Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2109-2120.doi: 10.3864/j.issn.0578-1752.2022.11.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm

ZHONG YanPing1,2(),SHI LiSong1,ZHOU Rong1,GAO Yuan1,HE YanQing1,FANG Sheng2,ZHANG XiuRong1,WANG LinHai1,WU ZiMing2(),ZHANG YanXin1()   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    2Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045
  • Received:2022-01-20 Accepted:2022-03-14 Online:2022-06-01 Published:2022-06-16
  • Contact: ZiMing WU,YanXin ZHANG E-mail:yanpzhu1996@163.com;wuzmjxau@163.com;zhangyanxin@caas.cn

Abstract:

【Objective】 Establish an efficient extraction and detection technology for sesamin content evaluation in sesame seeds, then apply it to examine sesamin content variation and identify high-sesamin content materials in sesame germplasm, which will lay the foundation for advancing basic research and breeding of sesame with high sesamin content. 【Method】 Using sesame seeds as raw materials, the single factor tests, including diameters of steel balls, crushing time, crushing amplitude, and seeds weight, were investigated. The seeds were extracted with 80% ethanol via ultrasonic mechanical crushing and cavitation, and the sesamin content was determined by High Performance Liquid Chromatography (HPLC). Based on the Box-Behnken center combined test design principle, we carried out the response surface test with four factors and three levels and established the quadratic polynomial regression equation model with sesamin content as response value. We drew the response surface diagram and contour diagram and determined the main factors affecting sesamin content and the interaction between factors. Finally, the optimal extraction conditions of sesamin were determined, and 1 151 local resources and innovative germplasm were analyzed. The accessions with high sesamin content≥9 g·kg-1 were selected and identified at the Oil and Product Quality Supervision and Testing Center of the Ministry of Agriculture and Rural Affairs. 【Result】 The regression model established in this experiment was extremely significant (P<0.05), and the lack of fit was insignificant (P=0.1768). The model had a good fitting degree and could be used to predict sesamin content. The influence of the four factors on sesamin content was as follows: crusher amplitude>diameters of steel balls>crushing time>seeds weight. The interaction between the crusher amplitude and diameters of steel balls was significant, while that between crusher amplitude and crushing time was close to the significance level. The optimal conditions for ultrasonic-assisted extraction of sesamin were as follows: steel ball diameter of 6.5 mm, crushing time of 225 s, crushing amplitude of 1 335 r/min, and seeds weight of 0.20 g. Under these conditions, the sesamin content detected was 4.601 g·kg-1, which was consistent with the predicted value of 4.633 g·kg-1. Fifteen varieties with specific high sesamin content were identified from 1 151 sesame germplasm for breeding purposes. The highest content was 14.36 g·kg-1, and the average content was 12.35 g·kg-1.【Conclusion】 An efficient extraction technology of sesamin was established,compared with the traditional method, the method only needed 0.2 g seeds, which improved the extraction efficiency and reduced sample consumption, the operation was simple, and the sesamin content in sesame seeds could be accurately detected.

Key words: sesamin, high efficient, extraction process, response surface analysis methodology, screening germplasm

Fig. 1

Working curve of sesamin standard solution"

Fig. 2

HPLC peak surface of standard solution (A) and sample (B)"

Fig. 3

The effects of different diameters of steel ball on sesamin content"

Fig. 4

The effects of different crusher time on sesamin content"

Fig. 5

The effects of different crushing amplitudes on sesamin content"

Fig. 6

The effects of different seeds weight on sesamin content"

Table 1

The factors and levels of response surface test"

水平/因子
Level/Factor
钢珠直径
Diameter of steel ball (mm)
粉碎时间
Crusher time (min)
捣碎振幅
Crusher amplitude (r/min)
种子量
Seeds weight (g)
-1 5 180 1100 0.17
0 6 210 1300 0.20
1 7 240 1500 0.23

Table 2

The results of response surface experimental design"

试验号
Test number
钢珠直径
Diameter of steel ball (mm)
粉碎时间
Crusher time (min)
捣碎振幅
Crusher amplitude (r/min)
种子量
Seeds weight (g)
芝麻素含量
Sesamin content (g∙kg-1)
1 0 1 0 -1 4.431
2 0 0 -1 -1 4.142
3 0 0 -1 1 3.991
4 1 -1 0 0 4.264
5 0 0 0 0 4.488
6 1 0 0 1 4.182
7 -1 -1 0 0 4.005
8 0 1 1 0 4.332
9 1 1 0 0 4.545
10 1 0 -1 0 4.218
11 -1 0 0 1 4.019
12 0 -1 -1 0 3.902
13 -1 0 0 -1 4.170
14 1 0 1 0 4.370
15 0 0 0 0 4.584
16 -1 0 1 0 4.351
17 1 0 0 -1 4.535
18 0 -1 0 -1 4.197
19 0 -1 0 1 4.083
20 0 0 0 0 4.576
21 0 1 0 1 4.229
22 0 0 1 -1 4.457
23 0 1 -1 0 4.220
24 0 0 1 1 4.253
25 0 0 0 0 4.496
26 -1 0 -1 0 3.532
27 0 -1 1 0 4.277
28 -1 1 0 0 4.167
29 0 0 0 0 4.550

Table 3

Analysis of variance table of regression model"

方差来源
Sources of variance
平方和
Sum of squares
自由度
df
均方
Mean square
F
F value
P
P value
显著性
Significance
模型Model 1.52 14 0.11 24.67 <0.0001 **
A 0.29 1 0.29 66.40 <0.0001 **
B 0.12 1 0.12 27.16 0.0001 **
C 0.35 1 0.35 78.63 <0.0001 **
D 0.12 1 0.12 26.22 0.0002 **
AB 3.540×10-3 1 3.540×10-3 0.81 0.3843
AC 0.11 1 0.11 25.34 0.0002 **
AD 0.010 1 0.010 2.32 0.1496
BC 0.017 1 0.017 3.94 0.0671
BD 1.936×10-3 1 1.936×10-3 0.44 0.5174
CD 7.023×10-4 1 7.023×10-4 0.16 0.6952
A2 0.20 1 0.20 46.65 <0.0001 **
B2 0.13 1 0.13 29.34 <0.0001 **
C2 0.30 1 0.30 69.45 <0.0001 **
D2 0.12 1 0.12 27.45 0.0001 **
残差Residual 0.061 14 4.389×10-3
失拟误差 Lack of fit 0.053 10 5.348×10-3 2.69 0.1768
纯误差 Pure error 7.965×10-3 4 1.991×10-3
总和 Correlation total 1.58 28
R2=0.9610 R2adj=0.9221 CV=1.55%

Fig. 7

The response surface diagram of the influence of various factors interaction on sesamin content"

Fig. 8

Comparison analysis of sesamin content by national standard method and improved method"

[28] ZHANG B Q, LIN Z M. Study on ultrasonic-assisted extraction of sesamin from sesame. Food Industry, 2011, 32(6):24-26. (in Chinese)
[29] 任媛媛, 李书国, 骆亚薇, 刘殿武. 超声波辅助响应面法提取芝麻中芝麻素与芝麻素的结晶. 食品科技, 2016, 41(12): 208-212.
doi: 10.1590/fst.15120
REN Y Y, LI S G, LUO Y W, LIU D W. Ultrasonic-assisted extraction of sesamin crystallization from sesame by response surface analysis methodology. Food Science and Technology, 2016, 41(12): 208-212. (in Chinese)
doi: 10.1590/fst.15120
[30] 刘立业. 芝麻和芝麻粕中芝麻素的提取与纯化工艺研究[D]. 长春: 吉林大学, 2010.
LIU L Y. Study on technology of extraction and purification of sesamin from Sesame and sesame meal[D]. Changchun: Jilin University, 2010. (in Chinese)
[31] NY/T 1595-2008, 芝麻中芝麻素含量的测定高效液相色谱法. 北京: 中国农业出版社, 2008.
NY/T 1595-2008, Determination of Sesamin Content-High Performance Liquid Chromatography. Beijing: China Agriculture Press, 2008. (in Chinese)
[32] 王永菲, 王成国. 响应面法的理论与应用. 中央民族大学学报(自然科学版), 2005, 14(3): 236-240.
WANG Y F, WANG C G. The application of response surface methodology. Journal of Minzu University of China (Natural Science Edition), 2005, 14(3): 236-240. (in Chinese)
[33] HAFSA J, HAMMI K M, CERF D L, LIMEN K, MAJDOUB H, CHARFEDDINE B. Characterization, antioxidant and antiglycation properties of polysaccharides extracted from the medicinal halophyte Carpobrotus edulis L.. International Journal of Biological Macromolecules, 2017, 107(Pt A): 833-842.
[1] 邵家威, 祁国栋, 张桂香, 付建鑫, 张炳文. 芝麻的营养与功能价值评价研究进展. 粮油食品科技, 2019, 27(6): 86-92.
SHAO J W, QI G D, ZHANG G X, FU J X, ZHANG B W. Research progress of evaluation of nutrition and functional value of sesame. Oils and Foods, 2019, 27(6): 86-92. (in Chinese)
[34] BALASUBRAMANIAN B, ILAVENIL S, AL-DHABI N A, AGASTIAN P, CHOI K C. Isolation and characterization of Aspergillus sp. for the production of extracellular polysaccharides by response surface methodology. Saudi Journal of Biological Sciences, 2018, 26(3): 449-454.
doi: 10.1016/j.sjbs.2018.10.015
[35] LI M, ZHAO G H, LIU J, LIANG X P, ZHANG M, ZHOU G C, TANG X, WANG Y L. Optimization of ultrasound-assisted extraction of peony seed oil with response surface methodology and analysis of fatty acid. Agricultural Research, 2021, 10(4): 1-13.
doi: 10.1007/s40003-020-00482-3
[2] 许方涛, 周瑢, 崔向华, 高媛, 张艳欣, 张秀荣, 游均, 王林海. 芝麻籽粒芝麻素和芝麻林素含量变异及杂种优势分析. 南方农业学报, 2020, 51(10): 2420-2428.
XU F T, ZHOU R, CUI X H, GAO Y, ZHANG Y X, ZHANG X R, YOU J, WANG L H. Variability and heterosis of sesamin and sesamolin contents in sesame (Sesamum indicum L.). Journal of Southern Agriculture, 2020, 51(10): 2420-2428. (in Chinese)
[3] 汪学德, 崔英德, 刘兵戈, 马素换. 芝麻各成分相关性分析. 中国油脂, 2015, 40(11): 99-103.
WANG X D, CUI Y D, LIU B G, MA S H. Correlation analysis of various components in sesame. China Oils and Fats, 2015, 40(11): 99-103. (in Chinese)
[4] 封铧, 张锦丽, 李向阳, 唐晓珍, 吴澎. 黑芝麻的营养成分及保健价值研究进展. 粮油食品科技, 2018, 26(5): 36-41.
FENG H, ZHANG J L, LI X Y, TANG X Z, WU P. Research progress of nutritional components and health value of black sesame. Oils and Foods, 2018, 26(5): 36-41. (in Chinese)
[5] HELLI B, MOWLA K, MOHAMMADSHAHI M, JALALI M T. Effect of sesamin supplementation on cardiovascular risk factors in women with rheumatoid arthritis. Journal of the American College of Nutrition, 2015, 35(4): 300-307.
doi: 10.1080/07315724.2015.1005198
[6] THUY T, PHAN N, WANG C Y, YU H G, WANG S Y, HUANG P L, DO Y Y, LIN Y C. Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction. Molecular Medicine Reports, 2017, 15(5): 2949-2956.
doi: 10.3892/mmr.2017.6420
[7] 金青哲, 刘元法, 王兴国, 戴洪平. 芝麻素抗氧化性的初步研究. 中国粮油学报, 2005(5): 93-96, 101.
JIN Q Z, LIU Y F, WANG X G, DAI H P. Sesame as a natural antioxidant. Journal of the Chinese Cereals and Oils Association, 2005(5): 93-96,101. (in Chinese)
[8] LEE C C, CHEN P R, LIN S, TSAI S C, WANG B W, CHEN W W, TSAI C E, SHYU K G. Sesamin induces nitric oxide and decreases endothelin-1 production in HUVECs: Possible implications for its antihypertensive effect. Journal of Hypertension, 2004, 22(12): 2329-2338.
doi: 10.1097/00004872-200412000-00015
[9] KONG X, MA M Z, ZHANG Y, WENG M Z, GONG W, GUO L Q, ZHANG J X, WANG G D, SU Q, QUAN Z W, YANG J R. Differentiation therapy: Sesamin as an effective agent in targeting cancer stem-like side population cells of human gallbladder carcinoma. BMC Complementary and Alternative Medicine, 2014(14): 254.
[10] 张燕飞, 谷克仁. 芝麻中芝麻素提取工艺研究进展. 粮食与油脂, 2008(11): 8-10.
ZHANG Y F, GU K R. Advance in extraction technology of sesamin in sesame. Cereals & Oils, 2008(11): 8-10. (in Chinese)
[11] KANG M H, CHOI J S, HA T Y. Chemical properties of sesame seed cultivated in Korea and China. Food Science & Biotechnology, 2003, 12(6):621-624.
[12] 魏安池, 杨玲玲, 代红丽, 王金水, 汪学德. 用响应面法优化芝麻饼中木脂素的提取工艺. 河南工业大学学报(自然科学版), 2011, 32(4): 10-15, 26.
WEI A C, YANG L L, DAI H L, WANG J S, WANG X D. Optimization of lignin extraction technology from sesame cake by response surface methodology. Journal of Henan University of Technology (Natural Science edition), 2011, 32(4): 10-15, 26. (in Chinese)
[13] 刘元法, 王兴国, 金青哲. 芝麻油中芝麻素提取物的纯化与检测. 中国油脂, 2004, 29(3): 48-50.
[36] 李莉, 张赛, 何强, 胡学斌. 响应面法在试验设计与优化中的应用. 实验室研究与探索, 2015, 34(8): 41-45.
LI L, ZHANG S, HE Q, HU X B. Application of response surface methodology in experiment design and optimization. Research and Exploration in Laboratory, 2015, 34(8): 41-45. (in Chinese)
[13] LIU Y F, WANG X G, JIN Q Z. Purification and analysis of sesamin from sesame oil. China Oils and Fats, 2004, 29(3): 48-50. (in Chinese)
[14] LIU M, ZHOU R J, WU J, LEI H. Optimal conditions for the purification of sesamin by recrystallization. Agricultural Science & Technology, 2017, 18(7): 1202-1204, 1364.
[15] SHYU Y S, HWANG L S. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Research International, 2002, 35(4): 357-365.
doi: 10.1016/S0963-9969(01)00130-2
[16] 李丹丹. 芝麻饼粕中木酚素的提取及抗氧化活性研究[D]. 南京: 南京农业大学, 2010.
[37] 任小娜, 曾俊. 芝麻中木酚素类物质的研究现状. 食品工业科技, 2014, 35(18): 383-386.
REN X N, ZENG J. Research status of lignans in sesame. Science and Technology of Food Industry, 2014, 35(18): 383-386. (in Chinese)
[38] 马凤, 方伟. 芝麻活性成分及产品开发的研究进展. 安徽农学通报, 2019, 25(20): 46-48, 61.
MA F, FANG W. Research progress on active components and products development of sesame. Anhui Agricultural Science Bulletin, 2019, 25(20): 46-48, 61. (in Chinese)
[16] LI D D. Study on extraction, isolation and antioxidant activity of lignans of sesame oil[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[17] SUGIURA M, INAYOSHI M, SAKURAI S. Method of separating sesamin analogues: US, US19970837546. 1999-05-11.
[18] HU Q, XU J, CHEN S, YANG F. Antioxidant activity of extracts of black sesame seed (Sesamum indicum L.) by supercritical carbon dioxide extraction. Journal of Agricultural & Food Chemistry, 2004, 52(4): 943-947.
[19] 张骞. 超临界CO2分离芝麻素工艺研究[D]. 大连: 大连理工大学, 2016.
ZHANG Q. Study on extraction process of sesamin with supercritical CO2 from sesame seeds[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
[20] SUJA K P, ABRAHAM J T, THAMIZH S N, JAYALEKSHMY A, ARUMUGHAN C. Antioxidant efficacy of sesame cake extract in vegetable oil protection. Food Chemistry, 2004, 84(3): 393-400.
doi: 10.1016/S0308-8146(03)00248-6
[21] AMAROWICZ R, SHAHIDI F, PEGG R B. Application of semipreparative RP-18 HPLC for the purification of sesamin and sesamolin. Journal of Food Lipids, 2010, 8(2): 85-94.
doi: 10.1111/j.1745-4522.2001.tb00186.x
[22] OZAKI T, HOSHII Y, MATSUEDA H. Method of separating sesamin and episesamin: US, US19920920653. 1993-05-11.
[23] 刘帅, 汪学德, 郭亚龙. 重结晶法分离芝麻素工艺的研究. 粮食与油脂, 2016, 29(6): 25-28.
LIU S, WANG X D, GUO Y L. Study on separation of sesamin by recrystallization. Cereals & Oils, 2016, 29(6): 25-28. (in Chinese)
[24] ZHOU J C, FENG D W, ZHENG G S. Extraction of sesamin from sesame oil using macroporous resin. Journal of Food Engineering, 2010, 99(2): 289-293.
[25] 闫政, 马宇翔, 曾国展, 张洪举, 汪学德. 浸出芝麻油中芝麻木酚素提取工艺的研究. 中国油脂, 2018, 43(9): 107-111.
YAN Z, MA Y X, ZENG G Z, ZHANG H J, WANG X D. Extraction of sesame lignans from leaching sesame oil. China Oils and Fats, 2018, 43(9): 107-111. (in Chinese)
[26] 何晓梅, 陈存武, 乔德亮, 袁盼盼. 芝麻素的超声辅助提取技术及生物活性研究. 中国油脂, 2015, 40(5): 65-69.
HE X M, CHEN C W, QIAO D L, YUAN P P. Ultrasonic-assisted extraction and bioactivity of sesame. China Oils and Fats, 2015, 40(5): 65-69. (in Chinese)
[27] 黄晓霞, 黄崇才, 郑菊琼. 不同提取方法测定黑芝麻中芝麻素含量的比较研究. 应用化工, 2013, 42(8): 1550-1552.
HUANG X X, HUANG C C, ZHENG J Q. A comparative study on different extractions of sesamin content from Semen sesamin nigrum. Applied Chemical Industry, 2013, 42(8): 1550-1552. (in Chinese)
[28] 张佰清, 林子木. 超声波辅助提取芝麻中芝麻素的工艺研究. 食品工业, 2011, 32(6): 24-26.
[1] WANG Hua-zhong. Study on the Status and Prospects of Sugar Beet CMS Monogerm Variety [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3049-3056.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!