Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (1): 81-93.doi: 10.3864/j.issn.0578-1752.2020.01.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Yield Variation of Winter Wheat and Its Relationship to Yield Components, NPK Uptake and Utilization of Leading and High Yielding Wheat Cultivars in Main Wheat Production Regions of China

Ning HUANG1,ZhaoHui WANG1,2(),Li WANG1,QingXia MA1,YueYue ZHANG1,XinXin ZHANG1,Rui WANG1   

  1. 1 College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2 Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2019-04-11 Accepted:2019-07-01 Online:2020-01-01 Published:2020-01-19
  • Contact: ZhaoHui WANG E-mail:w-zhaohui@263.net

Abstract:

【Objective】The aim of this study was to clarify wheat yield variation and its relationship to yield components and nutrient uptake and utilization for major high-yielding cultivars, so as to provide guidance to close yield gap and realize high yield and high quality in wheat production. 【Method】 Field experiments were conducted in 2016-2017 to test the major wheat cultivars in North-Huanghuai, South-Huanghuai, and the middle and lower Yangtze River reaches of China, under local suitable agricultural cultivations. The variation of yield and its relationship to dry matter accumulation, yield components, NPK uptake and utilization were investigated for the high-yielding cultivars in the three wheat production regions. 【Result】 Large variation of grain yield existed in each wheat production region, ranging from 7 751 to 8 702 kg hm -2 in North-Huanghuai, 7 302 to 8 413 kg·hm -2 in South-Huanghuai, and 5 554 to 6 294 kg·hm -2 in the middle and lower Yangtze River reaches. The high-yielding cultivars in North-Huanghuai were found to have higher biomass, harvest index and spike number than that of control cultivars, the high-yielding cultivars in South-HuangHuai had higher harvest index and grain number, and the high-yielding cultivars in the middle and lower reaches of the Yangtze River had higher harvest index and thousand grain weight. Besides, in North-HuangHuai the high-yielding cultivars showed lower grain N content and N requirement, and higher N physiological efficiency than that of control, in South-HuangHuai the high-yielding cultivars showed lower straw P content and P requirement, higher P physiological efficiency and straw K content, and in the middle and lower Yangtze River reaches, the high-yielding cultivars showed lower K content in grain, higher K content in straw, P content in grain and straw, and N and P uptake in shoot, and lower P physiological efficiency and higher P requirement.【Conclusion】 The elite high-yielding cultivars, such as Luyuan118, Pumai168 and Huamai7, showed higher yield performance in North-Huanghuai, South-Huanghuai and the middle and lower Yangtze River reaches, respectively. In main wheat production regions of China, increasing shoot biomass and harvest index was the key factor to produce high grain yields. Also, enhancing shoot nutrient uptake and nutrient harvest index was necessary to achieve high grain nutrition quality as well as high yield.

Key words: wheat, cultivars, yield, yield components, nitrogen,phosphorus and potassium

Table 1

Basic physical and chemical properties of the top 0-20 cm soil layer and fertilizer application at each experimental station located in different wheat production regions"

麦区
Region
试验点
Station
有机质
Organic matter
(g·kg-1)
pH 全氮
Total N
(g·kg-1)
硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
施肥量
Fertilization (kg·hm-2)
N P2O5 K2O
黄淮北片NHH 河北沧州 Cangzhou, Hebei 22.6 8.3 1.3 2.7 6.4 46.4 333.9 291 210 113
河北邯郸 Handan, Hebei 19.6 8.2 1.1 20.5 6.2 26.5 143.4 216 113 113
河北衡水 Hengshui, Hebei 23.8 8.2 1.4 21.7 5.5 24.2 195.0 351 53 60
河北石家庄 Shijiazhuang, Hebei 10.2 8.1 0.6 20.9 3.2 18.4 112.0 225 150 83
山东菏泽 Heze, Shandong 18.0 8.2 1.0 44.6 5.7 23.1 143.4 225 206 56
山东滨州 Binzhou, Shandong 11.8 8.1 0.8 8.7 9.1 10.6 150.1 245 176 59
山东泰安 Taian, Shandong 33.2 6.9 2.0 27.4 11.9 89.7 322.7 480 135 68
北京中种Zhongzhong, Beijing 21.4 8.1 1.2 18.0 3.8 19.1 87.4 258 75 60
山西临汾 Linfen, Shanxi 33.3 8.1 1.7 13.8 7.9 65.8 150.1 253 184 90
黄淮南片SHH 江苏淮安 Huaian, Jiangsu 34.3 4.9 2.1 57.5 109.8 115.0 398.9 245 90 90
安徽亳州 Bozhou, Anhui 26.5 6.3 1.4 20.8 12.9 64.3 192.7 375 225 150
安徽合肥 Hefei, Anhui 23.8 5.8 1.2 23.0 23.9 44.4 181.5 150 90 98
河南洛阳 Luoyang, Henan 15.9 8.0 0.9 11.1 3.0 8.7 147.9 137 68 68
河南濮阳 Puyang, Henan 13.6 8.1 0.8 19.3 3.9 20.2 118.8 251 113 113
河南商丘 Shangqiu Henan 19.1 8.0 1.2 16.5 8.0 40.3 264.4 195 173 83
河南驻马店 Zhumadian, Henan 23.1 6.8 1.3 18.7 14.0 41.6 239.8 212 90 38
陕西西农 Xinong, Shaanxi 18.3 8.1 1.1 14.9 11.1 16.0 181.5 203 90 60
陕西咸阳 Xianyang, Shaanxi 16.7 8.1 1.0 26.9 3.1 19.3 233.0 219 60 30
甘肃兰州 Lanzhou, Gansu 13.7 8.6 0.8 18.9 0.4 15.6 195.0 201 120 0
长江中
下游
YR
安徽六安-1 Luan-1, Anhui 26.6 5.1 1.4 8.8 8.2 21.0 145.7 193 104 104
安徽六安-2 Luan-2, Anhui 33.5 5.9 2.0 5.0 11.5 27.4 242.0 169 60 96
河南信阳-1 Xinyang-1, Henan 17.0 4.9 1.0 20.2 31.1 34.7 192.7 265 79 79
河南信阳-2 Xinyang-2, Henan 17.8 4.8 1.1 24.8 25.5 33.8 186.0 170 101 101
湖北武汉-1 Wuhan-1, Hubei 24.8 5.1 1.3 47.6 13.1 48.5 338.4 137 96 96
湖北武汉-2 Wuhan-2, Hubei 22.1 5.9 1.3 18.2 8.8 18.4 114.3 187 135 135
湖北襄阳-1 Xiangyang-1, Hubei 19.1 5.8 1.1 2.9 14.0 29.6 116.5 266 128 53
湖北襄阳-2 Xiangyang-2, Hubei 28.1 6.0 1.5 12.9 11.9 19.2 138.9 222 90 60
江苏南京-1 Nanjing-1, Jiangsu 19.0 7.6 1.1 14.5 4.7 19.8 71.7 236 59 88
江苏南京-2 Nanjing-2, Jiangsu 21.5 7.6 1.4 13.1 5.4 33.6 89.6 225 122 68
江苏扬州-1 Yangzhou-1, Jiangsu 13.3 5.3 0.9 114.4 19.2 34.1 65.0 223 68 68
江苏扬州-2 Yangzhou-2, Jiangsu 11.4 8.0 0.7 4.3 6.7 29.7 123.2 268 113 113

Fig. 1

The yield variance of leading and high-yielding wheat cultivars in different wheat production regions A, B and C represent the cultivars of the North-HuangHuai, South-HuangHuai, and the middle and lower Yangtze River reaches wheat production regions, respectively, the corresponding cultivars: A1(Han 11-5276), A2 (Luyuan 118), A3 ( Xingmai 20), A4 (Zhongmai 4072), A5 (Yan 1212), A6 (Hemai 0746-2), A7 (Heng 1589), A8 (Taikemai 5303), A9 (Zhongmai 5051), A10 (Lin Y8222), A11 (Anmai 12-41), A12 (Shi 11-5139), A13 (LH16-1), A14 (Jimai 22), A15 (Wei 2750-6), A16 (Han 11-5272), A17 (Lunxuan 198), A18 (Linnong 12), A19 (BY35), A20 (Cangmai 13), A21 (Luyan 9088); B1 (Pumai 168), B2 (Xumai 2178), B3 (Anke 1401), B4 (Zhengmai 0943), B5 (Huaimai 302), B6 (Guomai 505), B7 (Tianmai 162), B8 (Luomai 163), B9 (Wanmai 715), B10 (Luomai 33), B11 (Wankenmai 1221), B12 (Zhoumai 18), B13 (Lantian 0422), B14 (Wansu 1313), B15 (Huamai 226) ), B16 (Xinong 615), B17 (Bainong 5822); C1 (Huamai 7), C2 (Wanximai 0439), C3 (Xiangmai D31), C4 (Xinmai 7916), C5 (Yangmai 20), C6 (Yangmai 10-120). H, high-yielding cultivar; CK, control cultivar. The same as below"

Table 2

Grain yield variation, biomass, harvest index, and yield components of different cultivars in different wheat production regions"

区域
Region
产量等级
Yield level
品种
Cultivar
产量
Grain yield
(kg·hm-2)
生物量Biomass (kg·hm-2) 收获指数
Harvest index (%)
穗数
Spike number
(×104)
穗粒数
Grain per spike
千粒重
1000 grain weight (g)
地上部 Aboveground 茎叶 Straw
黄淮北片
NHH
高产 H 邯11-5276 Han 11-5276 8702a 18205ab 9502ab 47.9abc 721a 29.9de 41.4bc
鲁原118 Luyuan 118 8696a 17823abc 9127b 48.9a 613c 31.8cd 45.3a
中麦4072 Zhongmai 4072 8588a 17818abc 9229ab 48.3ab 672abc 32.8bc 40.0c
邢麦20 Xinmai 20 8577a 18478a 9902a 46.6cd 687ab 30.7cd 41.3bc
均值 Mean 8641A 18081A 9440A 47.9A 673A 31.3A 42.0A
对照 CK 临农12 Linnong 12 7931b 16977cd 9047b 46.8bcd 654abc 27.8e 45.4a
BY35 A19 7878b 16826cd 8947b 47.0bcd 646bc 29.7de 43.1abc
沧麦13 Cangmai 13 7790b 17194bcd 9404ab 45.5d 542d 35.5b 41.7bc
鲁研9088 Luyan 9088 7751b 16745d 8994b 46.3cd 448e 40.2a 43.7ab
均值 Mean 7837B 16936B 9098A 46.4B 572A 33.3A 43.5A
黄淮南片
SHH
高产 H 濮麦168 Pumai 168 8413Aa 16698Aa 8285Ab 50.6Aa 515Ab 41.4Aa 40.8Abc
对照 CK 华麦226 Huamai 226 7648b 16540a 8892ab 46.4b 578ab 31.6b 43.5ab
西农615 Xinong 615 7555b 17526a 9972a 42.9c 661a 29.9bc 38.5c
百农5822 Bainong 5822 7302b 16641a 9339ab 44.1bc 646a 27.1c 44.1a
均值 Mean 7501B 16902Aa 9401A 44.5A 628A 29.5B 42.1A
长江中
下游
YR
高产 H 华麦7号 Huamai 7 6294a 13138a 6844a 48.7a 530a 33.4a 39.1a
对照 CK 扬麦10-120 Yangmai 10-120 5554b 12220a 6666a 46.6b 538a 31.9a 36.0b

Table 3

Nitrogen content, uptake and utilization of different wheat cultivars at different yield levels in different wheat production regions"

区域
Region
产量等级
Yield level
品种
Cultivar
含氮量 N content (g·kg-1) 地上部吸氮量
N uptake in aboveground part
(kg·hm-2)
氮收获指数
N harvest index (%)
氮生理效率
N physiological efficiency
(kg·kg-1)
需氮量
N requirement
(kg·1000kg-1)
籽粒
Grain
茎叶
Straw
黄淮北片NHH 高产 H 邯11-5276 Han 11-5276 22.4cd 4.8ab 241a 80.4ab 36.4bc 27.6bc
鲁原118 Luyan 118 20.7e 4.5b 221a 81.3ab 39.7a 25.4d
中麦4072 Zhongmai 4072 21.7de 4.8ab 231a 80.5ab 37.4ab 26.9cd
邢麦20 Xingmai 20 21.8de 4.7ab 234a 80.5ab 37.2ab 27.2cd
均值 Mean 21.6B 4.7A 232A 80.7A 37.7A 26.8B
对照 CK 临农12 Linnong 12 23.5bc 5.0ab 231a 80.7ab 34.3cd 29.2ab
BY35 A19 24.1b 4.7ab 232a 82.6a 34.2cd 29.4ab
沧麦13 Cangmai 13 23.7bc 5.2a 233a 79.1b 33.4d 30.0a
鲁研9088 Luyan 908 25.6a 4.6ab 240a 82.7a 32.4d 30.9a
均值 Mean 24.2A 4.9A 234A 81.3A 33.6B 29.9A
黄淮南片SHH 高产 H 濮麦168 Pumai 168 20.4Ac 4.5Aa 212Aa 82.5Aa 40.9Aa 24.9Ab
对照 CK 华麦226 Huamai 226 22.6ab 4.4a 217a 81.8a 36.7b 27.9a
西农615 Xinong 615 21.4bc 5.0a 216a 76.6b 36.5b 28.2a
百农5822 Bainong 5822 23.7a 4.3a 216a 81.3a 34.8b 29.3a
均值 Mean 22.6A 4.6A 216A 79.9A 36.0A 28.4A
长江中下游
YR
高产 H 华麦7号 Huamai 7 19.7a 4.2a 153a 81.1a 41.4a 24.5a
对照 CK 扬麦10-120 Yangmai 10-120 18.4a 4.0a 131b 79.5a 43.9a 23.6a

Table 4

Phophorus content, uptake and utilization of different wheat cultivars at different yield levels in different wheat production regions"

区域
Region
产量等级
Yield level
品种
Cultivar
含磷量 P content (g·kg-1) 地上部吸磷量
P uptake in aboveground part (kg·hm-2)
磷收获指数
P harvest index (%)
磷生理效率
P physiological efficiency
(kg·kg-1)
需磷量
P requirement
(kg·1000kg-1)
籽粒
Grain
茎叶
Straw
黄淮北片NHH 高产 H 邯11-5276 Han 11-5276 3.8ab 0.47abc 37.4ab 87.1b 234bc 4.3abc
鲁原118 Luyan 118 3.2d 0.39c 31.7cd 88.8ab 278a 3.6d
中麦4072 Zhongmai 4072 3.7bc 0.51a 36.4ab 86.8b 242bc 4.2bc
邢麦20 Xinmai 20 4.0a 0.50ab 39.4a 87.8ab 222c 4.6a
均值 Mean 3.7 A 0.47A 36.2A 87.6A 244A 4.2A
对照 CK 临农12 Linmai 12 3.9ab 0.48abc 35.2b 87.9ab 227c 4.4ab
BY35 A19 3.9ab 0.50ab 35.0bc 87.7ab 228c 4.5ab
沧麦13 Cangmai 13 3.5cd 0.41bc 30.8d 87.5b 254b 4.0cd
鲁研9088 Luyan 908 4.0a 0.38c 34.8bc 90.0a 225c 4.5ab
均值 Mean 3.8A 0.44A 33.9A 88.3A 234A 4.3A
黄淮南片SHH 高产 H 濮麦168 Pumai 168 3.4Ac 0.42Ba 31.6Aa 89.2Aa 269Aa 3.8Bb
对照 CK 华麦226 Huamai 226 4.1a 0.54a 35.7a 87.0ab 224b 4.7a
西农615 Xinong 615 3.7b 0.53a 32.4a 84.2b 234b 4.4a
百农5822 Bainong 5822 3.8ab 0.50a 32.7a 86.5ab 231b 4.5a
均值 Mean 3.9A 0.52A 33.6A 85.9A 230B 4.5A
长江中下游YR 高产 H 华麦7号 Huamai 7 3.8a 0.56a 27.8a 86.1a 232b 4.4a
对照 CK 扬麦10-120 Yangmai 10-120 3.6b 0.43b 22.7b 87.3a 250a 4.1b

Table 5

Potassium content, uptake and utilization of different wheat cultivars at different yield levels in different wheat production regions"

区域
Region
产量等级
Yield level
品种
Cultivar
含钾量 K content (g·kg-1) 地上部吸钾量
K uptake in aboveground part (kg·hm-2)
钾收获指数
K harvest index (%)
钾生理效率
K physiological efficiency
(kg·kg-1)
需钾量
K requirement
(kg·1000kg-1)
籽粒
Grain
茎叶
Straw
黄淮北片NHH 高产 H 邯11-5276 Han 11-5276 3.4b 16.6bc 185b 16.9ab 48.8abc 21.3cd
鲁原118 Luyan 118 3.7a 16.5bc 181bc 18.8a 49.6abc 20.8cd
中麦4072 Zhongmai 4072 3.4bc 16.0c 175bcd 17.1ab 50.6a 20.4cd
邢麦20 Xinmai 20 3.5b 19.9a 224a 14.0c 39.2d 26.2a
均值 Mean 3.5A 17.2A 191A 16.7A 47.0A 22.2A
对照 CK 临农12 Linmai 12 3.6ab 18.1ab 189b 15.8bc 44cd 23.8ab
BY35 A19 3.4b 15.3c 164cd 17.8ab 51.3a 20.8cd
沧麦13 Cangmai 13 3.7a 16.0c 178bcd 16.4ab 44.2bcd 22.9bc
鲁研9088 Luyan 908 3.2c 14.8c 157d 16.4b 50.4ab 20.3d
均值 Mean 3.5A 16.1A 172A 16.6A 47.5A 22.0A
黄淮南片SHH 高产 H 濮麦168 Pumai 168 3.7Aa 18.6Aa 189Aa 17.5Aa 47.5Aa 21.9Ab
对照 CK 华麦226 Huamai 226 3.8a 16.5ab 179a 17.1a 44.7ab 22.9ab
西农615 Xinong 615 3.8a 16.1b 194a 15.7a 41.2b 25.0a
百农5822 Bainong 5822 3.8a 16.1b 180a 16.3a 42.6ab 24.2ab
均值 Mean 3.8A 16.2B 184A 16.4A 42.8A 24.0A
长江中下游YR 高产 H 华麦7号 Huamai 7 3.6b 15.3a 127a 19.0a 53.1a 20.1a
对照 CK 扬麦10-120 Yangmai 10-120 3.9a 14.0b 112a 20.8a 53.4a 20.4a
[1] GODFRAY H C, BEDDINGTON J R, CRUTE I R, HADDAD L, LAWRENCE D, MUIR J F, PRETTY J, ROBINSON S, THOMAS S M, TOULMIN C . Food security: The challenge of feeding 9 billion people. Science, 2010, 327:812-818.
[2] MARCO S, MICHAEL C, DANIEL M D, KEITH W, BENJAMIN L B, WIM V, SONJA J V, MARIO H, KIMBERLY M C . Options for keeping the food system within environmental limits. Nature, 2018,562:519-524.
[3] 中华人民共和国国家统计局. 中国统计年鉴. 北京:中国农业出版社, 2015.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing:China Agriculture Press, 2015. (in Chinese)
[4] LU C H, FAN L . Winter wheat yield potentials and yield gaps in the North China Plain. Field Crops Research, 2013, 143:98-105.
[5] VAN I M K, CASSMAN K G, GRASSINI P, WOLF J, TITTONELL P, HOCHMAN Z . Yield gap analysis with local to global relevance-A review. Field Crops Research, 2013,143:4-17.
[6] BORG J, KIAR L P, LECARPETIER C, GOLDRINGER I, GAUFFRETEAU A, SAINT J S, BAROT S, ENJABERT J . Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps. Field Crops Research, 2018,221:298-313.
[7] HAJJARPOR A, SOLTANI A, ZEINALI E, KASHIRI H, AYNEHBAND A, VADEZ V . Using boundary line analysis to assess the on-farm crop yield gap of wheat. Field Crops Research, 2018,225:64-73.
[8] SHEARMAN V J, SYLVESTER B R, SCOTT R K, FOULKES M J . Physiological processes associated with wheat yield progress in the UK. Crop Science, 2005,45:175-184.
[9] LYNCH J P, DOYLE D, MCAULEY S, MCHARDY F, DANNEELS Q, BLACK L C, WHITE E M, SPINK J . The impact of variation in grain number and individual grain weight on winter wheat yield in the high yield potential environment of Ireland. European Journal of Agronomy, 2017,87:40-49.
[10] AISAWI K A B, REYNOLDS M P, SINGH R P, FOULKES M J . The Physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 2015,55:1749-1764.
[11] 张俊灵, 闫金龙, 张东旭, 孙美荣, 常海霞 . 北部冬麦区旱地小麦品种的演变规律. 麦类作物学报, 2017,37:1027-1024.
ZHANG J L, YAN J L, ZHANG D X, SUN M R, CHANG H X . Evolution rule of wheat varieties in dryland of Northern Winter Wheat Zone. Journal of Triticeae Crops, 2017, 37:1017-1024. (in Chinese)
[12] 田纪春, 邓志英, 胡瑞波, 王延训 . 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006,32:1699-1705.
TIAN J C, DENG Z Y, HU R B, WANG Y X . Yield components of super cheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agronomica Sinica, 2006,32:1699-1705. (in Chinese)
[13] 雷振生, 林作揖, 杨会民, 陈钦高 . 黄淮麦区高产小麦品种的产量结构及其生理基础的研究. 华北农学报, 1996,11(1):70-75.
LEI Z S, LIN Z Y, YANG H M, CHEN Q G . The yield components and physiological basic of high-yielding wheat cultivars in Huang-Huai wheat production regions. Acta Agriculturae Boreali Sinica, 1996,11(1):70-75. (in Chinese)
[14] 高国良, 陈贵菊, 王福玉, 刘兴强, 王秋云, 尹逊利 . 黄淮北片小麦参试品种(系)产量构成因素及其相互关系分析. 山东农业科学, 2016,48(8):15-18.
GAO G L, CHEN G J, WANG F Y, LIU X Q, WANG Q Y, YIN X L . Analysis on yield components and their correlations of wheat varieties (lines) in North Huanghe-Huaihe Region. Shandong Agricultural Sciences, 2016,48(8):15-18. (in Chinese)
[15] 刘朝辉, 李江伟, 乔庆洲, 蒋志凯, 马华平, 付亮, 赵宗武 . 黄淮南片小麦产量构成因素的相关分析. 作物杂志, 2013(5):58-61.
LIU Z H, LI J W, QIAO Q Z, JIANG Z K, MA H P, FU L, ZHAO Z W . The related analysis on the yield components of wheat in the South Huang-Huai wheat production regions. Crops, 2013(5):58-61. (in Chinese)
[16] 王美芳, 雷振生, 吴政卿, 杨会民, 杨攀, 徐福新, 刘加平 . 黄淮冬麦区小麦产量及品质改良现状分析. 麦类作物学报, 2013,33(2):290-295.
WANG M F, LEI Z S, WU Z Q, YANG H M, YANG P, XU F X, LIU J P . Current situation of wheat yield and quality improvement in Huang-Huai winter wheat region. Journal of Triticeae Crops,2013, 33(2):290-295. (in Chinese)
[17] 姚国才, 马鸿翔, 姚金保, 张鹏, 杨学明 . 长江中下游地区小麦产量育种方向及策略探讨. 中国农学通报, 2010,26(17):168-171.
YAO G C, MA H X, YAO J B, ZHANG P, YANG X M . The breeding strategies and direction on wheat yield in region of middle and lower reaches of the Yangtze River. Chinese Agricultural Science Bulletin, 2010,26(17):168-171. (in Chinese)
[18] 王红光, 李东晓, 李雁鸣, 李瑞奇 . 河北省10 000 kg·hm -2以上冬小麦产量构成及群个体生育特性 . 中国农业科学, 2015,48(14):2718-2729.
WANG H G, LI D X, LI Y M, LI R Q . Yield components and population and individual characteristics of growth and development of winter wheat over 10000 kg·hm -2 in Hebei province. Scientia Agricultura Sinica, 2015, 48(14):2718-2729. (in Chinese)
[19] GAJU O, DESILVA J, CARVALHO P, HAWKESFORD M J, GRIFFITHS S, GREENLAND A, FOULKES M J . Leaf photosynthesis and associations with grain yield, biomass and nitrogen-use efficiency in landraces, synthetic-derived lines and cultivars in wheat. Field Crops Research, 2016,193:1-15.
[20] 周玲, 王朝辉, 李可懿, 顾炽明, 李生秀 . 不同产量水平旱地冬小麦品种的氮磷利用差异分析. 土壤, 2011,43(4):558-564.
ZHOU L, WANG Z H, LI K Y, GU C M, LI S X . Differences in nitrogen and phosphorus utilization in winter wheat cultivars with different yield levels. Soils, 2011,43(4):558-564. (in Chinese)
[21] 阳显斌, 张锡洲, 李廷轩, 宋潇, 胡宏松 . 磷素子粒生产效率不同的小麦品种磷素吸收利用差异. 植物营养与肥料学报, 2011,17(3):525-531.
YANG X B, ZHANG X Z, LI T X, SONG X, HU H S . Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield. Journal of Plant Nutrition and Fertilizer,2011, 17(3):525-531. (in Chinese)
[22] 韩燕来, 刘新红, 王宜伦, 谭金芳 . 不同小麦品种钾素营养特性的差异. 麦类作物学报, 2006,26(1):99-103.
HAN Y L, LIU X H, WANG Y L, TAN J F . Potassium nutrition characteristics of different wheat varieties. Journal of Triticeae Crops, 2006,26(1):99-103. (in Chinese)
[23] 黄芳, 韩晓宇, 王峥, 杨学云, 张树兰 . 不同年代冬小麦品种的产量和磷生理效率对土壤肥力水平的响应. 植物营养与肥料学报, 2016,22(5):1222-1231.
HUANG F, HAN X Y, WANG Z, YANG X Y, ZHANG S L . Responses of grain yield and phosphorus physiological efficiency of wheat cultivars released in different decades to soil fertility levels. Journal of Plant Nutrition and Fertilizer, 2016,22(5):1222-1231. (in Chinese)
[24] 黄倩楠, 王朝辉, 黄婷苗, 侯赛斌, 张翔, 马清霞, 张欣欣 . 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018,51(14):2722-2734.
HAUNG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X . Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018, 51(14):2722-2734. (in Chinese)
[25] 何刚, 王朝辉, 李富翠, 戴健, 李强, 薛澄, 曹寒冰, 王森, 刘慧, 罗来超, 黄明 . 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响. 中国农业科学, 2016,49(9):1657-1671.
HE G, WANG Z H, LI F C, DAI J, LI Q, XUE C, CAO H B, WANG S, LIU H, LUO L C, HUANG M . Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland. Scientia Agricultura Sinica, 2016,49(9):1657-1671. (in Chinese)
[26] REYNOLDS M, FOULKES J, FURBANK R, GRIFFITHS S, KING J, MURCHIE E, PARRY M, SLAFER G . Achieving yield gains in wheat. Plant, Cell and Environment, 2012,35(10):1799-823.
[27] WU W, LI C J, MA B L, SHAH F, LIU Y, LIAO Y C . Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. Euphytica, 2014, 196:155-168.
[28] ZHANG Y, XU W G, WANG H W, DONG H B, QI X L, ZHAO M Z, FANG Y H, GAO C, HU L . Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Field Crops Research, 2016,199:117-128.
[29] ZHANG W Y, WANG B Y, LIU B H, PANG Z J, WANG X S, ZHANG X Y, MEI X R . Performance of new released winter wheat cultivars in yield: A case study in the North China Plain. Agronomy Journal, 2016, 108:1346-1355.
[30] 茹振钢, 冯素伟, 李淦 . 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015,48(17):3388-3393.
RU Z G, FENG S W, LI G . High-yield potential and effective ways of wheat in Yellow & Huai River Valley facultative winter wheat region. Scientia Agricultura Sinica, 2015,48(17):3388-3393. (in Chinese)
[31] VALVO P J L, MIRALLES D J, SERRAGO R A . Genetic progress in Argentine bread wheat varieties released between 1918 and 2011: Changes in physiological and numerical yield components. Field Crops Research, 2018,221:314-321.
[32] 宋健民, 戴双, 李豪圣, 程敦公, 刘爱峰, 曹新有, 刘建军, 赵振东 . 山东省近年来审定小麦品种农艺和品质性状演变分析. 中国农业科学, 2013,46(6):1114-1126.
SONG J M, DAI S, LI H S, CHENG D G, LIU A F, CAO X Y, LIU J J, ZHAO Z D . Evolution of agronomic and quality traits of wheat cultivars released in Shandong Province recently. Scientia Agricultura Sinica, 2013,46(6):1114-1126. (in Chinese)
[33] 孙亚辉, 李瑞奇, 党红凯, 张馨文, 李慧玲, 李雁鸣 . 河北省超高产冬小麦群体和个体生育特性及产量结构特点. 河北农业大学学报, 2007,30(3):1-6.
SUN Y H, LI R Q, DANG H K, ZHANG X W, LI H L, LI Y M . Population and individual characteristics of growth and development and yield components of super-high-yielding winter wheat in Hebei Province. Journal of Agricultural University of Hebei, 2007, 30(3):1-6. (in Chinese)
[34] SADRAS V O, LAWSON C, . Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop and Pasture Science, 2011, 62:533-549.
[35] STEINFORT U, FUKAI S, TREVASKIS B, GLASSOP D, CHAN A, DRECCER M F . Vernalisation and photoperiod sensitivity in wheat: The response of floret fertility and grain number is affected by vernalisation status. Field Crops Research, 2017, 203:2433-2455.
[36] 段国辉, 高海涛, 张学品, 吴少辉, 温红霞, 余四平, 马飞, 李团飞 . 河南省近15年小麦区试高产品种产量构成分析. 河南农业科学, 2006,10:38-40.
DUAN G H, GAO H T, ZHANG X P, WU S H, WEN H X, YU S P, MA F, LI T F , Analysis on the yield components of trial high-yield varieties in wheat area in Henan Province in the past 15 years. Henan Agricultural Sciences, 2006,10:38-40. (in Chinese)
[37] SADRAS V O, SLAFER G A . Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crops Research, 2012,127:215-224.
[38] 俞金龙 . 长江中下游麦区不同产量水平下的小麦产量结构分析. 麦类作物学报, 1995,6:40-41.
YU J L . The structure analysis of wheat at different yield levels in the middle and lower of the Yangtze River wheat production regions. Journal of Triticeae Crops, 1995,6:40-41. (in Chinese)
[39] TIAN Z W, LI Y, LIANG Z H, GUO H, CAI J, JIANG D, CAO W X, DAI T B . Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Research, 2016,196:251-260.
[40] ZHOU Y, ZHU H Z, CAI S B, HE Z H, ZHANG X K, XIA X C, ZHANG G S . Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Euphytica, 2007,157:465-473.
[41] FISCHER R A . Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Science, 1985,105:447-461.
[42] MATTHIEU B, VINCENT A, MARYSE B H, EMMANUEL H, JEAN-MARIE M, MARIE-HELENE J, PJILIPPE G, PIERRE M, JACQUES L G . Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. Journal of Experimental Botany, 2010, 61(15):4303-4312.
[43] GAJU O, ALLARD V, MARTRE P, SNAPE J W, HEUMEZ E, LEGOUIS J, MOREAU D, BOGARD M, GRIFFITHS S, ORFORD S, HUBBART S, FOULKES M J . Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research, 2011,123:139-152.
[44] 王小纯, 王晓航, 熊淑萍, 马新明, 丁世杰, 吴克远, 郭建彪 . 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征. 中国农业科学, 2015,48(13):2569-2579.
WANG X C, WANG X H, XIONG X P, MA X M, DING S J, WU K Y, GUO J B . Differences in nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen levels. Scientia Agricultura Sinica, 2015,48(13):2569-2579. (in Chinese)
[45] YASEEN M, MALHI S S . Variation in yield, phosphorus uptake, and physiological efficiency of wheat genotypes at adequate and stress phosphorus levels in soil. Communications in Soil Science and Plant Analysis, 2009, 40(19/20):3104-3120.
[46] 党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 孟建 . 超高产冬小麦对钾的吸收、积累和分配. 植物营养与肥料学报, 2013,19(2):247-287.
DANG H K, LI R Q, LI Y M, SUN Y H, ZHANG X W, MENG J . Absorption, accumulation and distribution of potassium in super highly-yielding winter wheat. Journal of Plant Nutrition and Fertilizer, 2013,19(2):247-287. (in Chinese)
[47] 李见云, 谭金芳, 介晓磊, 侯彦林, 黄玉波 . 黄淮麦区钾高效小麦品种的筛选. 麦类作物学报, 2003,23(3):49-52.
LI J Y, TAN J F, JIE X L, HOU Y L, HUANG Y B . Screening of high potassium efficiency wheat varieties in Huang-Huai wheat growing region. Journal of Triticeae Crops, 2003,23(3):49-52. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!