screening of Pyrus pyrifolia Nakai combination with different mature periods based on fuzzy synthetic evaluation of fruit quality. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(9): 99-107. (in Chinese)
[27] 余健, 房莉, 仓定帮, 朱琳, 卞正富. 熵权模糊物元模型在土地生态安全评价中的应用. 农业工程学报, 2012, 28(5): 260-266.
YU J, FANG L, CANG D B, ZHU L, BIAN Z F. Evaluation of land eco-security in Wanjiang district base on entropy weight and matter element model. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 260-266. (in Chinese)
[28] 林海明, 杜子芳. 主成分分析综合评价应该注意的问题. 统计研究, 2013, 30(8): 25-31.
LIN H M, DU Z F. Some problems in comprehensive evaluation in the principal component analysis. Statistical Research, 2013, 30(8): 25-31. (in Chinese)
[29] LIAO M T, FILLERY I R P, PALTA J A. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology, 2004, 31: 121-129.
doi: 10.1071/FP03060
[30] ANDERSON G C, FILLERY I R P, DUNIN F X, DOLLING P J, ASSENG S. Nitrogen and water flows under pasture-wheat and lupin-wheat rotations in deep sands in Western Australia-2. Drainage and nitrate leaching. Australian Journal of Agricultural Research, 1998, 49: 345-361.
doi: 10.1071/A97142
[31] EGHBALL B, MARANVILLE J W. Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stress. Agronomy Journal, 1993, 85: 147-152.
doi: 10.2134/agronj1993.00021962008500010027x
[32] MOLL R H, KAMPRATH E J, JACKSON W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74: 562.
doi: 10.2134/agronj1982.00021962007400030037x
[33] GAJU O, ALLARD V, MARTRE P, SNAPE J W, HEUMEZ E, LEGOUIS J, MOREAU D, BOGARD M, GRIFFITHS S, ORFORD S, HUBBART S, FOULKES M J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research, 2011, 123(2): 139.
doi: 10.1016/j.fcr.2011.05.010
[34] 张亚丽. 水稻氮效率基因型差异评价与氮高效机理研究[D]. 南京: 南京农业大学, 2006.
ZHANG Y L. Genotypic differences in grain yields and nitrogen use efficiency in rice cultivars[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese)
[35] 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22(10): 1190-1199.
LI Q, LUO Y H, TAN J, KONG F L, YANG S M, YUAN J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivar at seeding stage. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1190-1199. (in Chinese)
[36] 陈志伟, 姜琪, 许建华, 张婉, 何婷, 郭桂梅, 王亦菲, 马运涛, 黄剑华, 刘成洪, 陆瑞菊. 不同低氮胁迫对大麦地方品种苗期耐低氮性的影响. 植物生理学报, 2019, 55(5): 642-648.
CHEN Z W, JIANG Q, XU J H, ZHANG W, HE T, GUO G M, WANG Y F, MA Y T, HUANG J H, LIU C H, LU R J. Effects of different low nitrogen stresses on low nitrogen tolerance of barley landraces at seedling stage. Plant Physiology Journal, 2019, 55(5): 642-648. (in Chinese)
[37] AJALA S O, KLING J G, MENKIR A. Full-Sib family selection in maize populations for tolerance to low soil nitrogen. Journal of Crop Improvement, 2012, 26(5): 581-598.
doi: 10.1080/15427528.2012.662206
[38] 梁兴萍, 冯唯欣, 秦鹏飞, 刘元飞, 张瑞杰. 谷子耐低氮品种的筛选. 山西农业科学, 2016, 44(12): 1747-1750+1757.
LIANG X P, FENG W X, QIN P F, LIU Y F, ZHANG R J. Screening of resistance to low nitrogen varieties of Millet. Journal of Shanxi Agricultural Sciences, 2016, 44(12): 1747-1750+1757. (in Chinese)
[39] 远月丽. 大豆苗期氮高效利用种质筛选及遗传分析[D]. 北京: 中国农业科学院, 2021.
YUAN Y L. Seedling screening and genetic analysis of soybean germplasm with high nitrogen use efficiency[D]. Beijing: Chinese Academy of Agricultural Science, 2021. (in Chinese)
[40] 贵会平, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松, 付小琼, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30(4): 326-337.
GUI H P, DONG Q, ZHANG H H, WANG X R, PANG N C, WANG Z, LIU J, ZHENG C S, FU X Q, ZHANG X L, SONG M Z. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage. Cotton Science, 2018, 30(4): 326-337. (in Chinese)
[41] 程红, 郑顺林, 马海艳, 张开勤, 袁继超. 马铃薯氮高效基因型品种筛选及指标评价. 西南农业学报, 2019, 32(10): 2292-2298.
CHENG H, ZHENG S L, MA H Y, ZHANG K Q, YUAN J C. Screening and evaluation of nitrogen use efficiency index in potato. Southwest China Journal of Agricultural Sciences, 2019, 32(10): 2292-2298. (in Chinese)
[42] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45(2): 267-273.
ZHANG Y L, FAN J B, DUAN Y H, WANG D S, YE L T, SHEN Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedologica Sinica, 2008, 45(2): 267-273. (in Chinese)
[43] 黄永兰, 黎毛毛, 芦明, 万建林, 龙起樟, 王会民, 唐秀英, 范志洁. 氮高效水稻种质资源筛选及相关特性分析. 植物遗传资源学报, 2015, 16(1): 87-93.
HUANG Y L, LI M M, LU M, WAN J L, LONG Q Z, WANG H M, TANG X Y, FAN Z J. Selection of rice germplasm with high nitrogen utilization efficiency and its analysis of the related characters. Journal of Plant Genetic Resources, 2015, 16(1): 87-93. (in Chinese)
[44] 李小红, 谢运河, 阳小凤, 王业建, 马淑梅. 大豆苗期干物质积累对氮素的响应及耐低氮种质筛选方法研究. 湖南农业科学, 2013(16): 17-19.
LI X H, XIE Y H, YANG X F, WANG Y J, MA S M. Study on the response of soybean dry matter accumulation to nitrogen at seedling stage and selection methods for low nitrogen tolerant germplasm. Hunan Agricultural Sciences, 2013(16): 17-19. (in Chinese)
[45] 房增国, 高璐阳. 8个鲜食型甘薯品种的氮营养差异研究. 作物杂志, 2015(1): 86-90.
FANG Z G, GAO L Y. Difference of nitrogen nutrition of eight fresh-eating sweetpotato cultivars. Crops, 2015(1): 86-90. (in Chinese)
[46] 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张世川, 张启明, 刘齐元. 不同烟草基因型氮素吸收效率与利用效率差异. 中国烟草科学, 2017, 38(4): 58-63.
ZHONG S R, CHEN R X, TAO Y, GONG S Y, HE K X, ZHANG S C, ZHANG Q M, LIU Q Y. Study on the difference of nitrogen uptake and utilization efficiency of different Tobacco genotypes. Chinese Tobacco Science, 2017, 38(4): 58-63. (in Chinese)
[1] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[6] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[7] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[8] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[9] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
[10] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[11] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[12] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
[13] LI Min, SU Hui, LI YangYang, LI JinPeng, LI JinCai, ZHU YuLei, SONG YouHong. Analysis of Heat Tolerance of Wheat with Different Genotypes and Screening of Identification Indexes in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(16): 3381-3392.
[14] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[15] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!