Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (5): 990-1003.doi: 10.3864/j.issn.0578-1752.2020.05.011


The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation

ZHANG JiFeng1,2,WANG ZhenHua1,2(),ZHANG JinZhu1,DOU YunQing1,2,HOU YuSheng1   

  1. 1 College of Water & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang
    2 Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, Xinjiang
  • Received:2019-06-03 Accepted:2019-10-25 Online:2020-03-01 Published:2020-03-14
  • Contact: ZhenHua WANG


【Objective】Xinjiang has the largest area of saline-alkali land and planting base of processed tomatoes in China. In this paper, a two-year experiment in Xinjiang was carried to study the effects of different soil salinity and nitrogen application rate on the growth, physiological, yield and quality of processed tomato, and to obtain the rational nitrogen application rate and soil salinity range of processed tomato suitable for planting saline land in Xinjiang, so as to provide a scientific theoretical basis and technical approach for expanding tomato planting area and rational nitrogen application in Xinjiang. 【Method】This study was carried out in the Key Experimental Base of Modern Water-saving Irrigation Corps of Shihezi University in 2017 and 2018. The local main tomato cultivar “3166” was taken as the experimental material. This experiment was set in four levels of soil salinity: 1.5, 4.0, 7.0 and 10.0 g·kg -1 and four levels of nitrogen: 201, 166, 131 and 96 kg N·hm -2 in 2017. Based on the experiment in 2017, a soil salinity of 10.0 g·kg -1 were removed and a soil salinity of 5.0 g·kg -1 and a nitrogen application rate of 0 were added in 2018. The chlorophyll fluorescence parameters, yield and quality of processed tomatoes were analyzed. 【Result】Our results indicated that under the interaction of nitrogen and soil salinity, the fluorescence parameter and yield of processed tomatoes showed a complex change. Firstly, most of the fluorescence parameters and yields were more dominated by soil salt than nitrogen. At the same nitrogen level, soil salinity of 7.0 g·kg -1 and 10.0 g·kg -1 inhibited the fluorescence index of processed tomatoes mostly. At low salinity level, medium and high nitrogen application of 166 kg N·hm -2 promoted the fluorescence index of processed tomatoes the most, followed by 201 kg N·hm -2, and the worst was 131 kg N·hm -2. At medium and high salt level, 96 kg N·hm -2 had the best promotion degree for processed tomato, followed by no nitrogen level. At the high salt application rate, low nitrogen treatment was better than the high nitrogen treatment to improve tomato yield. The fresh fruit yield of processed tomato was generally consistent with the law of “the higher the salt, the lower the yield”. The yield of low-nitrogen and high-salt treatment was significantly higher than other yields with same salinity levels of different nitrogen. Moreover, it was found that salinity had a stronger effect on tomato quality than nitrogen. Soluble solids, VC, soluble sugar and titratable acid increased gradually with the increase of soil salt content. The maximum sugar-acid ratio appeared in low salinity treatment. Moreover, it was found that salinity had a stronger effect on tomato quality than nitrogen, and the interaction between them had no significant effect on the quality of processed tomatoes. Summary by analysis, the reasonable range of nitrogen application and soil salinity content of processed tomato were obtained. 【Conclusion】In the soil with high salinity, the yield of processed tomatoes could be increased by applying a small amount of nitrogen. The reasonable range of nitrogen application and the range of soil salt content for the relative optimal yield and quality of processed tomatoes were N: 98.12-119.60 kg·hm -2, S: 3.57-5.58 g·kg -1.

Key words: processed tomato, drip irrigation under film, photosynthetic fluorescence parameters, yield, quality, optimal interval, nitrogen application, soil salinity

Fig. 1

Weather data in 2017 and 2018"

Table 1

Soil physical and chemical properties (0-40 cm average value)"

Soil texture
Dry bulk density (g·cm-3)
Total N
Total P
Total K
Available P (mg·kg-1)
Available K (mg·kg-1)
Field water holding capacity (%)
2017 壤土Loam 1.29 0.58 0.82 7.1 29.24 418.59 30.65
2018 壤土Loam 1.32 0.63 0.77 8.0 31.22 415.31 28.43

Table 2

Irrigation and fertilizer design of 2017-2018"

Growth stage
Date (M-d)
Irrigation treatment
Fertilization treatment
Irrigation volume (mm)
Irrigation frequency
氮素Nitrogen (g/pot) 磷酸一铵
NH4H2PO4 (g/pot)
KCl (g/pot)
N1 N2 N3 N4
2017 苗期 Seedling period 05-03—05-31 50 1 0.60 0.49 0.39 0.28 0.67 0.67 1
Blooming and fruit period
06-01—06-21 150 3 1.79 1.48 1.17 0.85 2 2 3
Enlargement period
06-22—07-31 200 4 2.38 1.97 1.55 1.15 2.68 2.68 4
成熟期 Mature period 08-01—08-20 50 1
The whole growth period
450 9 4.77 3.94 3.11 2.28 5.35 5.35 8
2018 苗期 Seedling period 04-30—05-27 50 1 0.60 0.49 0.39 0.28 0.67 0.67 1
Blooming and fruit period
05-28—06-22 150 3 1.79 1.48 1.17 0.85 2 2 3
Enlargement period
06-23—07-26 200 4 2.38 1.97 1.55 1.15 2.68 2.68 4
成熟期 Mature period 07-27—08-15 50 1
The whole growth period
450 9 4.77 3.94 3.11 2.28 5.35 5.35 8

Table 3

Soil salt content gradient design"

2017 2018
Salt content (g·kg-1)
Salt content (g·kg-1)
CK 1.5 CK 1.5
S1 4.0 S1 4.0
S2 7.0 SS2 5.0
S3 10.0 SS3 7.0

Fig. 2

Effects of nitrogen application rate and soil salinity on the fluorescence parameters of processed tomato in 2017 The 05-20, 06-16, 07-25, and 08-15 in the legend were the monitoring dates of different growth stages, namely the seedling period, the blooming and fruit period, the enlargement period and the mature period. The same as below"


Effects of nitrogen application rate and soil salinity on the fluorescence parameters of processed tomato in 2018 and the correlations of the fluorescence parameters"

Table 4

Changes in yield and quality of tomato treated with different treatments"

Fresh fruit yield
Fruit mean weight (g)
Total soluble solids (%)
Vitamin C
Soluble sugar content (%)
Titrable acidity (%)
Sugar to acid ratio (%)
2017 N1CK 2.31±0.12ab 33.60±0.28d 7.34±0.07h 15.74±0.08i 7.05±0.11j 0.42±0.02j 16.64±0.01g
N1S1 2.33±0.04a 35.05±0.14c 13.86±0.08g 18.55±0.09ef 10.91±0.09g 0.61±0.01g 17.78±0.08d
N1S2 0.77±0.08g 23.31±0.17i 18.32±0.06a 21.89±0.15a 13.79±0.06a 0.90±0.03d 15.26±0.01j
N1S3 1.05±0.10de 25.62±0.16g 18.04±0.04c 19.74±0.11cd 11.89±0.13d 1.33±0.01a 8.92±0.07k
N2CK 2.35±0.13a 35.51±0.02b 7.35±7.00h 15.76±0.07i 7.01±0.14j 0.41±0.02jk 16.95±0.11f
N2S1 2.38±0.11a 35.07±0.13c 13.85±0.11g 18.53±0.09ef 10.86±0.15gh 0.60±0.04gh 18.00±0.06c
N2S2 1.90±0.07c 27.85±0.06f 18.26±0.07ab 21.84±0.11a 13.74±0.04ab 0.89±0.01de 15.38±0.07ij
N2S3 1.13±0.09d 24.74±0.13h 17.94±0.06d 19.69±0.03d 11.84±0.06de 1.32±0.03ab 8.95±0.05k
N3CK 2.31±0.12ab 34.97±0.11c 7.22±0.12i 16.17±0.05h 6.96±0.07jk 0.40±0.01k 17.25±0.13e
N3S1 2.34±0.17a 35.08±0.04c 13.85±0.11g 18.35±0.11fg 10.81±0.06hi 0.59±0.02hi 18.21±0.07b
N3S2 0.92±0.05ef 22.28±0.10k 18.26±0.09ab 20.95±0.13b 13.69±0.04bc 0.88±0.04ef 15.50±0.05hi
N3S3 0.88±0.08fg 22.54±0.22j 17.76±0.12e 19.45±0.14d 11.79±0.03ef 1.31±0.06bc 8.98±0.07k
N4CK 2.34±0.12a 35.72±0.11ab 7.24±0.14i 15.66±0.13i 6.91±0.15k 0.38±0.01l 18.02±0.13c
N4S1 2.36±0.09a 36.24±0.25a 13.84±0.11g 18.00±0.07g 10.76±0.10i 0.58±0.01i 18.44±0.11a
N4S2 2.18±0.13b 33.35±0.09e 18.19±0.07b 20.12±0.09c 13.64±0.07c 0.87±0.02f 15.62±0.05h
N4S3 1.97±0.05c 27.83±0.02f 17.55±0.08f 18.92±0.14e 11.74±0.08f 1.30±0.03c 9.01±0.06k
2018 N0CK 2.57±0.09cdef 37.77±0.04h 6.09±0.0.7i 15.80±0.16i 7.68±0.06m 0.48±0.01l 16.17±0.05b
N0S1 2.62±0.03abcd 38.64±0.05g 14.47±0.08g 18.56±0.05h 11.25±0.02j 0.68±0.02i 16.45±0.03a
N0S2 2.12±0.04i 32.45±0.08k 16.90±0.06e 19.08±0.09g 13.06±0.20h 0.83±0.02f 15.66±0.04cd
N0S3 2.15±0.08i 33.52±0.16j 19.04±0.09c 21.91±0.14b 13.69±0.21d 1.12±0.01c 12.18±0.07g
N1CK 2.71±0.07abcd 40.72±0.14c 7.11±0.11h 15.86±0.21i 7.78±0.05k 0.52±0.03j 15.11±0.08ef
N1S1 2.74±0.07abc 41.04±0.11b 14.60±0.12f 19.24±0.07e 11.36±0.04i 0.73±0.04g 15.48±0.09d
N1S2 2.25±0.09hi 34.35±0.04i 17.04±0.14d 20.36±0.08c 13.17±0.11e 0.88±0.04d 14.89±0.11f
N1S3 1.69±0.50k 26.71±0.08n 19.25±0.07a 21.97±0.17ab 13.79±0.13a 1.17±0.05a 11.74±0.12i
N2CK 2.75±0.10ab 41.51±0.09a 7.08±0.06h 15.85±0.16i 7.75±0.11kl 0.51±0.04j 15.18±0.07e
N2S1 2.79±0.11a 41.61±0.15a 14.55±0.08fg 19.20±0.04ef 11.33±0.15i 0.72±0.03gh 15.65±0.04cd
N2S2 2.38±0.08gh 34.75±0.14i 17.00±0.11d 20.32±0.11cd 13.13±0.05ef 0.87±0.04de 15.02±0.05ef
N2S3 1.87±0.07j 27.48±0.1m 19.20±0.08ab 22.02±0.18a 13.77±0.06ab 1.16±0.06ab 11.83±0.06hi
N3CK 2.55±0.01def 40.34±0.11d 7.04±0.07h 15.83±0.14i 7.73±0.12lm 0.50±0.01k 15.61±0.12cd
N3S1 2.59±0.03bcde 39.38±0.11f 14.51±0.03fg 19.17±0.08efg 11.27±0.13j 0.71±0.02hi 15.78±0.10c
N3S2 2.09±0.11i 29.97±0.18l 16.97±0.07de 20.28±0.07cd 13.11±0.08fg 0.86±0.03e 15.17±0.07e
N3S3 2.18±0.08i 34.50±0.10i 19.16±0.09ab 21.98±0.14ab 13.74±0.04bc 1.15±0.03b 11.90±0.03hi
N4CK 2.63±0.06abcd 39.61±0.28e 6.11±0.08i 15.82±0.06i 7.69±0.12m 0.49±0.01kl 15.82±0.09c
N4S1 2.68±0.07abcd 39.64±0.17e 14.47±0.01g 19.12±0.18fg 11.27±0.16j 0.69±0.03i 16.24±0.01ab
N4S2 2.41±0.04fgh 38.76±0.11g 16.95±0.05de 20.24±0.14d 13.08±0.14gh 0.84±0.02f 15.49±0.04d
N4S3 2.45±0.12efg 39.74±0.11e 19.11±0.11bc 21.94±0.16ab 13.70±0.11cd 1.13±0.01c 12.08±0.07gh
双因素方差分析(F值检验)Two-Way ANOVA (F value test)
2017 N 179.40** 1423.71* 28.91** 30.25** 18.57** 63.10** 101.82**
S 705.67** 10683.32 1.12E5** 1092.12* 3.75E4** 5.14E4** 2.48E4**
N×S 69.96** 475.11** 10.00** 7.29** 0.02 0.51 21.24**
2018 N 9.99** 1256.70* 136.18** 215.35** 31.48** 83.36** 64.35**
S 160.28** 9468.99* 1.61E5** 3.65E4* 1.56E5** 2.03E4** 2405.46**
N×S 11.13** 1280.21* 63.56** 69.48** 0.37 0.37 2.28

Fig. 4

The relative value of processed tomato yield, soluble solids and sugar to acid ratio in 2017-2018"

Fig. 5

Rational nitrogen application and soil salt content interval based on relative optimal yield and quality"

[1] 王新, 马富裕, 刁明 . 不同施氮水平下加工番茄植株生长和氮素积累与利用率的动态模拟. 应用生态学报, 2014,25(4):1043-1050.
WANG X, MA F Y, DIAO M . Dynamics simulation on plant growth, N accumulation and utilization of processing tomato at different N fertilization rates. Chinese Journal of Applied Ecology, 2014,25(4):1043-1050. (in Chinese)
[2] REN Z, LI Y, FANG W . Evaluation of allyl isothiocyanate as a soil fumigant against soil-borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in China: Evaluation of allyl isothiocyanate as a soil fumigant against soil-borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in C. Pest Management Science, 2018,74(9):2146-2155.
[3] Ministry of Agriculture . China Agriculture Yearbook. Beijing: China Agriculture Press, 2015: 207.
[4] AKHTAR S S, ANDERSEN M N, LIU F . Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 2015,158:61-68.
[5] DEBEZ A, KOYRO H W, GRIGNON C, ABDELLY C, HUCHZERMEYER B . Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. Physiologia Plantarum, 2008,133(2):373-385.
[6] YANG A, AKHTAR S S, IQBAL S, AMJAD M, NAVEED M, ZAHIR Z A . Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Functional Plant Biology, 2016,43(7):632.
[7] CHEN W, HOU Z, WU L . Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agricultural Water Management, 2010,97(12):2001-2008.
[8] 郗金标, 张福锁, 毛达如, 田长彦, 宋玉民, 刘德玺 . 新疆盐渍土分布与盐生植物资源. 土壤通报, 2005,36(3):299-303.
XI J B, ZHANG F S, MAO D R, TIAN C Y, SONG Y M, LIU D X . Saline-soil distribution and halophyte resources in Xinjiang. Chinese Journal of Soil Science, 2005,36(3):299-303. (in Chinese)
[9] WANG R, KANG Y, WAN S . Effects of different drip irrigation regimes on saline-sodic soil nutrients and cotton yield in an arid region of Northwest China. Agricultural Water Management, 2015,153:1-8.
[10] LIU H, WANG X, ZHANG X, ZHANG L, LI Y, HUANG G . Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao Irrigation District of China. Agricultural Water Management, 2016,179:144-157.
[11] GRATTAN S R, GRIEVE C M . Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 1998,78(1/4):127-157.
[12] MUNNS R . Comparative physiology of salt and water stress. Plant, Cell and Environment, 2002,25(2):239-250.
[13] MUNNS R . Genes and salt tolerance: bringing them together. New Phytologist, 2005,167(3):645-663.
[14] 汪顺义, 刘庆, 史衍玺, 李欢 . 氮钾配施对甘薯光合产物积累及分配的影响. 中国农业科学, 2017,50(14):2706-2716.
WANG S Y, LIU Q, SHI Y X, LI H . Interactive effects of nitrogen and potassium on photosynthesis product distribution and accumulation of sweet potato. Scientia Agricultura Sinica, 2017,50(14):2706-2716. (in Chinese)
[15] PARIDA A K, DAS A B . Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 2005,60(3):324-349.
[16] 李建兵, 黄冠华 . 盐分对粉壤土氮转化的影响. 环境科学研究, 2008(5):98-103.
LI J B, HUANG G H . Pilot study of salinity (NaCl) affecting nitrogen transformation in silt loam soil. Research of Environmental Sciences, 2008(5):98-103. (in Chinese)
[17] REDDY N, CROHN D M . Effects of soil salinity and carbon availability from organic amendments on nitrous oxide emissions. Geoderma, 2014,235/236(4):363-371.
[18] 王丽英, 武雪萍, 张彦才, 李若楠, 陈丽莉, 陈清 . 适宜施氮量保证滴灌日光温室黄瓜番茄产量降低土壤盐分及氮残留. 农业工程学报, 2015,31(17):91-98.
WANG L Y, WU X P, ZHANG Y C, LI R N, CHEN L L, CHEN Q . Optimal nitrogen application rate to ensure cucumber and tomato yield with drip irrigation in greenhouse and to reduce soil salinity and nitrate residue. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(17):91-98. (in Chinese)
[19] 邢英英, 张富仓, 吴立峰, 范军亮, 张燕, 李静 . 基于番茄产量品质水肥利用效率确定适宜滴灌灌水施肥量. 农业工程学报, 2015,31(z1):110-121.
XING Y Y, ZHANG F C, WU L F, FAN J L, ZHANG Y, LI J . Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(z1):110-121. (in Chinese)
[20] 徐坤范, 李明玉, 艾希珍 . 氮对日光温室黄瓜呈味物质、硝酸盐含量及产量的影响. 植物营养与肥料学报, 2006(5):121-125.
XU K F, LI M Y, AI X Z . Effect of nitrogen on taste compounds, nitrate and yield of cucumber in solar-greenhouse. Plant Nutrition and Fertilizer Science, 2006(5):121-125. (in Chinese)
[21] 张鹏, 蒋静, 马娟娟, 杨治平, 王永亮 . 不同水氮处理对盐渍土水氮盐变化和燕麦产量的影响. 灌溉排水学报, 2018,37(5):1-5.
ZHANG P, JIANG J, MA J J, YANG Z P, WANG Y L . Effects of different irrigations and nitrogen applications on distribution of water, nitrogen and salt in saline soil as well as the yield of oat. Journal of Irrigation and Drainage, 2018,37(5):1-5. (in Chinese)
[22] PERCIVAL G C, FRASER G A . Measurement of the salinity and freezing tolerance of Crataegus genotypes using chlorophyll fluorescence. Journal of Arboriculture, 2001,27(5):233-245.
[23] 尹海龙, 田长彦 . 氮调控对盐环境下甜菜功能叶光系统Ⅱ荧光特性的影响. 植物生态学报, 2013,37(2):122-131.
YIN H L, TIAN C Y . Effects of nitrogen regulation on photosystem II chlorophyll fluorescence characteristics of functional leaves in sugar beet (Beta vulgaris) under salt environment. Chinese Journal of Plant Ecology, 2013,37(2):122-131. (in Chinese)
[24] MOHAMMAD P, PRESS C. Handbook of Plant and Crop Physiology, 3rd ed. United States, CRC Press, 2002.
[25] 段骅, 傅亮, 剧成欣, 刘立军, 杨建昌 . 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013,27(6):591-602.
DUAN H, FU L, JU C X, LIU L J, YANG J C . Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chinese Journal of Rice Science, 2013,27(6):591-602. (in Chinese)
[26] 王雨, 唐晓清, 施晟璐, 王康才 . 不同施氮水平对盐胁迫下苗期菘蓝生理特性及根中(R,S)-告依春含量的影响. 核农学报, 2017,31(2):394-401.
WANG Y, TANG X Q, SHI S L, WANG K C . Effects of different nitrogen levels on physiological characteristics and epigoitrin content in root of Isatis indigotica Fort. at seedling stage under salt stress. Journal of Nuclear Agricultural Sciences, 2017,31(2):394-401. (in Chinese)
[27] 肖云华, 赵雪玲, 王康才, 石馨玫, 唐晓清 . 不同氮素形态和浓度对大青叶生物量与生物碱类成分的影响. 中国中药杂志, 2013,38(17):2755-2760.
XIAO Y H, ZHAO X L, WANG K C, SHI Q M, TANG X Q . Effect of different nitrogen forms and concentrations on biomass and alkaloids of Isatidis Folium. China Journal of Chinese Materia Medica, 2013,38(17):2755-2760. (in Chinese)
[28] CLELAND E E, HARPOLE W S . Nitrogen enrichment and plant communities. Annals of the New York Academy of Sciences, 2010,1195(1):46-61.
[29] SALA O E, CHAPIN F S, ARMESTO J J, BERLOW E, BLOOMFIELD J . Global biodiversity scenarios for the Year 2100. Science, 2000,287(5459):1770.
[30] 罗家雄 . 新疆垦区盐碱地改良. 北京: 水利电力出版社, 1985: 33.
LUO J X. Amelioration of Saline-Alkali Soil in Xinjiang Irrigation District. Beijing: Water Conservancy and Electric Power Press, 1985: 33. (in Chinese)
[31] ZHANG T Q, TAN C S, LIU K, DRURY C F, PAPADOPOULOS A. P, WARNER J. . Yield and economic assessments of fertilizer nitrogen and phosphorus for processing tomato with drip fertigation. Agronomy Journal, 2010,102(2):774.
[32] HANSON B . Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agricultural Water Management, 2004,68(1):1-17.
[33] 王振华, 朱延凯, 张金珠, 李文昊, 扁青永 . 水氮调控对轻度盐化土滴灌棉花生理特性与产量的影响. 农业机械学报, 2018,49(6):296-308.
WANG Z H, ZHU Y K, ZHANG J Z, LI W H, BIAN Q Y . Effects of water and nitrogen fertilization on physiological characteristics and yield of cotton under drip irrigation in mildly salinized soil. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(6):296-308. (in Chinese)
[34] 岳冬 . 番茄果实主要风味特征成分测定及品质形成机理研究[D]. 南京: 南京农业大学, 2015.
YUE D . Measure the main compositions of flavor and characteristics and research the formation of features quality of tomato fruit[D]. Nanjing: Nanjing Agricultural University, 2015. ( in Chinese)
[35] 范作卿, 邹德庆, 王娜, 朱琳, 郭光 . 改良直接滴定法测定桑椹酒中总糖含量. 山东农业科学, 2016,48(11):143-145.
FAN Z Q, ZOU D Q, WANG N, ZHU L, GUO G . Determination of total sugar content in mulberry wine with improved direct titration method. Shandong Agricultural Sciences, 2016,48(11):143-145. (in Chinese)
[36] JOHNSTONE P R, HARTZ T K, LESTRANGE M . Managing fruit soluble solids with late-season deficit irrigation in drip- irrigated processing tomato production. Hortscience A Publication of the American Society for Horticultural Science, 2005,40(6):1857-1861.
[37] HUANG Y, LU R, HU D, CHEN K . Quality assessment of tomato fruit by optical absorption and scattering properties. Postharvest Biology and Technology, 2018,143:78-85.
[38] GRIERSON D, KADER A A . The Tomato Crop. A Scientific Basis for Improvement . London, Chapman and Hall Ltd, 1986: 241-280.
[39] KAZENIAC S J, HALL R M . Flavor chemistry of tomato volatiles. Journal of Food Science, 1970,35(5):12.
[40] MIKI N . Effects of chemical components on the browning of tomato juice. Agricultural and Biological Chemistry, 1974,38(3):499-506.
[41] GOULD W A . Quality evaluation of processed tomato juice. Journal of Agricultural and Food Chemistry, 1978,26(5):1006-1011.
[42] CHUNG T Y, CHAYASE F, KATO H . Volatile components of ripe tomatoes and their juices, purees and pastes. Agricultural and Biological Chemistry, 1983,47(2):343-351.
[43] BUTTERY R G, TERANISHI R, FLATH R A, LING L C . Identification of additional tomato paste volatiles. Journal of Agricultural and Food Chemistry, 1990,38(3):792-795.
[44] MIN S, ZHANG Q H . Effects of commercial‐scale pulsed electric field processing on flavor and color of tomato juice. Journal of Food Science, 2003,68(5):7.
[45] 曾文治, 徐驰, 黄介生, 伍靖伟, 高真 . 土壤盐分与施氮量交互作用对葵花生长的影响. 农业工程学报, 2014,30(3):86-94.
ZENG W Z, XU C, HUANG J S, WU J W, GAO Z . Interactive effect of salinity and nitrogen application on sunflower growth. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(3):86-94. (in Chinese)
[46] 杨凤军, 李天来, 臧忠婧 . 等渗NaCl、干旱胁迫对番茄幼苗光合特性及叶绿体超微结构的影响. 应用生态学报, 2017,28(8):2588-2596.
YANG F J, LI T L, ZANG Z J . Effects of isotonic NaCl and drought stress on photosynthetic characteristics and chloroplast ultrastructure of tomato seedlings. Chinese Journal of Applied Ecology, 2017,28(8):2588-2596. (in Chinese)
[47] ANTONOPOULOS, VASSILIS Z . Simulation of water and nitrogen balances of irrigated and fertilized corn-crop soil. Journal of Irrigation and Drainage Engineering, 2001,127(2):77-83.
[48] SOBHANI G, GOLCHIN A, SHEKARI F . Effects of different levels of nitrogen and induced-NaCl stress on yield and growth indices of tomato. Journal of Science & Technology of Greenhouse Culture, 2014,5(3):49-63.
[49] CAMPOS C A B, DANTAS F P, RAJ G H, FAVARO F B, CIRA G B, APARECIDA C S F . Yield and fruit quality of industrial tomato under saline irrigation. Scientia Agricola, 2006,63(2):146-52.
[50] KEUTGEN A J, PAWELZIK E . Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry, 2008,111(3):642-647.
[51] YURTSEVEN E, KESMEZ G D, ÜNLÜKARA A . The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central Anatolian tomato species (Lycopersicon esculantum). Agricultural Water Management, 2005,78(1/2):130-135.
[52] SONNEVELD C, VAN DER BURG A M M. Sodium chloride salinity in fruit vegetable crops in soilless culture. Netherlands Journal of Agricultural Science, 1991,39:115-122.
[53] CUARTERO J, FERNÁNDEZ-MUÑOZ R . Tomato and salinity. Scientia Horticulturae, 1998,78(s 1/4):83-125.
[54] ELTEZ R Z, TÜZEL Y, GÜL A, TÜZEL I.H, DUYAR H. Effects of different EC levels of nutrient solution on greenhouse tomato growing. Acta Horticulturae, 2002,560(573):443-448.
[55] CORNISH P . Use of high electrical conductivity of nutrient solution to improve the quality of salad tomatoes (Lycopersicon esculentum) grown in hydroponic culture. Australian Journal of Experimental Agriculture, 1992,32(4):513-520.
[56] PETERSEN K K, WILLUMSEN J, KAACK K . Composition and taste of tomato as affected by increased salinity and different salinity sources. Journal of Horticultural Science and Biotechnology, 1998,73(2):205-215.
[57] TUZEL I H, TUZEL Y, GUL A, ELTEZ R Z . Effects of EC level of the nutrient solution on yield and fruit quality of tomatoes. Acta Horticulturae, 2001,559(2):587-592.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
Full text



No Suggested Reading articles found!