Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (5): 977-989.doi: 10.3864/j.issn.0578-1752.2020.05.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield

ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao(),ZHANG YuLong   

  1. College of Land and Environment, Shenyang Agricultural University/Northeast Key Laboratory of Conservation and Improvement of Cultivated (Shenyang) Ministry of Agriculture and Rural Affairs/ National Engineering Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866
  • Received:2019-06-03 Accepted:2019-11-12 Online:2020-03-01 Published:2020-03-14
  • Contact: HongTao ZOU E-mail:zouhongtao2001@163.com

Abstract:

【Objective】 Straw returning is an important technical means to improve soil fertility, increase soil organic matter and improve soil structure. However, previous studies have shown that straw returning can accelerate the emission of greenhouse gases in soil and increase greenhouse effect. Through the study of greenhouse gas emission characteristics and maize yield of farmland soil under different straw returning depths, the optimum returning depths were determined in this study, in order to provide scientific basis for rational utilization of straw, increase crop yield and realize sustainable agricultural development. 【Method】 In the field micro-plot experiment, maize was used as the test crop, and four returning depths were set up, which were 0-10 cm (T1), 10-20 cm (T2), 20-30 cm (T3) and 30-40 cm (T4), respectively. At the same time, the non-returning treatment was used as the control (CK), with a total of five treatments. Static box-gas chromatography was used to determine the greenhouse gases (CO2, CH4, N2O) emission characteristics under different returning depths in whole maize growing season, and yield and yield components at maturity were measured. 【Result】 (1) During the whole maize growing season, both CO2 and N2O showed emission, but CH4 showed absorption. The cumulative emission of CO2 was the highest under T3 treatment, which increased by 28.6% significantly compared with CK. The increase rate of cumulative emission of CO2 under T4 treatment was the least, which was significantly increased by 17.1% compared with CK (P<0.05), but the difference between T1 and T4 treatment was not significant; the cumulative emission of N2O was the highest under T2 treatment. Compared with CK, the cumulative amount of N2O increased significantly by 111.3%, the increase rate under T4 treatment was the least, and the CK increased significantly by 12.8% (P<0.05). However, CH4 showed absorption, and the absorption capacity of CH4 in farmland soil was reduced after straw returning; the absorption capacity was CK treatment>T4 treatment>T1 treatment>T3 treatment>T2 treatment, and there were significant differences between treatments and CK (P<0.05). (2) Compared with the control, the yield of maize in each treatment increased significantly, and the yield increased by 5.6%-20.8% (P<0.05). However, there were no significant difference in ear length, ear diameter and grain number between treatments. When the straw returned to 30-40 cm, the yield was the highest, which increased by 20.76% than that under CK, and it indicated that straw returning had an important effect on improving soil fertility and increasing crop yield. (3) According to the comprehensive greenhouse gas effect (GWP) and greenhouse gas emission intensity (GHGI), on the scale of 100 years, GWP showed T2 treatment>T3 treatment>T1 treatment>T4 treatment>CK treatment, while GHGI showed T2 treatment>T3 treatment>T1 treatment>CK treatment>T4 treatment. Compared with CK, all treatments increased the comprehensive greenhouse gas effect, while T4 treatment reduced greenhouse gas emission intensity in maize season, indicating that straw returning to 30-40 cm could alleviate the global warming trend to a certain extent. 【Conclusion】 Straw returning could increase CO2 and N2O emissions significantly, but increase the absorption capacity of CH4. The straw returning to 30-40 cm could reduce the global warming potential and the intensity of greenhouse gas emissions, and increase the maize yield significantly. Therefore, in order to simultaneously achieve higher maize yield and lower greenhouse gas emission intensity, straw returning to 30-40 cm was a more reasonable way of soil improvement and fertilization.

Key words: greenhouse gases, straw returning depths, emission flux, maize yield, global warming potential

Table 1

Basic properties of soils tested in different depths"

土壤深度
Soil depth (cm)
pH 容重
Density (g·cm-3)
有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
碱解氮
Available N (mg·kg-1)
0-10 7.07 1.12 26.32 0.74 138.68
10-20 6.71 1.45 31.63 0.83 153.50
20-30 6.64 1.52 21.09 0.70 95.42
30-40 6.49 1.64 17.67 0.67 92.46

Fig. 1

Changes of soil temperature and moisture during maize growing season"

Fig. 2

Dynamics of CO2 emission fluxes of different treatments (Arrows for rainfall)"

Table 2

Cumulative emissions of greenhouse gases with different depths of straw returning"

处理
Treatment
CO2累积排放量
Total cumulative emission of CO2
(kg C·hm-2)
CH4累积排放量
Total cumulative emission of CH4
(kg C·hm-2)
N2O累积排放量
Total cumulative emission of N2O
(kg N·hm-2)
CK 2714.4±19.4d -0.20±0.01d 13.6±0.2d
T1 3246.6±25.4c -0.06±0.01ab 16.2±0.9c
T2 3360.0±40.1b -0.03±0.01a 28.7±0.4a
T3 3490.3±30.7a -0.10±0.02b 20.4±0.8b
T4 3178.7±40.7c -0.15±0.02c 15.3±0.5c

Table 3

Correlation analysis of greenhouse gas emission flux with water content and temperature of soil"

CO2 CH4 N2O
含水量 Water content (%) -0.566** -0.087 -0.125
温度 Temperature (℃) 0.739** 0.028 0.425**

Fig. 3

Dynamics of CH4 emission fluxes under different treatments"

Fig. 4

Dynamics of N2O emission fluxes under different treatments"

Table 4

Effects of different depths of straw returning on maize yield and yield components"

处理
Treatment
百粒重
100-grain weight (g)
穗粗
Ear diameter (cm)
穗长
Ear length (cm)
行粒数
Grain number of row (No.)
产量
Yield (t·hm-2)
CK 33.12±0.85c 16.05±0.12a 18.68±0.18a 42.50±1.18b 11.75±0.11c
T1 34.05±0.44bc 16.27±0.21a 19.05±0.87a 43.83±1.49b 12.54±0.13b
T2 35.92±0.29ab 16.15±0.55a 19.20±0.99a 44.67±1.33b 12.41±0.07b
T3 36.15±0.16a 16.43±0.41a 19.70±1.06a 45.67±0.92b 14.02±0.11a
T4 36.74±0.86a 16.74±0.17a 20.18±0.99a 49.98±0.79a 14.19±0.04a

Table 5

Changes of GWP and GHGI from the corn field under different depths of straw returning"

处理
Treatment
CH4 GWP
(kg CO2-eq·hm-2)
N2O GWP
(kg CO2-eq·hm-2)
净碳收支
NECB (t·hm-2)
固碳效应
δSOC (t CO2-eq·hm-2)
Net GWP
(kg C·hm-2)
温室气体排放强度GHGI (kg CO2-eq·t-1)
CK -0.27 21.34 1.77 0.45 5193.82 442.03
T1 -0.08 25.44 1.21 0.31 6430.40 512.79
T2 -0.03 45.07 1.95 0.50 11441.70 921.98
T3 -0.13 32.01 1.82 0.47 8013.02 571.54
T4 -0.20 24.07 2.12 0.54 5830.19 410.87
[1] 潘根兴, 高民, 胡国华, 魏钦平, 杨晓光, 张文忠, 周广胜, 邹建文 . 气候变化对中国农业生产的影响. 农业环境科学学报, 2011,30(9):1698-1706.
PAN G X, GAO M, HU G H, WEI Q P, YANG X G, ZHANG W Z, ZHOU G S, ZOU J W . Impacts of climate change on agricultural production of China. Journal of Agro-Environment Science, 2011,30(9):1698-1706. (in Chinese)
[2] SMITH D M, CUSACK S, COLMAN A W, FOLLAND C K, HARRIS G R, MURPHY J M . Improved surface temperature prediction for the coming decade from a global climate model. Science, 2007,317(5839):796-799.
[3] 贺京, 李涵茂, 方丽, 胡啸, 孔维才 . 秸秆还田对中国农田土壤温室气体排放的影响. 中国农学通报, 2011(20):246-250.
HE J, LI H F, FANG L, HU X, KONG W C . Influence of straw application on agricultural greenhouse gas emissions in China. Chinese Agricultural Science Bulletin, 2011(20):246-250. (in Chinese)
[4] 毕于运, 高春雨, 王亚静, 李宝玉 . 中国秸秆资源数量估算. 农业工程学报, 2009,25(12):211-217.
BI Y Y, GAO C Y, WANG Y J, LI B Y . Estimation of straw resources in China. Transactions of the Chinese Society Agricultural Engineering, 2009,25(12):211-217. (in Chinese)
[5] 赵军, 李勇, 冉炜, 张瑞福, 沈标, 沈其荣 . 有机肥替代部分化肥对稻麦轮作系统产量及土壤微生物区系的影响. 南京农业大学学报, 2016,39(4):594-602.
ZHAO J, LI Y, RAN W, ZHANG R F, SHEN B, SHEN Q R . Effects of organic manure partial substitution for chemical fertilizer on crop yield and soil microbiome in a rice-wheat cropping system. Journal of Nanjing Agricultural University, 2016,39(4):594-602. (in Chinese)
[6] 路文涛, 贾志宽, 张鹏, 王维, 侯贤清, 杨保平, 李永平 . 秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响. 农业环境科学学报, 2011,30(3):522-528.
LU W T, JIA Z K, ZHANG P, WANG W, HOU X Q, YANG B P, LI Y P . Effects of straw returning on soil labile organic carbon and enzyme activity in semi-arid areas of southern Ningxia, China. Journal of Agro-Environment Science, 2011,30(3):522-528. (in Chinese)
[7] 李成芳, 寇志奎, 张枝盛, 曹凑贵, 吴海亚, 梅金安, 翟中兵, 张丛德, 魏坦雄, 刘诗晴 . 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响. 农业环境科学学报, 2011,30(11):2362-2367.
LI C F, HOU Z K, ZHANG Z S, CAO C G, WU H Y, MEI J A, ZHAI Z B, ZHANG C D, WEI T X, LIU S Q . Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields. Journal of Agro-Environment Science, 2011,30(11):2362-2367. (in Chinese)
[8] 孟梦, 吕成文, 李玉娥, 秦晓波, 万运帆, 高清竹 . 添加生物炭对华南早稻田CH4和N2O排放的影响. 中国农业气象, 2013,34(4):396-402.
MENG M, LÜ C W, LI Y E, QIN X B, WAN Y F, GAO Q Z . Effect of biochar on CH4 and N2O emissions from early rice field in South China. Chinese Journal of Agrometeorology, 2013,34(4):396-402. (in Chinese)
[9] JACINTHE P A, LAL R, KIMBLE J M . Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil and Tillage Research, 2002,67(2):147-157.
[10] 张庆忠, 吴文良, 王明新, 周中仁, 陈淑峰 . 秸秆还田和施氮对农田土壤呼吸的影响. 生态学报, 2005,25(11):2883-2887.
ZHANG Q Z, WU W L, WANG M X, ZHOU Z R, CHEN S F . The effects of crop residue amendment and N rate on soil respiration. Acta Ecologica Sinica, 2005,25(11):2883-2887. (in Chinese)
[11] 强学彩, 袁红莉, 高旺盛 . 秸秆还田量对土壤CO2释放和土壤微生物量的影响. 应用生态学报, 2004,15(3):469-472.
QIANG X C, YUAN H L, GAO W S . Effect of crop-residue incorporation on soil CO2 emission and soil microbial biomass. Chinese Journal of Applied Ecology, 2004,15(3):469-472. (in Chinese)
[12] 宋秋来, 王峭然, 王麒, 冯延江, 孙羽, 曾宪楠, 来永才 . 玉米秸秆还田对黑土碳排放的影响. 江苏农业科学, 2017,45(13):219-222.
SONG Q L, WANG Q R, WANG Q, FANG Y J, SUN Y, ZENG X N, LAI Y C . Effects of corn straw mulching on carbon emission of black soil. Agricultural Science of Jiangsu, 2017,45(13):219-222. (in Chinese)
[13] 吴洁 . 不同秸秆还田方式与秸秆生物炭施用对农田温室气体排放和土壤固碳的影响[D]. 南京: 南京农业大学, 2014.
WU J . Effects of different straw return modes and straw biochar application on greenhouse gas emission and soil carbon sequestration in agriculture[D]. Nanjing: Nanjing Agricultural University, 2014. ( in Chinese)
[14] BHATTACHARYYA P, ROY K S, NEOGI S, ADHYA T K, RAO K S, MANNA M C . Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil and Tillage Research, 2012,124:119-130.
[15] 邹国元, 张福锁, 陈新平, 巨晓棠, 刘学军, 潘家荣 . 秸秆还田对旱地土壤反硝化的影响. 中国农业科技导报, 2001(6):47-50.
ZOU G Y, ZHANG F S, CHEN X P, JU X T, LIU X J, PAN J R . Effect of straw addition on denitrification in upland soil. Review of China Agricultural Science and Technology, 2001(6):47-50. (in Chinese)
[16] 王改玲, 郝明德, 陈德立 . 秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响. 植物营养与肥料学报, 2006(6):840-844.
WANG G L, HAO M D, CHEN D L . Effect of stubble incorporation and nitrogen fertilization on denitrification and nitrous oxide emission in an irrigated maize soil. Plant Nutrition and Fertilizer Science, 2006(6):840-844. (in Chinese)
[17] 陈粲, 包云轩, 吕青, 唐倩 . 基于DNDC模型的不同秸秆还田填埋深度下农田N2O气体排放模拟. 安徽农业科学, 2018,46(14):64-67, 74.
CHEN C, BAO Y X, LÜ Q, TANG Q . Simulation of nitrous oxide emission under different straw retention depths based on denitrification-decomposition model. Anhui Agricultural Sciences, 2018,46(14):64-67, 74. (in Chinese)
[18] 闫翠萍, 张玉铭, 胡春胜, 董文旭, 王玉英, 李晓欣, 秦树平 . 不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势. 中国生态农业学报, 2016,24(6):704-715.
YAN C P, ZHANG Y M, HU C S, DONG W X, WANG Y Y, LI X X, QIN S P . Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns. Chinese Journal of Eco-Agriculture, 2016,24(6):704-715. (in Chinese)
[19] ZHANG D, PAN G, WU G, KIBUE G W, LI L, ZHANG X, ZHENG J, ZHENG J, CHENG K, JOSEPH S . Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rained low fertility inceptisol. Chemosphere, 2015,142:106.
[20] MA J, MA E, XU H, YAGI K, CAI Z . Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biology and Biochemistry, 2009,41(5):1022-1028.
[21] 杨书运, 严平, 马友华, 戴佳伟, 韩辉邦, 汪大林, 方海义 . 施肥对冬小麦土壤温室气体排放的影响. 生态环境学报, 2010,19(7):1642-1645.
YANG S Y, YAN P, MA Y H, DAI J W, HAN H B, WANG D L, FANG H Y . Effects on emissions of soil greenhouse gas by fertilizing to winter wheat. Ecology and Environmental Sciences . 2010,19(7):1642-1645. (in Chinese)
[22] 田慎重, 宁堂原, 李增嘉, 王瑜, 李洪杰, 仲惟磊 . 不同耕作措施对华北地区麦田CH4吸收通量的影响. 生态学报, 2010,30(2):541-548.
TIAN S Z, NING T Y, LI Z J, WANG Y, LI H J, ZHONG W L . Effect of CH4 uptake flux under different tillage systems in wheat field in the North China Plain. Acta Ecologica Sinica, 2010,30(2):541-548. (in Chinese)
[23] 蒙世协, 刘春岩, 郑循华, 梁旺国, 胡荣桂 . 小麦秸秆还田量对晋南地区裸地土壤-大气间甲烷、二氧化碳、氧化亚氮和一氧化氮交换的影响. 气候与环境研究, 2012,17(4):504-514.
MENG S X, LIU C Y, ZHENG X H, LIANG W G, HU R G . Effects of the applied amount of wheat straw on methane, carbon dioxide, nitrous oxide,and nitric oxide fluxes of a bare soil in south Shanxi. Climatic and Environmental Research, 2012,17(4):504-514. (in Chinese)
[24] 杨旭, 兰宇, 孟军, 陈温福 . 秸秆不同还田方式对旱地棕壤CO2排放和土壤碳库管理指数的影响. 生态学杂志, 2015,34(3):805-809.
YANG X, LAN Y, MENG J, CHEN W F . Effects of different stover-incorporation ways on CO2 emission in dryland brown soil and soil carbon pool management index. Chinese Journal of Ecology, 2015,34(3):805-809. (in Chinese)
[25] 谢义琴, 张建峰, 姜慧敏, 杨俊诚, 邓仕槐, 李先, 郭俊娒, 李玲玲, 刘晓, 周贵宇 . 不同施肥措施对稻田土壤温室气体排放的影响. 农业环境科学学报, 2015,34(3):578-584.
XIE Y Q, ZHANG J F, JIANG H M, YANG J C, DENG S H, LI X, GUO J M, LI L L, LIU X, ZHOU G Y . Effects of different fertilization practices on greenhouse gas emissions from paddy soil. Journal of Agro-Environment Science, 2015,34(3):578-584. (in Chinese)
[26] 郑循华, 王睿 . 陆地生态系统-大气碳氮气体交换通量的地面观测方法:静态箱-气相色谱法观测CH4和N2O通量的方法与数据质量控制规范. 北京: 气象出版社, 2017: 59-61.
ZHENG X H, WANG R. Surface Observation Method of Carbon and Nitrogen Exchange Flux Between Terrestrial Ecosystem and Atmosphere: Protocols for Chamber-based Manual Measurement of CH4 and N2O Fluxes from Terrestrial Ecosystems. Beijing: China Meteorological Press, 2017: 59-61. (in Chinese)
[27] WANG K, ZHENG X H, PIHLATIE M, VESALA T, LIU C Y, HAAPANALA S, MAMMARELLA I, RANNIK, LIU H Z . Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field. Agricultural and Forest Meteorology, 2013,9(19):171-172.
[28] IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
[29] 熊正琴, 张晓旭 . 氮肥高效施用在低碳农业中的关键作用. 植物营养与肥料学报, 2017,23(6):1433-1440.
XIONG Z Q, ZHANG X X . Key role of efficient nitrogen application in low carbon agriculture. Journal of Plant Nutrition and Fertilizer, 2017,23(6):1433-1440. (in Chinese)
[30] ZHOU J, LI B, XIA L, FAN C, XIONG Z . Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. Journal of Cleaner Production, 2019,225:984-994.
[31] HUANG Y, ZHANG W, SUN W J, ZHENG X H . Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 2007,17(3):692-701.
[32] ZHANG X, FAN C, MA Y, LIU Y, LI L, ZHOU Q, XIONG Z . Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice-wheat rotation system in China. Nutrient Cycling in Agroecosystems, 2014,100(3):301-313.
[33] 宋利娜, 张玉铭, 胡春胜, 张喜英, 董文旭, 王玉英, 秦树平 . 华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应. 中国生态农业学报, 2013,21(3):297-307.
SONG L N, ZHANG Y M, HU C X, ZHANG X Y, DONG W X, WANG Y Y, QIN S P . Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China Plain. Chinese Journal of Eco-Agriculture, 2013,21(3):297-307. (in Chinese)
[34] 李新华, 朱振林, 董红云, 杨丽萍, 郭洪海 . 玉米秸秆不同还田方式下麦田温室气体排放特征. 农业资源与环境学报, 2016,33(2):176-181.
LI X H, ZHU Z L, DONG H Y, YANG L P, GUO H H . Characteristics of greenhouse gas emissions from the wheat fields with different returning methods of maize straws. Journal of Agricultural Resources and Environment, 2016,33(2):176-181. (in Chinese)
[35] SINGH S N, KULSHRESHTHA K, AGNIHOTRI S . Seasonal dynamics of methane emission from wetlands. Global Change Science, 2000,2(1):39-46.
[36] 于建光, 李辉信, 胡锋, 沈英 . 施用秸秆及接种蚯蚓对土壤颗粒有机碳及矿物结合有机碳的影响. 生态环境, 2006(3):606-610.
YU J G, LI H X, HU F, SHEN Y . Effects of straw application and earthworm inoculation on soil particulate organic carbon and mineral-associated organic carbon. Ecology and Environment, 2006(3):606-610. (in Chinese)
[37] 孙晓新, 牟长城, 石兰英, 程伟, 刘霞, 吴云霞, 冯登军 . 小兴安岭森林沼泽甲烷排放及其影响因子. 植物生态学报, 2009,33(3):535-545.
SUN X X, MOU C C, SHI L Y, CHENG W, LIU X, WU Y X, FENG D J . Methane emission from forested swamps in Xiaoxing’an mountains, Northeastern China. Chinese Journal of Plant Ecology, 2009,33(3):535-545. (in Chinese)
[38] 李志国, 张润花, 赖冬梅, 闫正跃, 田长彦 . 西北干旱区两种不同栽培管理措施下棉田CH4和N2O排放通量研究. 土壤学报, 2012,49(5):925-934.
LI Z G, ZHANG R H, LAI D M, YAN Z Y, TIAN C Y . CH4 and N2O fluxes from cotton fields different in farming practices in northwestern China. Acta Pedologica Sinica, 2012,49(5):925-934. (in Chinese)
[39] 孙晓新, 牟长城, 闵长林, 刘霞, 吴云霞, 冯登军, 石兰英, 程伟 . 小兴安岭沼泽甲烷通量日变化分析. 东北林业大学学报, 2009,37(11):92-95.
SUN X X, MOU C C, MIN C L, LIU X, WU Y X, FENG D J, SHI L Y, CHENG W . Diurnal variation in methane fluxes from wetlands in Xiao Xing'an Mountains Northeast China. Journal of Northeast Forestry University, 2009,37(11):92-95. (in Chinese)
[40] 高德才, 张蕾, 刘强, 荣湘民, 张玉平, 田昌 . 生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响. 生态学报, 2015,35(11):3615-3624.
GAO D C, ZHANG L, LIU Q, RONG X M, ZHANG Y P, TIAN C . Effects of biochar on CO2, CH4, N2O emission and its environmental benefits in dryland soil. Acta Ecologica Sinica, 2015,35(11):3615-3624. (in Chinese)
[41] 翟洋洋, 程云湘, 常生华, 侯扶江 . 干旱地区农田生态系统土壤温室气体排放机制. 中国农学通报, 2015,31(9):231-236.
ZHAI Y Y, CHENG Y X, CHANG S H, HOU F J . Mechanism of greenhouse gas emission from agro-ecosystem soil in arid regions. Chinese Agricultural Science Bulletin, 2015,31(9):231-236. (in Chinese)
[42] 张静 . 冬小麦/大葱套作系统温室气体交换规律及其影响因素研究[D]. 北京: 中国农业科学院, 2012.
ZHANG J . The exchanges of greenhouse gases and effect factors in winter wheat/green onion interplanting system[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. ( in Chinese)
[43] BREMNER J M . Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 1997,49(1/3):7-16.
[44] 叶丽丽, 王翠红, 彭新华, 王丽慧 . 秸秆还田对土壤质量影响研究进展. 湖南农业科学, 2010(19):52-55.
YE L L, WANG C H, PENG X H, WANG L H . Effect of straw returning on soil quality. Hunan Agricultural Sciences, 2010(19):52-55. (in Chinese)
[45] 邹国元, 张福锁, 陈新平, 巨晓棠, 刘学军, 潘家荣 . 秸秆还田对旱地土壤反硝化的影响. 中国农业科技导报, 2001,3(6):47-50.
ZOU G Y, ZHANG F S, CHEN X P, JU X T, LIU X J, PAN J R . Effect of straw addition on denitrification in upland soil. Review of China Agricultural Science and Technology, 2001,3(6):47-50. (in Chinese)
[46] SEY B K, WHALEN J K, GREGORICH E G, ROCHETTE P, CUE R I . Carbon dioxide and nitrous oxide content in soils under corn and soybean. Soil Science Society of America Journal, 2008,72(4):931.
[47] 王淑平, 周广胜, 姜岩, 刘孝义 . 添加玉米残体对土壤-植物系统中氮素转化的影响. 应用生态学报, 2004,15(3):449-452.
WANG S P, ZHOU G S, JIANG Y, LIU X Y . Effect of incorporating corn residues into soil on nitrogen transformation in soil-plant ecosystem. Chinese Journal of Applied Ecology, 2004,15(3):449-452. (in Chinese)
[48] 郭腾飞, 梁国庆, 周卫, 刘东海, 王秀斌, 孙静文, 李双来, 胡诚 . 施肥对稻田温室气体排放及土壤养分的影响. 植物营养与肥料学报, 2016,22(2):337-345.
GUO T F, LIANG G Q, ZHOU W, LIU D H, WANG X B, SUN J W, LI S L, HU C . Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil. Journal of Plant Nutrition and Fertilizers, 2016,22(2):337-345. (in Chinese)
[49] 李成芳, 寇志奎, 张枝盛, 曹凑贵, 吴海亚, 梅金安, 翟中兵, 张丛德, 魏坦雄, 刘诗晴 . 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响. 农业环境科学学报, 2011,30(11):2362-2367.
LI C F, HOU Z K, ZHANG Z S, CAO C G, WU H Y, MEI J A, ZHAI Z B, ZHANG C D, WEI T X, LIU S Q . Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields. Journal of Agro-Environment Science, 2011,30(11):2362-2367. (in Chinese)
[50] 谢立勇, 叶丹丹, 张贺, 郭李萍 . 旱地土壤温室气体排放影响因子及减排增汇措施分析. 中国农业气象, 2011,32(4):481-487.
XIE L Y, YE D D, ZHANG H, GUO L P . Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices. Chinese Journal of Agrometeorology, 2011,32(4):481-487. (in Chinese)
[51] 吕艳杰, 于海燕, 姚凡云, 曹玉军, 魏雯雯, 王立春, 王永军 . 秸秆还田与施氮对黑土区春玉米田产量、温室气体排放及土壤酶活性的影响. 中国生态农业学报, 2016,24(11):1456-1463.
LÜ Y J, YU H Y, YAO F Y, CAO Y J, WEI W W, WANG L C, WANG Y J . Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils. Chinese Journal of Eco-Agriculture, 2016,24(11):1456-1463. (in Chinese)
[52] 黄毅, 毕素艳, 邹洪涛, 窦森 . 秸秆深层还田对玉米根系及产量的影响. 玉米科学, 2013(5):109-112.
HUANG Y, BI S Y, ZOU H T, DOU S . Effect of straw deep returning on corn root system and yield. Journal of Maize Sciences, 2013(5):109-112. (in Chinese)
[53] 王胜楠, 邹洪涛, 张玉龙, 虞娜, 张玉玲, 范庆锋, 黄毅 . 秸秆集中深还田两年后对土壤主要性状及玉米根系的影响. 干旱地区农业研究, 2015(3):68-71, 78.
WANG S N, ZOU H T, ZHANG Y L, YU N, ZHANG Y L, FAN Q F, HUANG Y . Effects of deeply and concentratedly returned straw on soil main properties and corn root system. Agricultural Research in the Arid Areas, 2015(3):68-71, 78. (in Chinese)
[1] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[2] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[3] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[4] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[5] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[6] LIU Qiao,JI YanZhi,GUO YanJie,ZHANG LiJuan,ZHANG Jie,HAN Jian. Effects of Water and Nitrogen Regulation on Greenhouse Gas Emissions and Warming Potential in Vineyard Soil [J]. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424.
[7] YunPeng HOU,LiLi KONG,HongGuang CAI,HuiTao LIU,YuShan GAO,YongJun WANG,LiChun WANG. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China [J]. Scientia Agricultura Sinica, 2019, 52(20): 3559-3572.
[8] YunPeng HOU,LiChun WANG,Qian LI,CaiXia YIN,YuBo QIN,Meng WANG,YongJun WANG,LiLi KONG. Research on Optimum Phosphorus Fertilizer Rate Based on Maize Yield and Phosphorus Balance in Soil Under Film Mulched Drip Irrigation Conditions [J]. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584.
[9] Rong HUANG,Ming GAO,JiaCheng LI,GuoXin XU,FuHua WANG,Jiao LI,ShiQi CHEN. Effects of Combined Application of Various Organic Materials and Chemical Fertilizer on Soil Nitrogen Formation and Greenhouse Gas Emission Under Equal Nitrogen Rates from Purple Soil [J]. Scientia Agricultura Sinica, 2018, 51(21): 4087-4101.
[10] Chi XU, HaiKuan XIE, WuHan DING, Zhen DAI, Jing ZHANG, LiGang WANG, Hu LI. The Impacts of CH4 and N2O Net Emission Under One-Off Fertilization of Rape-Paddy Replanting System [J]. Scientia Agricultura Sinica, 2018, 51(20): 3972-3984.
[11] WU Yang, JIA ZhiKuan, BIAN ShaoFeng, WANG YongJun. Regulation Effects of Different Mulching Patterns During the Whole Season on Soil Water and Temperature in the Maize Field of Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(15): 2872-2885.
[12] WANG Yin, GUO Dan, GAO Qiang, LI CuiLan, YAN Li, FENG GuoZhong, LIU ZhenGang, FANG Jie. Differences in Maize Yield Responses to Phosphorous Fertilizer in Different Ecological Zones of Jilin Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1635-1645.
[13] LI Yu-ling, ZHANG Peng, ZHANG Yan, JIA Qian-min, LIU Dong-hua, DONG Zhao-yun, JIA Zhi-kuan, HAN Qing-fang, REN Xiao-long. Effects of Rainfall Harvesting Planting on Temporal and Spatial Changing of Soil Water and Temperature, and Yield of Spring Maize (Zea mays L.) in Semi-Arid Areas [J]. Scientia Agricultura Sinica, 2016, 49(6): 1084-1096.
[14] ZHANG Zi-yang, SHEN Tai-yu, YU Hong-jiang, GAO San-si, ZHU Kui-ling, HUANG Bao-yin, XU Chuang, YANG Wei. A Study on the Effect of Subclinical Hypocalcemia in Dairy Cows on Productivity and Manure Emission Characters [J]. Scientia Agricultura Sinica, 2016, 49(21): 4222-4230.
[15] XIE Jun, ZHAO Ya-nan, CHEN Xuan-jing, LI Dan-ping, XU Chun-li, WANG Ke, ZHANG Yue-qiang, SHI Xiao-jun. Nitrogen of Organic Manure Replacing Chemical Nitrogenous Fertilizer Improve Maize Yield and Nitrogen Uptake and Utilization Efficiency [J]. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!