Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1676-1684.doi: 10.3864/j.issn.0578-1752.2022.08.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Method Improvement and Its Application of Micro Complement Fixation Test for Brucellosis

JIANG Hui1(),FENG Yu2,QIN YuMing2,ZHU LiangQuan2,FAN XueZheng1,DING JiaBo1()   

  1. 1Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193
    2National/OIE Reference Laboratory for Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081
  • Received:2021-04-12 Accepted:2021-05-31 Online:2022-04-16 Published:2022-05-11
  • Contact: JiaBo DING E-mail:15011216921@163.com;dingjiabo@126.com

Abstract:

【Objective】 The complement fixation test is used as a confirmatory test for the serodiagnosis of brucellosis. The complement fixation tests are divided into constant complement fixation test (CFT) and micro complement fixation test (mCFT) in diagnostic techniques for animal brucellosis (GB/T 18646-2018). However, there are differences in the related technical parameters and judgment of the result between them, which lead to the inconsistency of CFT and mCFT results. In this study, By the improvement and optimization of the parameters of mCFT, this study made the detection results of mCFT equivalent to classical CFT, and achieved the high-throughput and accurate diagnosis of CFT for brucellosis. 【Method】 According to classical CFT reaction conditions and diagnostic criteria, the reaction time, diluent, titer determination, result judgment and other related parameters for the current national standard of mCFT were optimized and improved. Compared with the original method, the dilution of the tested serum was changed from 1:2-1:64 to 1:10. The dilution method was the same as classical CFT so that the detection critical value was consistent with the constant method. The OD600 value was read by the microplate reader to determine the hemolysis intensity, which reduced the error caused by visual judgment and improved the efficiency and accuracy of result judgment. The reaction time was shortened from 30 min to 20 min in water bath at 37℃, which improved the detection efficiency without affecting the results. The diluent was changed from barbital buffer to normal saline, which used the same diluent of classical CFT and achieved satisfactory results. The 409 clinical bovine and sheep serum samples (163 bovine serum samples and 246 sheep serum samples) from Inner Mongolia, Shandong, Beijing and Jiangsu were detected by improved mCFT, the national standard mCFT, and classical CFT, respectively. The coincidence rate was analyzed and compared. 【Result】By detecting the 409 clinical samples, the result showed that 53 samples were positive, 11 samples were suspicious and 345 were negative by improved mCFT. The 53 positive samples, 9 suspicious samples and 347 negative samples were detected by classical CFT. Compared with the results of the two methods, only two bovine serum samples were suspicious by the improved mCFT, which were negative by classical CFT. The results of the other 407 samples were consistent. The coincidence rate of bovine serum samples was 98.77%, which of sheep serum samples was 100%, and the total coincidence rate was 99.51% between improved mCFT and classical CFT. However, the positive criteria of national standard mCFT were lower than that of classical CFT, and no suspicious interval was set. The results showed that 97 samples were positive and 312 samples were negative. Compared with the results of classical CFT, the coincidence rate of bovine serum samples was 88.34%, which of sheep serum samples was 89.84%; the total coincidence rate was 89.24%, which was far lower than 99.51% of improved mCFT and classical CFT. 【Conclusion】 By optimizing the parameters of mCFT, the mCFT method was established, which was highly consistent with the criterion and the results of the classical CFT.

Key words: brucellosis, micro complement fixation test, method improvement, application

Table 1

Preparation of standard colorimetric hole (μL)"

组分
Components
标准溶血孔Standard hemolytic hole
1 2 3 4 5 6 7 8 9 10 11
100%溶血液100% hemolytic solution 100 90 80 70 60 50 40 30 20 10 0
100%不溶血液100% no hemolytic solution 0 10 20 30 40 50 60 70 80 90 100
溶血程度Hemolysis degree 100 90 80 70 60 50 40 30 20 10 0
判定符号Symbol - + + ++ ++ ++ +++ +++ +++ ++++ ++++
判定标准Standard 阴性Negative 可疑Suspicious 阳性Positive

Table 2

Dilution of the hemolysin (mL)"

EP管号
EP tube No.
1 2 3 4 5 6 7 8 9 10
1﹕500稀释溶血素
1﹕500 hemolysin
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
生理盐水Saline 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
稀释度Dilution 1﹕1000 1﹕1500 1﹕2000 1﹕2500 1﹕3000 1﹕3500 1﹕4000 1﹕4500 1﹕5000 1﹕5500

Table 3

Determination of the hemolysin titer (μL)"

孔号 Hole No. 1 2 3 4 5 6 7 8 9 10
各稀释度溶血素
Dilution of the hemolysin
1﹕1000
25
1﹕1500
25
1﹕2000
25
1﹕2500
25
1﹕3000
25
1﹕3500
25
1﹕4000
25
1﹕4500
25
1﹕5000
25
1﹕5500
25
2.5%红细胞
2.5% SRBC
25 25 25 25 25 25 25 25 25 25
1﹕10补体
1﹕10 Complement
25 25 25 25 25 25 25 25 25 25
生理盐水 Saline 50 50 50 50 50 50 50 50 50 50
37℃水浴20 min 37℃ water bath for 20 min

Table 4

Determination of the complement titer (μL)"

组分
Components
列数Column number
1 2 3 4 5 6 7 8 9 10 11 12
1﹕10补体
1﹕10 Complement
5 6.5 8 9.5 11 12.5 14 15.5 17 18.5 20 0
A:抗原/B:生理盐水
A:Antigen/B:Saline
25 25 25 25 25 25 25 25 25 25 25 25
生理盐水Saline 45 43.5 42 40.5 39 37.5 36 34.5 33 31.5 30 50
37℃水浴20 min 37℃ water bath for 20 min
2个单位溶血素
2 units of hemolysin
25 25 25 25 25 25 25 25 25 25 25 25
2.5%红细胞 2.5% SRBC 25 25 25 25 25 25 25 25 25 25 25 25
37℃水浴20min 37℃ water bath for 20min

Table 5

Determination of the antigen titer (μL)"

组分
Components
列数Column number 对照
Control
1 2 3 4 5 6 7 8 9 10
各稀释度抗原
Dilution of the antigen
1﹕10
25
1﹕50
25
1﹕75
25
1﹕100
25
1﹕150
25
1﹕200
25
1﹕250
25
1﹕300
25
1﹕400
25
1﹕500
25
25
各稀释度阴/阳性血清
Dilution of the negative/positive serum
25 25 25 25 25 25 25 25 25 25 0
工作补体Working complement 25 25 25 25 25 25 25 25 25 25 25
生理盐水Saline 0 0 0 0 0 0 0 0 0 0 25
37℃水浴20 min 37℃ water bath for 20min
2个单位溶血素
2 units of hemolysin
25 25 25 25 25 25 25 25 25 25 25
2.5%红细胞 2.5% SRBC 25 25 25 25 25 25 25 25 25 25 25
37℃水浴20 min 37℃ water bath for 20 min

Table 6

Detection of the clinical samples (μL)"

组分
Components
临床样品组
Clinical sample group
对照组
Control group
检测孔
Detection hole
对照孔
Control hole
阳性血清
Positive serum
阴性血清
Negative serum
补体
Complement
抗原
Antigen
溶血素
Hemolysin
1﹕10血清稀释液
1﹕10 dilution of the serum
25 25 25 25 25 25 0 0 0
工作抗原Working antigen 25 0 25 0 25 0 0 25 0
工作补体Working complement 25 25 25 25 25 25 25 25 0
生理盐水Saline 0 25 0 25 0 25 50 25 75
37℃水浴20 min 37℃ water bath for 20 min
2个单位溶血素
2 units of hemolysin
25 25 25 25 25 25 25 25 25
2.5%红细胞2.5% SRBC 25 25 25 25 25 25 25 25 25
37℃水浴20 min 37℃ water bath for 20 min

Table 7

The result of brucellosis complement fixation test of the clinical samples"

检测方法
Detection method
血清种类
Serum type
总数
Total number
阳性数(阳性率)
Positive number (Positive rate)
可疑数(可疑率)
Suspicious number (Suspicious rate)
阴性数(阴性率)
Negative number (Negative rate)
与常量法CFT符合率
Coincidence rate with the classical CFT
常量法CFT
Classical CFT
牛血清Bovine serum 163 30 (18.41%) 7 (4.29%) 126 (77.3%) /
羊血清Sheep serum 246 23 (9.35%) 2 (0.81%) 221 (89.84%) /
合计Total 409 53 (12.96%) 9 (2.2%) 347 (84.84%) /
国标mCFT
National standard mCFT
牛血清Bovine serum 163 49 (30.06%) 0 114 (69.94%) 88.34%
羊血清Sheep serum 246 48 (19.51%) 0 198 (80.49%) 89.84%
合计Total 409 97 (23.72%) 0 312 (76.28%) 89.24%
改进mCFT
Improved mCFT
牛血清Bovine serum 163 30 (18.41%) 9 (5.52%) 124 (76.07%) 98.77%
羊血清Sheep serum 246 23 (9.35%) 2 (0.81%) 221 (89.84%) 100%
合计Total 409 53 (12.96%) 11 (2.69%) 345 (84.35%) 99.51%
[1] DEAN A S, CRUMP L, GRETER H, SCHELLING E, ZINSSTAG J. Global burden of human brucellosis: a systematic review of disease frequency. PLoS Neglected Tropical Diseases, 2012, 6(10): e1865. doi: 10.1371/journal.pntd.0001865.
doi: 10.1371/journal.pntd.0001865
[2] MCDERMOTT J, GRACE D, ZINSSTAG J. Economics of brucellosis impact and control in low-income countries. Revue Scientifique et Technique (International Office of Epizootics), 2013, 32(1): 249-261. doi: 10.20506/rst.32.1.2197.
doi: 10.20506/rst.32.1.2197
[3] SELEEM M N, BOYLE S M, SRIRANGANATHAN N. Brucellosis: a re-emerging zoonosis. Veterinary Microbiology, 2010, 140(3/4): 392-398. doi: 10.1016/j.vetmic.2009.06.021.
doi: 10.1016/j.vetmic.2009.06.021
[4] TADESSE G. Brucellosis seropositivity in animals and humans in Ethiopia: a meta-analysis. PLoS Neglected Tropical Diseases, 2016, 10(10): e0005006. doi: 10.1371/journal.pntd.0005006.
doi: 10.1371/journal.pntd.0005006
[5] HARRISON E R, POSADA R. Brucellosis. Pediatrics in Review, 2018, 39(4): 222-224. doi: 10.1542/pir.2017-0126.
doi: 10.1542/pir.2017-0126
[6] ZHANG N, HUANG D S, WU W, LIU J, LIANG F, ZHOU B S, GUAN P. Animal brucellosis control or eradication programs worldwide: a systematic review of experiences and lessons learned. Preventive Veterinary Medicine, 2018, 160: 105-115. doi: 10.1016/j.prevetmed.2018.10.002.
doi: 10.1016/j.prevetmed.2018.10.002
[7] MORENO E. Retrospective and prospective perspectives on zoonotic brucellosis. Frontiers in Microbiology, 2014, 5: 213. doi: 10.3389/fmicb.2014.00213.
doi: 10.3389/fmicb.2014.00213
[8] TSCHOPP R, BEKELE S, MOTI T, YOUNG D, ASEFFA A. Brucellosis and bovine tuberculosis prevalence in livestock from pastoralist communities adjacent to Awash National Park, Ethiopia. Preventive Veterinary Medicine, 2015, 120(2): 187-194. doi: 10.1016/j.prevetmed.2015.03.004.
doi: 10.1016/j.prevetmed.2015.03.004
[9] NJERU J, WARETH G, MELZER F, HENNING K, PLETZ M W, HELLER R, NEUBAUER H. Systematic review of brucellosis in Kenya: disease frequency in humans and animals and risk factors for human infection. BMC Public Health, 2016, 16(1): 853. doi: 10.1186/s12889-016-3532-9.
doi: 10.1186/s12889-016-3532-9
[10] 丁家波, 董浩. 动物布鲁氏菌病. 北京: 中国农业出版社, 2020.
DING J B, DONG H. Animal Brucellosis. Beijing: Chinese Agriculture Press, 2020. (in Chinese)
[11] GB/T 18646-2018. 动物布鲁氏菌病诊断技术. 2018.
GB/T 18646-2018. Diagnostic technology for animal brucellosis. 2018. (in Chinese)
[12] 朱良全, 王芳, 蒋卉, 冯宇, 张金亚, 张阁, 张振, 皮向成, 王楠, 毛开荣, 丁家波. 动物布鲁菌病补体结合试验诊断方法比较研究. 中国兽医学报, 2016, 36(2): 357-361, 368. doi: 10.16303/j.cnki.1005-4545.2016.02.33.
doi: 10.16303/j.cnki.1005-4545.2016.02.33
ZHU L Q, WANG F, JIANG H, FENG Y, ZHANG J Y, ZHANG G, ZHANG Z, PI X C, WANG N, MAO K R, DING J B. A comparative study on the complement fixation test for diagnosis of animal brucellosis. Chinese Journal of Veterinary Science, 2016, 36(2): 357-361, 368. doi: 10.16303/j.cnki.1005-4545.2016.02.33. (in Chinese)
doi: 10.16303/j.cnki.1005-4545.2016.02.33
[13] Officeinter national des epizooties. OIE Terrestrial Manual. World Organization for Animal Health, 2018.
[14] 王芳, 冯宇, 张阁, 蒋卉, 朱良全, 丁家波. 牛布鲁氏菌间接ELISA抗体检测方法的建立. 中国农业科学, 2016, 49(9): 1818-1825. doi: 10.3864/j.issn.0578-1752.2016.09.018.
doi: 10.3864/j.issn.0578-1752.2016.09.018
WANG F, FENG Y, ZHANG G, JIANG H, ZHU L Q, DING J B. Development of indirect ELISA for antibody of Brucella abortus. Scientia Agricultura Sinica, 2016, 49(9): 1818-1825. doi: 10.3864/j.issn.0578-1752.2016.09.018. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.09.018
[15] 农业部兽用生物制品规程委员会.中华人民共和国兽用生物制品规程. 化学工业出版社, 2000.
Veterinary Biological Products Regulation Committee of the Ministry of Agriculture. Rules of veterinary biological products of the people's Republic of China. Chemistry Industry Press, 2000. (in Chinese)
[16] 孙向彬, 贺亚玲, 袁俐, 王仙. 控制好补体活性的理化因素提高“补体结合试验”效果. 农垦医学, 2014, 36(3): 283-284. doi: 10.3969/j.issn.1008-1127.2014.03.033.
doi: 10.3969/j.issn.1008-1127.2014.03.033
SUN X B, HE Y L, YUAN L, WANG X. Controlling the physical and chemical factors of complement activity to improve the effect of complement fixation test. Journal of Nongken Medicine, 2014, 36(3): 283-284. doi: 10.3969/j.issn.1008-1127.2014.03.033. (in Chinese)
doi: 10.3969/j.issn.1008-1127.2014.03.033
[17] NEUBAUER H, SPRAGUE L D, ZACHARIA R, TOMASO H, AL DAHOUK S, WERNERY R, WERNERY U, SCHOLZ H C. Serodiagnosis of Burkholderia mallei infections in horses: state-of- the-art and perspectives. Journal of Veterinary Medicine Series B, 2005, 52(5): 201-205. doi: 10.1111/j.1439-0450.2005.00855.x.
doi: 10.1111/j.1439-0450.2005.00855.x.
[18] STEMSHORN B W, FORBES L B, EAGLESOME M D, NIELSEN K H, ROBERTSON F J, SAMAGH B S. A comparison of standard serological tests for the diagnosis of bovine brucellosis in Canada. Canadian Journal of Comparative Medicine, 1985, 49(4): 391-394.
[19] MATOPE G, MUMA J B, TOFT N, GORI E, LUND A, NIELSEN K, SKJERVE E. Evaluation of sensitivity and specificity of RBT, c-ELISA and fluorescence polarisation assay for diagnosis of brucellosis in cattle using latent class analysis. Veterinary Immunology and Immunopathology, 2011, 141(1/2): 58-63. doi: 10.1016/j.vetimm.2011.02.005.
doi: 10.1016/j.vetimm.2011.02.005
[20] PFUKENYI D M, MELETIS E, MODISE B, NDENGU M, KADZVITI F W, DIPUO K, MOESI K, KOSTOULAS P, MATOPE G. Evaluation of the sensitivity and specificity of the lateral flow assay, Rose Bengal test and the complement fixation test for the diagnosis of brucellosis in cattle using Bayesian latent class analysis. Preventive Veterinary Medicine, 2020, 181: 105075. doi: 10.1016/j.prevetmed.2020.105075.
doi: 10.1016/j.prevetmed.2020.105075
[21] NIELSEN K. Diagnosis of brucellosis by serology. Veterinary Microbiology, 2002, 90(1/2/3/4): 447-459. doi: 10.1016/S0378-1135(02)00229-8.
doi: 10.1016/S0378-1135(02)00229-8
[22] LAKEW A, HIKO A, ABRAHA A, HAILU S M. Sero-prevalence and community awareness on the risks associated with Livestock and Human brucellosis in selected districts of Fafan Zone of Ethiopian- Somali National Regional State. Veterinary and Animal Science, 2019, 7: 100047. doi: 10.1016/j.vas.2019.100047.
doi: 10.1016/j.vas.2019.100047
[23] SYLLA S, SIDIMÉ Y, SUN Y X, DOUMBOUYA S, CONG Y L. Seroprevalence investigation of bovine brucellosis in macenta and yomou, Guinea. Tropical Animal Health and Production, 2014, 46(7): 1185-1191. doi: 10.1007/s11250-014-0625-2.
doi: 10.1007/s11250-014-0625-2
[24] KHAN I, WIELER L H, MELZER F, GWIDA M, DE A SANTANA V L, DE SOUZA M M A, SAQIB M, ELSCHNER M C, NEUBAUER H. Comparative evaluation of three commercially available complement fixation test antigens for the diagnosis of glanders. Veterinary Record, 2011, 169(19): 495. doi: 10.1136/vr.d5410.
doi: 10.1136/vr.d5410
[25] KHAN I, WIELER L H, SAQIB M, MELZER F, SANTANA V L D A, NEUBAUER H, ELSCHNER M C. Effect of incubation temperature on the diagnostic sensitivity of the glanders complement fixation test. Revue Scientifique et Technique (International Office of Epizootics), 2014, 33(3): 869-875. doi: 10.20506/rst.33.3.2324.
doi: 10.20506/rst.33.3.2324
[26] 赵凤菊, 李井春, 于学武. 动物布鲁菌病补体结合试验的影响因素及应注意的问题. 畜牧与饲料科学, 2010, 31(9): 144-145. doi: 10.16003/j.cnki.issn1672-5190.2010.09.026.
doi: 10.16003/j.cnki.issn1672-5190.2010.09.026
ZHAO F J, LI J C, YU X W. Influencing factors and notable problems of complement fixation test for brucellosis of animals. Animal Husbandry and Feed Science, 2010, 31(9): 144-145. doi: 10.16003/j.cnki.issn1672-5190.2010.09.026. (in Chinese)
doi: 10.16003/j.cnki.issn1672-5190.2010.09.026
[27] ELSCHNER M, LAROUCAU K, SINGHA H, TRIPATHI B N, SAQIB M, GARDNER I, SAINI S, KUMAR S, EL-ADAWY H, MELZER F, KHAN I, MALIK P, SAUTER-LOUIS C, NEUBAUER H. Evaluation of the comparative accuracy of the complement fixation test, Western blot and five enzyme-linked immunosorbent assays for serodiagnosis of glanders. PLoS One, 2019, 14(4):e0214963.
[28] 沈红霞, 倪柏锋, 王彬, 虞一聪, 周炜, 周芷锦, 穆琳, 桂平雄, 赵灵燕. 动物布鲁氏菌病抗体补体结合试验与cELISA检测结果比较. 浙江畜牧兽医, 2021, 46(1): 1-4.
SHEN H X, NI B F, WANG B, YU Y C, ZHOU W, ZHOU Z J, MU L, GUI P X, ZHAO L Y. The comparison of the results of complement fixation test and cELISA for animal brucellosis antibody. Zhejiang Journal Animal Science and Veterinary Medicine, 2021, 46(1): 1-4. (in Chinese)
[29] CORRENTE M, DESARIO C, PARISI A, GRANDOLFO E, SCALTRITO D, VESCO G, COLAO V, BUONAVOGLIA D.Serological diagnosis of bovine brucellosis using B. melitensis strain B115. Journal of Microbiological Methods, 2015, 119: 106-109. doi: 10.1016/j.mimet.2015.10.012.
doi: 10.1016/j.mimet.2015.10.012
[30] 蒋卉, 彭小薇, 张阁, 冯宇, 张振, 孙翠丽, 朱良全, 丁家波. 绵羊红细胞敏感性对补体结合试验的最佳反应时间. 微生物学通报, 2016, 43(9): 2102-2104. doi: 10.13344/j.microbiol.china.151039.
doi: 10.13344/j.microbiol.china.151039
JIANG H, PENG X W, ZHANG G, FENG Y, ZHANG Z, SUN C L, ZHU L Q, DING J B. The optimum reaction time of sheep red blood cell sensitivity on complement fixation test. Microbiology China, 2016, 43(9): 2102-2104. doi: 10.13344/j.microbiol.china.151039. (in Chinese)
doi: 10.13344/j.microbiol.china.151039
[1] ZHANG WenXia, LI Pan, YIN Wen, CHEN GuiPing, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Effects of Multiple Green Manure After Wheat Combined with Different Levels of Nitrogen Fertilization on Wheat Yield, Grain Quality, and Nitrogen Utilization [J]. Scientia Agricultura Sinica, 2023, 56(17): 3317-3330.
[2] ZHAO KaiNan, WU JinZhi, HUANG Ming, LI YouJun, WANG HongTao, HUANG XiuLi, WU ShanWei, ZHANG Jun, ZHAO ZhiMing, ZHAO WenXin, LI ShuJing, LI Shuang, LI WenNa. Effects of Supplemental Irrigation After Regreening and Nitrogen Fertilizer Application Rates on Wheat Yield, Water and Nitrogen Use Efficiency in Dryland [J]. Scientia Agricultura Sinica, 2023, 56(17): 3383-3398.
[3] GUO Kui, ZHANG ZeNan, WANG YaoXin, LI ShuaiJie, CHU XiaoYu, GUO Wei, HU Zhe, WANG XiaoJun. Development and Application of a Mab-Based iELISA for the Detection of Antibodies Against African Horse Fever Virus [J]. Scientia Agricultura Sinica, 2023, 56(16): 3237-3246.
[4] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[5] CHAI ALi, YANG HongMin, WANG ShaoHua, ZHAO Kun, GAO Wei, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu. Effect of Humidity on Sporulation and Release of Corynespora cassiicola and Control Technology [J]. Scientia Agricultura Sinica, 2023, 56(15): 2907-2918.
[6] WANG Tao, LUO Rui, SUN Yuan, QIU HuaJi. Development Strategies and Application Prospects of African Swine Fever Vaccines: Feasibility and Probability [J]. Scientia Agricultura Sinica, 2023, 56(11): 2212-2222.
[7] LI YiLing, PENG XiHong, CHEN Ping, DU Qing, REN JunBo, YANG XueLi, LEI Lu, YONG TaiWen, YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[8] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[9] LI YaFei, SHI JiangLan, WU TianQi, WANG ShaoXia, LI YuNuo, QU ChunYan, LIU CongHui, NING Peng, TIAN XiaoHong. Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(3): 514-528.
[10] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[11] REN ZiQi, KANG YuJie, LI HaiZhen, WANG LianGang, MA HaoYun, LI Hui, WANG LiuYang, MEI XiangDong, NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Trachea atriplicis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4640-4650.
[12] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[13] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[14] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[15] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!