Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4322-4332.doi: 10.3864/j.issn.0578-1752.2019.23.013

• SPECIAL FOCUS: MOLECULAR BIOLOGY OF APPLE • Previous Articles     Next Articles

Bioinformatics and Expression Analysis of the LIM Gene Family in Apple

YUAN GaoPeng,HAN XiaoLei,BIAN ShuXun,ZHANG LiYi,TIAN Yi,ZHANG CaiXia(),CONG PeiHua()   

  1. Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture/National Apple Breeding Center, Xingcheng 125100, Liaoning
  • Received:2019-03-19 Accepted:2019-06-19 Online:2019-12-01 Published:2019-12-01
  • Contact: CaiXia ZHANG,PeiHua CONG E-mail:cxzhang-bj@163.com;congph@163.com

Abstract:

【Objective】 In order to lay a basis for the further functional research and application of MdLIM genes, this study were carried out to analyze the bioinformatics (e.g promoter action element, conserved domain, gene clustering, gene structure, chromosome localization) and expression of the LIM gene family in apple. 【Method】Based on the apple genome database GDR and PLAZA, the members of LIM gene were identified. The MdLIM amino acid sequence prediction, subcellular localization prediction, LIM domain analysis, and phylogenetic tree the gene structure were completed by ExPASy Proteomics Server, Cell-PLoc, CD-Search Tool, MEGA7, and GSDS, respectively. In addition, the expression pattern of MdLIM genes in different tissues and in peels with different degree of fruit russeting in samples was analyzed by real-time qRT-PCR.【Result】A total of eleven MdLIM genes were identified from apple genome. These MdLIM proteins contained 96-222 amino acid residues with isoelectric points ranging from 6.14 to 9.01. The results of subcellular localization showed that the apple LIM proteins were distributed in the nucleus. Analysis of promoter showed these 11 MdLIM genes contained cis-acting elements related to hormone responses, environmental adaptability and adversity induction. Conserved domains showed that ten MdLIM proteins had double LIM domains except MdLIM8. According to the phylogeny relationship, MdLIM genes were divided into four categories. The expression patterns of the 11 MdLIM genes in flowers, leaves, fruit peels and stems were determined by real-time RT-PCR, and the results showed that their diverse and specific expression could be detected in all of the four tissues, suggesting that they might play different roles in different tissues. 【Conclusion】Eleven MdLIM genes were identified from the whole genome of apple, and they could be divided into four groups, and distributed on 7 chromosomes with diverse and specific tissues expression patterns.

Key words: apple, genome-wide, LIM family, bioinformatics, expression analysis

Table 1

Primers of fluorescent quantitative PCR"

基因 Gene 上游引物Forward primer (5′-3′) 下游引物Reverse primer (5′-3′)
MdLIM1 ATGCAGCGCCTGTGATAAGA GCTCGAAATGAGGTTTGCAGT
MdLIM2 GCTACTTGTGGTAAAACCGCT CCAAAGCCGCGTAGTTTGAG
MdLIM3 ATGCCAAGTCAGTCTCAAACT TGGTATGGAGTCCCGTTG
MdLIM4 GGGACCGTAGACAAATGTGC AGTTGGGCAAAGTGGTGCTT
MdLIM5 AAAACTGTTCGAGAAAGATCCG GAAGAGTTGGCTATGGTGATGC
MdLIM6 GACAGTCTATCCGCTGGAGA ACGATGAATGTGTAAGGGCA
MdLIM7 GATGGGATTTCCTACCACAA CAGTCTCCTTGAACAGTTGCT
MdLIM8 TCTCCTTTCTCAGGGACACC GCACTTATCTCTGGTTCCACC
MdLIM9 TGCCTACCATAAGACCTGCT TCTCCTTGAAGAGTTGCTCG
MdLIM10 ACTAGTTCCAGTACACAGACCAAC CTCCATGAGTGCACCGGAAA
MdLIM11 TCTACCACAAAGCCTGCTTCC CAAGACTGCCGGTTCTTTTGA
MdActin TGACCGAATGAGCAAGGAAATTACT TACTCAGCTTTGGCAATCCACATC

Table 2

The information of LIM gene family in apple"

基因
Gene
基因登录号
Gene accession No.
染色体定位
Chromosome location
大小
Size (aa)
分子量
Molecular weight (D)
等电点
Isoelectric point
亚细胞定位
Subcellular Localization
MdLIM1 MD01G1054500 Chr01:15895562..15897359 219 23939.82 6.14 细胞核Nucleus
MdLIM2 MD01G1145700 Chr01:25554814..25556454 199 21649.78 9.01 细胞核Nucleus
高尔基体Golgi apparatus
MdLIM3 MD05G1101500 Chr05:20964629..20966107 197 22242.34 8.73 细胞核Nucleus
MdLIM4 MD06G1078000 Chr06:19291196..19292843 213 23595.59 7.51 细胞核Nucleus
MdLIM5 MD06G1178800 Chr06:31881986..31883872 188 21297.27 8.86 细胞核Nucleus
MdLIM6 MD07G1140900 Chr07:20424546..20426430 221 24195.19 6.31 细胞核Nucleus
MdLIM7 MD07G1212800 Chr07:29070702..29074084 200 21720.86 9.01 细胞核Nucleus
MdLIM8 MD08G1081300 Chr08:6745950..6747349 96 10755.12 7.03 细胞核Nucleus
MdLIM9 MD14G1098800 Chr14:15093296..15094757 222 24598.9 8.49 细胞核Nucleus
MdLIM10 MD14G1185200 Chr14:27756572..27758485 188 21254.15 8.77 细胞核Nucleus
MdLIM11 MD15G1068200 Chr15:4725341..4726746 195 21931.05 8.87 细胞核Nucleus
高尔基体Golgi apparatus

Fig. 1

The motifs of LIM1 and LIM2"

Fig. 2

Conserved Domains of MdLIM proteins"

Fig. 3

Clustering Analysis of Promoter Elements based on database of GDDH13 apple genome"

Fig. 4

The phylogenetic tree of LIM family"

Fig. 5

The gene structures of LIM family"

Fig. 6

Genetic map position of apple LIM genes"

Fig. 7

Relative expression of MdLIMs in different tissues of Golden Delicious apple Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 8

The expression of LIM in peel of different varieties The Macspur represent Macspur fruit, GD T represents bagging Golden Delicious fruit, GD CK represents non-bagged Golden Delicious fruit, Starspur GD represents Starspur Golden Delicious fruit"

[1] WAY J C, CHALFIE M . mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell, 1988,54:5-16.
doi: 10.1016/0092-8674(88)90174-2 pmid: 2898300
[2] FREYD G, KIM S K, HORVITZ H R . Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature, 1990,344(6269):876-879.
doi: 10.1038/344876a0 pmid: 1970421
[3] KARLSSON O, THOR S, NORBERG T, OHLSSON H, EDLUND T . Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo-and a Cys-His domain. Nature, 1990,344(6269):879-882.
doi: 10.1038/344879a0 pmid: 1691825
[4] MÜLLER L, XU G, WELLS R, HOLLENBERG C P, PIEPERSBERG W . LRG1 is expressed during sporulation in Saccharomyces cerevisiae and contains motifs similar to LIM and rho/rac GAP domains. Nucleic Acids Research, 1994,22(15):3151-3154.
doi: 10.1093/nar/22.15.3151 pmid: 8065929
[5] MUNDEL C, BALTZ R, ELIASSON A, BRONNER R, GRASS N, KRÄUTER R, EVRARD J U, STEINMETZ A . A LIM-domain protein from sunflower is localized to the cytoplasm and/or nucleus in a wide variety of tissues and is associated with the phragmoplast in dividing cells. Plant Molecular Biology, 2000,42(2):291-302.
doi: 10.1023/A:1006333611189
[6] HICKE L, SCHUBERT H L, HILL C P . Ubiquitin-binding domains. Biochemical Journal, 2005,6(8):610-621.
doi: 10.1042/BST20190869 pmid: 31829417
[7] 丁锡强, 宫国钦, 高峰, 杨金玲 . 2008年招远市苹果果锈病产生的气象条件分析. 山东气象, 2008(1):24-27.
DING X Q, GONG G Q, GAO F, YANG J L . Weather conditions of apple rust disease occurring in 2008 in Zhaoyuan County. Journal of Shandong Meteorology, 2008(1):24-27. (in Chinese)
[8] LASHBROOKE J, COHEN H, SAMOCHA D L, TZFADIA O, PANIZEL I I, ZEISLER V, MASSALHA H, STERN A, TRAINOTTI L, SCHREIBER L, COSTA F, AHARONIA A . MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. The Plant Cell, 2016,28:2097-2116.
doi: 10.1105/tpc.16.00490 pmid: 27604696
[9] KAWAOKA A, EBINUMA H . Transcriptional control of lignin biosynthesis by tobacco LIM protein. Phytochemistry, 2001,57(7):1149-1157.
doi: 10.1016/s0031-9422(01)00054-1 pmid: 11430987
[10] 李彤 . 高梁SbLIM1对木质素合成的转录调控及互作蛋白识别研究[D]. 济南: 山东大学, 2017.
LI T . The transcriptional regulation of lignin biosynthesis and the interaction protein recognition by sorghum SbLIM1[D]. Jinan: Shandong University, 2017. (in Chinese)
[11] SADLER I, CRAWFORD A W, MICHELSEN J W, BECKERLE M C . Zyxin and cCRP: Two interactive LIM domain proteins associated with the cytoskeleton. The Journal of Cell Biology, 1992,119(6):1573-1587.
doi: 10.1083/jcb.119.6.1573 pmid: 1469049
[12] 杨洋, 李波, 胡文冉, 张经博, 范玲 . 棉花LIM蛋白基因家族的进化及表达特征分析. 植物生理学报, 2015,12:2133-2142.
YANG Y, LI B, HU W R, ZHANG J B, FAN L . Evolution and expression analysis of the LIM protein gene family in cotton. Plant Physiology Journal, 2015,12:2133-2142. (in Chinese)
[13] BALTZ R, DOMON C, PILLAY D T, STEINMETZ A . Characterization of a pollen-specific cDNA from sunflower encoding a zinc finger protein. Plant Journal, 1992,2(5):713-721.
pmid: 1302629
[14] BALTZ R, EVRARD J L, DOMON C, STEINMETZ A . A LIM motif is present in a pollen-specific protein. The Plant Cell, 1992,4(12):1465-1466.
doi: 10.1105/tpc.4.12.1465 pmid: 1467648
[15] THOMAS C, HOFFMANN C, DIETERLE M, VANTROYS M, AMPE C, STEINMETZ A . Tobacco WLIM1 is a novel F-actin binding proteininvolved in actin cytoskeleton remodeling. The Plant Cell, 2006,18(9):2194-2206.
doi: 10.1105/tpc.106.040956 pmid: 16905656
[16] PAPUGA J, HOFFMANN C, DIETERLE M, MOES D, MOREAU F, THOLL S, STEINMETZ A, THOMAS C . Arabidopsis LIM proteins: A family of actin bundlers with distinct expression patterns and modes of regulation. The Plant Cell, 2010,22(9):3034-3052.
doi: 10.1105/tpc.110.075960 pmid: 20817848
[17] 罗明, 肖月华, 侯磊, 罗小英, 李德谋, 裴炎 . 棉花LIM结构域基因(GhLIM1)的克隆和表达分析. 遗传学报, 2003,30(2):175-182.
pmid: 12776607
LUO M, XIAO Y H, HOU L, LUO X Y, LI D M, PEI Y . Cloning and expression analysis of a LIM-Domain protein gene from cotton ( Gossypium hirsuturm L.). Acta Genetica Sintica, 2003,30(2):175-182. (in Chinese)
pmid: 12776607
[18] HAN L B, LI Y B, WANG H Y, WU X M, LI C L, LUO M, WU S J, KONG Z S, PEI Y, JIAO G L, XIA G X . The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 2013,25(11):4421-4438.
doi: 10.1105/tpc.113.116970 pmid: 24220634
[19] LI Y, JIANG J, LI L, WANG X L, WANG N N, LI D D, LI X B . A cotton LIM, domain-containing protein (GhWLIM5) is involved in bundling actin filaments. Plant Physiology Biochemistry, 2013,66:34-40.
doi: 10.1016/j.plaphy.2013.01.018 pmid: 23466745
[20] ARNAUD D DÉJARDIN A, LEPLÉ J C, LESAGE-DESCAUSES M C, PILATE G . Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa. DNA Research, 2007,14(3):103-116.
doi: 10.1093/dnares/dsm013 pmid: 17573466
[21] WANG H J, WAN A R, JAUH G T . An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiology Journal, 2008,147(4):1619-1636.
doi: 10.1104/pp.108.118604 pmid: 18480376
[22] 吴瑞, 朱家红, 张全琪, 张治礼 . 巴西橡胶树LIM结构域基因克隆与生物信息学分析. 热带植物学报, 2010,1(1):62-65.
WU R, ZHU J H, ZHANG Q Q, ZHANG Z L . Cloning and bioinformatics analysis of a LIM domain protein gene from Hevea brasiliensis. Journal of tropical organisms, 2010,1(1):62-65. (in Chinese)
[23] 蔡兴怀 . 玉米全基因组LIM基因分析及其进化研究[D]. 合肥: 安徽农业大学, 2011.
CAI X H . Genome-wide analysis of LIM Genes and evolution pattens in Zea mays L[D]. Hefei: Shandong Agriculture University, 2011. (in Chinese)
[24] 张海燕, 李佐同, 赵长江, 杨克军, 王玉凤, 胡雪微, 赵莹 . 玉米LIM结构域蛋白基因家族分析. 玉米科学, 2013,21(3):40-47.
ZHANG H Y, LI Z T, ZHAO C J, YANG K J, WANG Y F, HU X W, ZHAO Y . Genome-wide analysis of LIM domain-containing protein gene family in maize. Journal of Maize Sciences, 2013,21(3):40-47. (in Chinese)
[25] 李亚 . 稻瘟病菌四个蛋白编码基因及Gγ亚基编码基因的生物学功能研究[D]. 杭州: 浙江大学, 2013.
LI Y . Functional analysis of four Lim protein encoding genes and Gγsubunit encoding gene in Magnaporthe oryzae[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[26] NIX D A, FRADELIZI J, BOCKHOLT S, MENICHI B, LOUVARD D, FRIEDERICH E, BECKERLE M C . Targeting of zyxin to sites of actin membrane interaction and to the nucleus. The Journal of Biological Chemistry, 2001,276:34759-34767.
doi: 10.1074/jbc.M102820200 pmid: 11395501
[27] MAUL R S, SONG Y, AMANN K J, GERBIN S C, POLLARD T D, CHANG D D . EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. The Journal of Cell Biology, 2003,160(6):399-407.
doi: 10.1083/jcb.200212057 pmid: 12566430
[28] LEGAY S, GUERRIERO G, ANDRE C, GUIGNARD C, COCCO E, CHARTON S, BOUTRY M, ROWLAND O, HAUSMAN J F . MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytologist, 2016,212:977-991.
doi: 10.1111/nph.14170 pmid: 27716944
[29] 聂继云, 董雅凤 . 果品质量安全标准与评价指标. 北京: 中国农业出版社, 2013.
NIE J Y, DONG Y F. Standards and Evaluation Indices for Truit Quality and Safety. Beijing: China Agriculture Press, 2013. (in Chinese)
[30] DACCORD N, CELTON J M, LINSMITH G, BECKER C, CHOISNE N, SCHIJLEN E, GEEST H, BIANCO L, MICHELETTI D, VELASCO R, PIERRO A D, GOUZY J, REES D J G, GUÉRIF P, MURANTY H, DUREL C E, LAURENS F, LESPINASSE Y, GAILLARD S, AUBOURG S, QUESNEVILLE H, WEIGEL D, WEG E, TROGGIO M, BUCHER E . High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017,49(7):1099-1106.
doi: 10.1038/ng.3886 pmid: 28581499
[31] PROOST S, BEL M V, VANEECHOUTTE D, VANDEPEER Y, INZE D, MUELLER-ROEBER B, VANDEPOELE K . PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research, 2014,43(1):974-981.
doi: 10.1093/nar/gku986 pmid: 25324309
[32] POOLE R L . The TAIR database. Methods Molecular Biology, 2007,406(406):179-402.
doi: 10.3390/biology8030063 pmid: 31470601
[33] ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, DECASTROE E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E . ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012,40:597-603.
doi: 10.1002/prca.201700069 pmid: 28975713
[34] STOTHARD P . The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques, 2000,28:1102-1104.
doi: 10.2144/00286ir01 pmid: 10868275
[35] CHEN C J, XIA R, CHEN H, HE Y H . TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 2018: 289660.
[36] TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S . MEGAS: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011,28(10):2731-2739.
doi: 10.1093/molbev/msr121
[37] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[38] 周喆, 张彩霞, 张利义, 王强, 李武兴, 田义, 丛佩华 . 苹果LysM基因家族的生物信息学及表达分析. 中国农业科学, 2013,47(13):2602-2612.
ZHOU Z, ZHANG C X, ZHANG L Y, WANG Q, LI W X, TIAN Y, CONG P H . Bioinformatics and expression analysis of the LysM gene family in apple. Scientia Agricultura Sinica, 2013,47(13):2602-2612. (in Chinese)
[39] HENG W, WANG Z T, JIANG X H, JIA B, LIU P, LIU L, YE Z F, ZHU L Y . The role of polyamines during exocarp formation in a russet mutant of ‘Dangshansuli’ pear (Pyrus bretschneideri Rehd.). Plant Cell Report, 2016,35:1841-1852.
doi: 10.1007/s00299-016-1998-7 pmid: 27255339
[40] WANG Y P, TAN X, PATERSON A H . Different patterns of gene structure divergence following gene duplication in Arabidopsis. Genomics, 2013,14:652.
doi: 10.1186/1471-2164-14-652 pmid: 24063813
[41] 范贝, 刘明晓, 李慧杰, 张雪, 王晓梅, 崔喜艳 . 拟南芥AAP基因家族的生物信息学分析. 生命的化学, 2015,36(3):372-378.
FAN B, LIU M X, LI H J, ZHANG X, WANG X M, CUI X Y . Bioinformatics analysis of AAP gene family in Arabidopsis thaliaha. Chemistry of Life, 2015,36(3):372-378. (in Chinese)
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[6] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[7] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[8] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[9] CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821.
[10] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[11] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[12] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[13] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[14] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[15] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!