Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4640-4650.doi: 10.3864/j.issn.0578-1752.2022.23.006

• PLANT PROTECTION • Previous Articles     Next Articles

Synthesis and Bioactivity of Sex Pheromone Analogues of Trachea atriplicis

REN ZiQi1,2(),KANG YuJie3,LI HaiZhen4,WANG LianGang4,MA HaoYun1,LI Hui1,WANG LiuYang1,MEI XiangDong1,*(),NING Jun1,*()   

  1. 1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    2College of Life Sciences, Northeast Forestry University/Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040
    3Plant Protection Section, Pingdu Bureau of Agriculture and Rural Affairs, Qingdao 266799, Shandong
    4Qingdao Agricultural Technology Extension Center, Qingdao 266299, Shandong
  • Received:2022-07-13 Accepted:2022-08-14 Online:2022-12-01 Published:2022-12-06
  • Contact: XiangDong MEI,Jun NING E-mail:445921744@qq.com;xdmei@ippcaas.cn;jning@ippcaas.cn

Abstract:

【Background】 Trachea atriplicis is an important leaf-eating pest, which has caused great harm to agriculture and forestry in North China, East China, and other regions in recent years due to its increasing numbers and the level of hazards, especially posing a serious threat to the yield of crops such as buckwheat.【Objective】Based on the maternal structure (Z)-hexadec-11-en-1-yl acetate (Z11-16:Ac), which is the main component of the sex pheromone of T. atriplicis, six sex pheromone analogues with different bioactivities were synthesized. The aim was to open up a novel environment-friendly control strategy for the comprehensive treatment of T. atriplicis.【Method】 As the raw material, the sex pheromone precursor (Z)-hexadec-11-en-1-ol (Z11-16:OH) was used to react with an acid anhydride or acyl chloride under the action of an acid binding agent and catalyst. After being separated and purified by silica gel column chromatography, a total of six synthetic pheromone analogues were obtained, including M3 and M4, the sex pheromone analogues with carbamate polar groups, M5 and M6, the sex pheromone analogues with the unsaturated bond at the end of the polar group, and sex pheromone analogues M7 and M8 with halogen atom modification. The electrophysiological response values under direct stimulation of different doses with sex pheromone analogues were measured by the EAG test, and the biological activities of sex pheromone analogues were verified in field experiments conducted in Yanqing, Beijing in 2021.【Result】 The EAG test showed that analogues M1, M2, M6, M7, and M8 had significant dose-dependent relationships. In particular, T. atriplicis showed the strongest response to analogue M7, with a response value of 2.36 mV at the dose of 100 μg, which was 77.9% of that of the response value of Z11-16:Ac at the same dose. While there were significant differences (P<0.05) between the relative response values of M3-M5 and sex pheromone components Z11-16:Ac at the doses of 10-1 000 μg. The M5 displayed lowest EAG response and the highest relative response value was only 21.2% of the sex pheromone fraction. As shown in the field trials, the average capture amount of analogues M1 and M5 was 38.00 and 35.67 moths/trap/15 d at an addition of 1 μg, respectively, which was significantly different compared with the sex pheromone control. The analogue M7 trapped 29.67 moths/trap/15 d at an addition of 100 μg, which was also significantly higher than that of the sex pheromone control. The analogue M4 showed potential inhibitory activity against sex pheromone, and the average capture amount decreased gradually with the increase of its addition, the average capture amount was only 3.33 moths/trap/15 d at the dose of 1 000 μg.【Conclusion】 The EAG tests and field trials verified that the analogues M1, M5, and M7 showed significant synergistic activity and could be developed as synergists of sex pheromones. The analogue M4 showed significant inhibitory activity, which could be used as an inhibitor of sex pheromones. This study provides a necessary theoretical basis for the use of sex pheromone analogues to control T. atriplicis in a green way.

Key words: Trachea atriplicis, sex pheromone analogue, chemical synthesis, bioactivity, field application

Fig. 1

Synthetic routes of analogues M3 and M4"

Fig. 2

Synthetic routes of analogues M5 and M6"

Fig. 3

Synthetic routes of analogues M7 and M8"

Fig. 4

Monitoring population dynamics of T. atriplicis by sex pheromone"

Table 2

Field captures of T. atriplicis in traps baited with sex pheromone and analogues"

性信息素类似物
Sex pheromone analogue
平均诱蛾量/诱捕器/15 d The average number of trapped moths/trap/15 d
性信息素SP 0.1 μg 1 μg 10 μg 100 μg 1000 μg
M1 18.00±1.53bc 17.00±1.00c 38.00±2.08a 24.33±1.45b 19.33±1.45bc 12.67±0.88c
M2 9.00±1.53ab 14.00±2.31a 12.67±1.20ab 10.67±1.20ab 11.33±1.45ab 6.00±1.15b
M3 9.33±0.88ab 12.67±1.20a 10.00±1.15a 14.33±1.76a 8.67±1.33ab 4.00±1.00b
M4 16.67±0.88a 10.67±1.20b 11.33±1.86ab 9.33±1.45bc 4.33±0.33cd 3.33±0.33d
M5 11.67±1.20cd 18.00±1.15b 35.67±1.45a 15.67±1.20bcd 16.67±0.33bc 11.00±0.58d
M6 9.00±1.53a 9.00±1.15a 7.33±0.88a 4.67±1.76a 5.00±1.15a 4.00±1.00a
M7 12.67±1.76b 13.67±3.38b 23.00±1.15ab 20.33±3.84ab 29.67±1.86a 15.00±1.15b
M8 11.67±1.20abc 16.67±2.40a 12.67±1.86ab 8.33±0.33bc 7.00±1.00bc 5.33±0.88c

Fig. 5

Trapping effect of sex pheromone SP and added certain doses of analogues M1 and M5 in the field"

Table 1

The EAG response of male T. atriplicis to different doses of sex pheromone and analogues"

性信息素及类似物
Sex pheromone and analogue
EAG相对响应值EAG relative response value (mV)
0.01 μg 0.1 μg 1 μg 10 μg 100 μg 1000 μg
性信息素SP 0.10±0.02c 0.23±0.08c 0.71±0.18c 1.60±0.24b 3.03±0.13a 2.77±0.17a
M1 0.08±0.02d 0.11±0.04d 0.63±0.12c 0.99±0.06bc 1.24±0.10ab 1.67±0.15a
M2 0.11±0.02c 0.16±0.03c 0.33±0.03bc 0.52±0.09b 0.91±0.07a 1.11±0.06a
M3 0.07±0.02c 0.21±0.03bc 0.46±0.08b 0.85±0.09a 0.85±0.08a 0.83±0.04a
M4 0.11±0.01c 0.24±0.03bc 0.46±0.08bc 0.85±0.09a 0.85±0.08a 0.83±0.04a
M5 -0.06±0.01d 0.03±0cd 0.14±0.03c 0.09±0.01c 0.64±0.03a 0.50±0.05b
M6 0.08±0.02c 0.08±0.02c 0.43±0.08b 0.69±0.05b 1.24±0.10a 1.41±0.03a
M7 0.18±0.04cd -0.06±0.13d 0.83±0.10c 1.56±0.26b 2.36±0.17a 2.29±0.12a
M8 0.25±0d 0.26±0.03d 0.27±0.04d 0.72±0.08c 1.52±0.09b 2.22±0.10a
[1] CRAIK C. Mother Shipton’s little secret. Bulletin of the American Entomologists’ Society, 2018, 77(531): 260-266.
[2] DING J Q, FU W D, REARDON R, WU Y, ZHANG G L.Exploratory survey in China for potential insect biocontrol agents of mile-a-minute weed, Polygonum perfoliatum L., in eastern USA. Biological Control, 2004, 30(2): 487-495.
[3] FAROOQ S, REHMAN R U, PIRZADAH T B, MALIK B, DAR F A, TAHIR I. Cultivation, agronomic practices, and growth performance of buckwheat//Molecular Breeding and Nutritional Aspects of Buckwheat. Academic Press, 2016: 299-319.
[4] VELJKOVIĆ M. Contribution to the knowledge of butterfly and moth fauna (Insecta: Lepidoptera) of Gornje Plavnice, Bjelovar, Croatia - Result of a one year photographic study. Natura Croatica, 2019, 28(2): 345-358.
doi: 10.20302/NC.2019.28.24
[5] NOWACKI J, PAŁKA K. Noctuid moths (Lepidoptera: Noctuoidea: Nolidae, Erebidae, Noctuidae) of the Nowa Dęba Military training area in the Sandomierz Primeval Forest (south-eastern Poland). Fragmenta Faunistica, 2015, 58(1): 21-36.
doi: 10.3161/00159301FF2015.58.1.021
[6] SZANYI S, NAGY A, MOLNÁR A, KATONA K, TÓTH M, VARGA Z. Night-active Macroheterocera species in traps with synthetic attractants in the Velyka Dobron’ Game Reserve (Ukraine, Transcarpathia). Acta Zoologica Academiae Scientiarum Hungaricae, 2017, 63(1): 97-114.
doi: 10.17109/AZH.63.1.97.2017
[7] MIN H K, YOON S J, JUNG S H, LIM J T, RYU J W, NAM S C, CHO Y B. Insect diversity of Dadohae Marine National Park, Jeonnam Province, Korea. Journal of Korean Nature, 2009, 2(1): 19-25.
doi: 10.1016/S1976-8648(14)60034-7
[8] SAKAGAMI K, SUGIURA S. A diverse assemblage of moths feeding on aphid honeydew. Journal of Asia-Pacific Entomology, 2018, 21(1): 413-416.
doi: 10.1016/j.aspen.2018.01.019
[9] RICCUCCI M, LANZA B. Bats and insect pest control: A review. Vespertilio, 2014, 17: 161-169.
[10] SATO J J, OHTSUKI Y, NISHIURA N, MOURI K. DNA metabarcoding dietary analyses of the wood mouse Apodemus speciosus on Innoshima Island, Japan, and implications for primer choice. Mammal Research, 2022, 67(1): 109-122.
doi: 10.1007/s13364-021-00601-7
[11] CHOI J K, LEE J W. Five new records of the subfamily Campopleginae (Hymenoptera: Ichneumonidae) from South Korea. Animal Systematics, Evolution and Diversity, 2018, 34(1): 27-36.
[12] POLTAVSKY A N, MATOV A Y, IVLIEV P P. Heteroceran moths (Lepidoptera, Heterocera) of the Don River Delta. Entomological Review, 2009, 89(9): 1072-1081.
doi: 10.1134/S0013873809090085
[13] 马好运, 李慧, 王留洋, 翁爱珍, 赵红盈, 梅向东, 折冬梅, 宁君. 银纹夜蛾性信息素类似物的合成与活性研究. 现代农药, 2020, 19(5): 15-19.
MA H Y, LI H, WANG L Y, WENG A Z, ZHAO H Y, MEI X D, SHE D M, NING J. Synthesis and activity of sex pheromone analogues of Argyrogramma agnata (Staudinger). Modern Agrochemicals, 2020, 19(5): 15-19. (in Chinese)
[14] WEBER D C, MORRISON W R, KHRIMIAN A, RICE K B, LESKEY T C, RODRIGUEZ-SAONA C, NIELSEN A L, BLAAUW B R. Chemical ecology of Halyomorpha halys: Discoveries and applications. Journal of Pest Science, 2017, 90: 989-1008.
doi: 10.1007/s10340-017-0876-6
[15] MARTINAZZO J, BALLEN S C, STEFFENS J, STEFFENS C. Sensing of pheromones from Euschistus heros (F.) stink bugs by nanosensors. Sensors and Actuators Reports, 2022, 4: 100071.
doi: 10.1016/j.snr.2021.100071
[16] RENOU M, GUERRERO A. Insect parapheromones in olfaction research and semiochemical-based pest control strategies. Annual Review of Entomology, 2000, 45: 605-630.
pmid: 10761591
[17] 王安佳, 张开心, 梅向东, 高玉林, 张涛, 折冬梅, 宁君. 昆虫性信息素及其类似物干扰昆虫行为的机理和应用研究进展. 农药学学报, 2018, 20(4): 425-438.
WANG A J, ZHANG K X, MEI X D, GAO Y L, ZHANG T, SHE D M, NING J. Research progress on mechanisms and applications of insect mating behavior disruption by insect sex pheromones and analogues. Chinese Journal of Pesticide Science, 2018, 20(4): 425-438. (in Chinese)
[18] SOLARI P, CRNJAR R, FRONGIA A, SOLLAI G, SECCI F, SPIGA M, MASALA C, LISCIA A. Oxaspiropentane derivatives as effective sex pheromone analogues in the gypsy moth: Electrophysiological and behavioral evidence. Chemical Senses, 2007, 32(8): 755-763.
pmid: 17630413
[19] REDDY G V P, GUERRERO A. New pheromones and insect control strategies. Vitamins and Hormones, 2010, 83: 493-519.
doi: 10.1016/S0083-6729(10)83020-1 pmid: 20831959
[20] SVATOŠ A, KALINOVÁ B, BOREK V, VRKOČ J. Cydia medicaginis (Lepidoptera, Tortricidae) response to halogenated analogues of (E8, E10)-dodecadien-1-yl acetate. Acta Entomologica Bohemoslovaca, 1990, 87(5): 393-395.
[21] BENGTSSON M, RAUSCHER S, ARN H, SUN W C, PRESTWICH G D. Fluorine-substituted pheromone components affect the behavior of the grape berry moth. Experientia, 1990, 46(11/12): 1211-1213.
doi: 10.1007/BF01936940
[22] HOSKOVEC M, KALINOVÁ B, KONEČNÝ K, KOUTEK B, VRKOČ J. Structure-activity correlations among analogs of the currant clearwing moth pheromone. Journal of Chemical Ecology, 1993, 19(4): 735-750.
doi: 10.1007/BF00985005 pmid: 24249014
[23] 王洋, 刘红霞, 荆小院, 窦蕊, 宗彦平, 刘金龙. 两种鳞翅目螟蛾科昆虫性信息素组分的合成. 化学与生物工程, 2021, 38(2): 22-25.
WANG Y, LIU H X, JING X Y, DOU R, ZONG Y P, LIU J L. Synthesis of two kinds of insect sex pheromone components in Lepidoptera: Pyralidae. Chemistry and Bioengineering, 2021, 38(2): 22-25. (in Chinese)
[24] 李慧, 尹士采, 郭宗香, 马好运, 任梓齐, 折冬梅, 梅向东, 宁君. 宽胫夜蛾性信息素类似物的合成及其生物活性. 中国农业科学, 2022, 55(9): 1790-1799.
LI H, YIN S C, GUO Z X, MA H Y, REN Z Q, SHE D M, MEI X D, NING J. Synthesis and bioactivity of sex pheromone analogues of Protoschinia scutosa. Scientia Agricultura Sinica, 2022, 55(9): 1790-1799. (in Chinese)
[25] 郑丽霞, 吴兰花, 余玲, 吴伟坚, 魏洪义. 昆虫类信息素研究进展及应用前景. 植物保护学报, 2018, 45(6): 1185-1193.
ZHENG L X, WU L H, YU L, WU W J, WEI H Y. Advances in the research and application prospects of insect parapheromones. Journal of Plant Protection, 2018, 45(6): 1185-1193. (in Chinese)
[26] SHAO X, LI Z, QIAN X. Research and development of green pesticides in China//Recent Highlights in the Discovery and Optimization of Crop Protection Products. Academic Press, 2021: 39-64.
[27] ANDO T, YAMAMOTO M. Semiochemicals containing lepidopteran sex pheromones: Wonderland for a natural product chemist. Journal of Pesticide Science, 2020, 45(4): 191-205.
doi: 10.1584/jpestics.D20-046 pmid: 33304188
[28] WITZGALL P, KIRSCH P, CORK A. Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 2010, 36(1): 80-100.
doi: 10.1007/s10886-009-9737-y pmid: 20108027
[29] MILLAR J G. Polyene hydrocarbons and epoxides: A second major class of lepidopteran sex attractant pheromones. Annual Review of Entomology, 2000, 45: 575-604.
pmid: 10761590
[30] VICKERS N J. Pheromone communication in moths: Evolution, behavior, and application. Animal Behaviour, 2018, 135: 237-238.
doi: 10.1016/j.anbehav.2017.11.005
[31] YUVARAJ J K, CORCORAN J A, ANDERSSON M N, NEWCOMB R D, ANDERBRANT O, LÖFSTEDT C. Characterization of odorant receptors from a non-ditrysian moth, Eriocrania semipurpurella sheds light on the origin of sex pheromone receptors in Lepidoptera. Molecular Biology and Evolution, 2017, 34(11): 2733-2746.
doi: 10.1093/molbev/msx215
[32] WITZGALL P, BENGTSSON M, TRIMBLE R M. Sex pheromone of grape berry moth (Lepidoptera: Tortricidae). Environmental Entomology, 2000, 29(3): 433-436.
doi: 10.1603/0046-225X-29.3.433
[33] MUÑOZ L, BOSCH M P, BATLLORI L, ROSELL G, BOSCH D, GUERRERO A, AVILLA J. Synthesis of allylic trifluoromethyl ketones and their activity as inhibitors of the sex pheromone of the leopard moth, Zeuzera pyrina L. (Lepidoptera: Cossidae). Pest Management Science, 2011, 67(8): 956-964.
doi: 10.1002/ps.2139
[34] ALBANS K R, BAKER R, JONES O T, JUTSUM A R, TURNBULL M D. Inhibition of response of Heliothis virescens to its natural pheromone by antipheromones. Crop Protection, 1984, 3(4): 501-506.
doi: 10.1016/0261-2194(84)90031-0
[35] 董梦雅. 小菜蛾性信息素拮抗剂的合成及活性研究[D]. 北京: 中国农业科学院, 2016.
DONG M Y. Synthesis and activity evaluation of sex pheromone antagonist of Plutella xylostella[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[36] 杨利, 梁峰, 周翔, 吴成泰. N,N',N"-三(异丙基)-1,4,7-三氮杂环壬烷的合成改进. 化学试剂, 2006, 28(1): 51-52.
YANG L, LIANG F, ZHOU X, WU C T. Improvement in the synthesis of N,N',N"-tri (isopropyl)-1,4,7-triazacyclononane. Chemical Reagents, 2006, 28(1): 51-52. (in Chinese)
[37] 田志强, 孙丽娜, 李艳艳, 张怀江, 闫文涛, 岳强, 全林发, 仇贵生. 昆虫性信息素结合蛋白功能研究进展. 农学学报, 2017, 7(9): 14-20.
TIAN Z Q, SUN L N, LI Y Y, ZHANG H J, YAN W T, YUE Q, QUAN L F, QIU G S. Research progress of the function of sex pheromone binding protein in insects. Journal of Agriculture, 2017, 7(9): 14-20. (in Chinese)
[38] 王桂花, 吕宝乾, 金启安, 温海波, 彭正强, 易克贤, 章程辉. 几种植物气味挥发物与性信息素组合对棉铃虫触角电位反应的影响. 热带作物学报, 2013, 34(9): 1781-1785.
WANG G H, LÜ B Q, JIN Q A, WEN H B, PENG Z Q, YI K X, ZHANG C H. Effects of the combination of plant volatiles and sex pheromone to electroantennogram responses of Helicoverpa armigera. Chinese Journal of Tropical Crops, 2013, 34(9): 1781-1785. (in Chinese)
[39] YANG L, LIU Y, RICHOUX G M, BERNIER U R, LINTHICUM K J, BLOOMQUIST J R. Induction coil heating improves the efficiency of insect olfactory studies. Frontiers in Ecology and Evolution, 2019, 7: 247.
doi: 10.3389/fevo.2019.00247
[40] VANG L V, THY T T, HANH D K, LINH T P, YAMAMOTO M, ANDO T. Sex pheromone analysis and effective attraction of males of the cabbage webworm, Hellula undalis, inhabiting the Mekong Delta of Vietnam. Journal of Asia-Pacific Entomology, 2020, 23(4): 935-941.
doi: 10.1016/j.aspen.2020.08.002
[1] LI Hui,YIN ShiCai,GUO ZongXiang,MA HaoYun,REN ZiQi,SHE DongMei,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Protoschinia scutosa [J]. Scientia Agricultura Sinica, 2022, 55(9): 1790-1799.
[2] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[3] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[4] YIN Su-Xia, LIAO Mei-De, XU Han-Hong. Preparation of Photosensitive Protein Liposome and Its Bioactivity [J]. Scientia Agricultura Sinica, 2013, 46(1): 60-68.
[5] HE Yong-Sheng, CHEN Shu-Chi, WANG Hong, HAN Shuang-Yan, YANG Qiong, LIU Xi-Xia, DONG Jie-Xian, YANG Wu-Ying, SUN Yuan-Ming. Expression of Bombyx mori Acetylcholinesterase Gene bmace in Pichia pastoris GS115 and Analysis of Its Bioactivity [J]. Scientia Agricultura Sinica, 2012, 45(11): 2189-2198.
[6] YAN Ruo-qian,XIE Cai-hua,WU Zhi-ming,ZHANG Zhi-ling,LIU Guang-hui,LIU Mei-fen
. Study on the Expression and Bioactivity of Chicken Interferon α /Chicken Interleukin-2 Fusion Protein in vivo and in vitro
[J]. Scientia Agricultura Sinica, 2010, 43(3): 594-604 .
[7] ZHANG Yong-qiang,DING Wei,TIAN Li,ZHAO Zhi-mo. Acaricidal Bioactivity of Artemisia annua Extracts Against Panonychus citri (Acari: Tetranychidae)
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2217-2222 .
[8] WANG Hong-gang, WU Guan-yi, LI Hui-quan. Review of Base Research on Arbuscular Mycorrhiza and Its Field Application [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 3197-3204.
[9] . Expression and bioactivity of goat IL-18 mature protein [J]. Scientia Agricultura Sinica, 2007, 40(7): 1523-1527 .
[10] . Expression and characterization of Porcine Epidermal Growth Factor in Pichia Pastoris [J]. Scientia Agricultura Sinica, 2007, 40(11): 2593-2599 .
[11] . Fusion Expression of Duck Leptin Gene in Escherichia coli and Determination of Recombinant Protein Bioactivity [J]. Scientia Agricultura Sinica, 2007, 40(11): 2615-2620 .
[12] ,,,,,,,. In vitro Expression and Bioactivity of Chicken Interleukin-2 [J]. Scientia Agricultura Sinica, 2005, 38(05): 1034-1039 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!