Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 85-95.doi: 10.3864/j.issn.0578-1752.2022.01.008

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang

SONG BoWen1,2(),YANG Long2(),PAN YunFei2,LI HaiQiang2,LI Hao1,2,FENG HongZu1(),LU YanHui2()   

  1. 1College of Agronomy, Tarim University, Alar 843300, Xinjiang
    2State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2021-05-14 Accepted:2021-06-16 Online:2022-01-01 Published:2022-01-07
  • Contact: HongZu FENG,YanHui LU E-mail:499453107@qq.com;yanglong9005@163.com;fhzzky@163.com;luyanhui@caas.cn

Abstract:

【Objective】 Grapholitha molesta is an important fruit pest in apple orchards in southern Xinjiang, which seriously affects the yield and quality of apple. The influence of agricultural landscape configuration and composition on the population number of G. molesta in apple orchards was clarified to provide a theoretical basis for the rational design of agricultural landscape that reduces the harm of G. molesta under the adjustment of cropping structure in southern Xinjiang.【Method】 A total of 50 apple orchards were selected as experimental sites in Aksu area from 2017 to 2020. The landscape composition within a radius of 2.0 km of each site was investigated. The insect sex pheromone traps were used to investigate the population dynamics of G. molesta adult. Regression models of Shannon diversity index (SHDI), perimeter area ratio (PARA), edge density (ED), and the area proportion of non-crop habitats, host crops and other (non-host) crops in landscapes at four scales (0.5, 1.0, 1.5 and 2.0 km) were fitted with the number of adults of the first, second and third generations in apple orchards.【Result】 In the study area, the proportion of host crops was highest (45.7%-55.0%), followed by other crops (18.2%-21.0%) and non-crop habitats (13.5%-19.7%). There was a negative correlation between the abundance of the first generation adult and the proportion of other crops at 2.0 km scale (P=0.062). The abundance of the second generation was negatively correlated with other crops at four scales (0.5 km, P<0.001; 1.0 km, P<0.001; 1.5 km, P=0.028; 2.0 km, P=0.043), negatively correlated with the proportion of host crops at 1.0 and 1.5 km scales (1.0 km, P=0.026; 1.5 km, P=0.048), negatively correlated with the proportion of non-crop habitats at 0.5 and 1.0 km scales (0.5 km, P=0.023; 1.0 km, P=0.019), but positively correlated with Shannon diversity index (SHDI) (0.5 km, P<0.001; 1.0 km, P=0.005). The abundance of the third generation was negatively correlated with the proportion of non-crop habitats at 0.5 km scale (P<0.001).【Conclusion】 Increasing the proportion of host crops, other crops, and non-crop habitats within agricultural landscape decreased the occurrence of G. molesta in apple orchards. However, landscape diversity (Shannon diversity index) promoted the population number of G. molesta. Therefore, increasing the area of the other crops and non-crop habitats coupled with no mixed planting of host crops in landscapes could be beneficial to the management of G. molesta.

Key words: agricultural landscape, phytophagous insect, host plant, Grapholitha molesta, apple orchard

Fig. 1

Apple orchards for field trials in 2017-2020"

Fig. 2

The population dynamic of G. molesta in apple orchards during 2017-2020 The error value of the mark is the standard error. The vertical axis is the average number of adult G. molesta collected from 5 traps in each sampling date"

Table 1

The features of farmland landscape in Aksu"

景观参数
Landscape parameter
景观尺度
Scale
平均值
Mean
标准误
SEM
寄主植物Host crops 0.5 km 55.0% 2.7%
1.0 km 51.2% 2.5%
1.5 km 47.8% 2.4%
2.0 km 45.7% 2.4%
非作物生境Non-crop habitats 0.5 km 13.5% 1.4%
1.0 km 13.8% 1.3%
1.5 km 14.2% 1.3%
2.0 km 19.7% 1.2%
其他作物Other crops 0.5 km 18.2% 2.7%
1.0 km 19.0% 2.6%
1.5 km 20.7% 2.5%
2.0 km 21.0% 2.3%
香农多样性指数SHDI 0.5 km 1.6 0.05
1.0 km 1.8 0.05
1.5 km 1.9 0.05
2.0 km 2.0 0.05
周长面积比PARA (m/m2) 0.5 km 2370.0 215.9
1.0 km 2249.0 106.2
1.5 km 2012.0 64.9
2.0 km 1706.0 41.8
边缘密度ED (m/m2)
0.5 km 239.7 7.1
1.0 km 227.2 4.8
1.5 km 211.4 4.0
2.0 km 194.5 3.3

Table 2

Results of model average from competed models with ΔAICc<2 for the first generation"

尺度
Scale
变量
Variable
系数
Coefficient
标准误
SEM
校正标准误
Correction SEM
Z
Z value
P
P value
重要性
Importance
0.5 km Intercept -0.000 0.610 0.622 0.000 1.000
SHDI 0.262 0.170 0.173 1.513 0.130 0.507
Host crops -0.151 0.154 0.157 0.964 0.335 0.170
Other crops -0.140 0.204 0.208 0.671 0.502 0.141
1.0 km Intercept -0.000 0.595 0.607 0.000 1.000
Host crops -0.216 0.152 0.155 1.388 0.165 0.262
SHDI 0.250 0.204 0.207 1.207 0.228 0.313
ED 0.136 0.153 0.156 0.875 0.382 0.136
Other crops -0.231 0.242 0.247 0.934 0.350 0.108
1.5 km Intercept -0.000 0.602 0.614 0.000 1.000
Other crops -0.357 0.217 0.221 1.615 0.106 0.307
SHDI 0.347 0.229 0.232 1.496 0.135 0.468
Host crops -0.178 0.160 0.163 1.097 0.273 0.282
Non-crop habitats 0.110 0.154 0.157 0.701 0.483 0.098
2.0 km Intercept -0.000 0.616 0.629 0.000 1.000
Other crops -0.391 0.205 0.210 1.864 0.062 0.246
SHDI 0.338 0.228 0.231 1.462 0.144 0.373
Non-crop habitats 0.210 0.148 0.151 1.386 0.166 0.201
Host crops -0.192 0.153 0.156 1.234 0.217 0.180

Fig. 3

The effects of landscape variables on the first generation of G. molesta on a 2.0 km landscape scale The number of adults is normalized by BestNormalize () function. The same as Fig. 4-Fig. 8"

Table 3

Results of model average from competed models with ΔAICc<2 for the second generation"

尺度
Scale
变量
Variable
系数
Coefficient
标准误
SEM
校正标准误
Correction SEM
Z
Z value
P
P value
重要性
Importance
0.5 km Intercept -0.047 0.514 0.519 0.090 0.928
Other crops*** -0.258 0.062 0.062 4.124 0.000 1.000
Non-crop habitats * -0.146 0.063 0.064 2.279 0.023 1.000
SHDI*** 0.252 0.060 0.060 4.178 0.000 1.000
ED 0.046 0.049 0.049 0.923 0.356 0.336
1.0 km Intercept -0.054 0.513 0.518 0.104 0.917
Other crops*** -0.295 0.078 0.078 3.761 0.000 1.000
Non-crop habitats * -0.175 0.074 0.075 2.338 0.019 0.919
Host crops* -0.149 0.066 0.067 2.225 0.026 0.902
SHDI** 0.197 0.069 0.069 2.833 0.005 1.000
PARA -0.020 0.049 0.050 0.410 0.682 0.169
ED 0.007 0.047 0.047 0.155 0.877 0.156
1.5 km Intercept -0.047 0.479 0.483 0.098 0.922
Other crops* -0.167 0.075 0.076 2.197 0.028 0.897
Host crops* -0.140 0.071 0.071 1.974 0.048 0.749
SHDI 0.126 0.074 0.074 1.703 0.089 0.600
Non-crop habitats -0.069 0.079 0.080 0.860 0.390 0.247
PARA -0.033 0.057 0.057 0.568 0.570 0.214
ED 0.017 0.059 0.059 0.279 0.780 0.175
2.0 km Intercept -0.046 0.475 0.479 0.095 0.924
Other crops* -0.151 0.074 0.074 2.025 0.043 0.776
Host crops -0.137 0.070 0.070 1.954 0.051 0.796
SHDI 0.096 0.079 0.080 1.199 0.231 0.410
Non-crop habitats -0.056 0.059 0.060 0.948 0.343 0.283
PARA -0.039 0.056 0.056 0.696 0.486 0.220
ED -0.022 0.058 0.059 0.383 0.702 0.208

Fig. 4

The effects of landscape variables on the second generation of G. molesta on a 0.5 km landscape scale"

Fig. 5

The effects of landscape variables on the second generation of G. molesta on a 1.0 km landscape scale"

Fig. 6

The effects of landscape variables on the second generation of G. molesta on a 1.5 km landscape scale"

Fig. 7

The effects of landscape variables on the second generation of G. molesta on a 2.0 km landscape scale"

Table 4

Results of model average from competed models with ΔAICc<2 for the third generation"

尺度
Scale
变量
Variable
系数
Coefficient
标准误
SEM
校正标准误
Correction SEM
Z
Z value
P
P value
重要性
Importance
0.5 km Intercept 0.030 0.274 0.277 0.107 0.914
Other crops -0.253 0.164 0.165 1.528 0.126 0.655
Non-crop habitats *** -0.657 0.156 0.158 4.170 0.000 1.000
SHDI 0.266 0.142 0.143 1.857 0.063 0.412
1.0 km Intercept 0.024 0.168 0.169 0.145 0.885
Non-crop habitats -0.207 0.165 0.167 1.241 0.215 0.318
ED -0.115 0.138 0.139 0.826 0.409 0.176
Host crops -0.190 0.180 0.181 1.050 0.294 0.298
Other crops -0.284 0.178 0.180 1.580 0.114 0.139
1.5 km Intercept 0.025 0.164 0.166 0.148 0.882
ED -0.162 0.136 0.137 1.181 0.238 0.374
Non-crop habitats -0.145 0.145 0.146 0.989 0.322 0.323
Host crops -0.081 0.138 0.139 0.585 0.559 0.131
2.0 km Intercept 0.025 0.164 0.166 0.151 0.880
ED -0.217 0.140 0.142 1.530 0.126 0.580
Non-crop habitats -0.150 0.133 0.135 1.118 0.263 0.269
PARA 0.126 0.152 0.154 0.820 0.412 0.112
Host crops -0.099 0.137 0.138 0.716 0.474 0.093
Other crops -0.061 0.137 0.138 0.442 0.658 0.085

Fig. 8

The effects of landscape variables on the third generation of G. molesta on a 0.5 km landscape scale"

[1] KHEIRODIN A, CÁRCAMO H A, COSTAMAGNA A C. Contrasting effects of host crops and crop diversity on the abundance and parasitism of a specialist herbivore in agricultural landscapes. Landscape Ecology, 2020, 35(5): 1073-1087.
doi: 10.1007/s10980-020-01000-0
[2] TSCHARNTKE T, TYLIANAKIS J M, RAND T A, DIDHAM R K, FAHRIG L, BATÁRY P, BENGTSSON J, CLOUGH Y, CRIST T O, DORMANN C F, et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biological Reviews, 2012, 87(3): 661-685.
doi: 10.1111/brv.2012.87.issue-3
[3] 李叶晨, 郭雅洁, 翁小倩, 林先云, 池金良, 陈红英, 吴松青, 张飞萍. 景观格局对松褐天牛种群密度的影响. 林业科学, 2020, 56(8): 80-88.
LI Y C, GUO Y J, WENG X Q, LIN X Y, CHI J L, CHEN H Y, WU S Q, ZHANG F P. Influence of landscape patterns on population density of Monochamus alternatus (Coleoptera: Cerambycidae). Scientia Silvae Sinicae, 2020, 56(8): 80-88. (in Chinese)
[4] YANG L, LIU B, ZHANG Q, ZENG Y, PAN Y, LI M, LU Y. Landscape structure alters the abundance and species composition of early-season aphid populations in wheat fields. Agriculture, Ecosystems and Environment, 2019, 269: 167-173.
doi: 10.1016/j.agee.2018.07.028
[5] CHAPLIN-KRAMER R, O’ROURKE M E, BLITZER E J, KREMEN C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters, 2011, 14(9): 922-932.
doi: 10.1111/j.1461-0248.2011.01642.x
[6] YANG L, ZENG Y, XU L, LIU B, ZHANG Q, LU Y. Change in ladybeetle abundance and biological control of wheat aphids over time in agricultural landscape. Agriculture, Ecosystems and Environment, 2018, 255: 102-110.
doi: 10.1016/j.agee.2017.12.013
[7] YANG L, XU L, LIU B, ZHANG Q, PAN Y, LI Q, LI H, LU Y. Non-crop habitats promote the abundance of predatory ladybeetles in maize fields in the agricultural landscape of northern China. Agriculture, Ecosystems and Environment, 2019, 277: 44-52.
doi: 10.1016/j.agee.2019.03.008
[8] ARDANUY A, LEE M S, ALBAJES R. Landscape context influences leafhopper and predatory Orius spp. abundances in maize fields. Agricultural and Forest Entomology, 2018, 20(1): 81-92.
doi: 10.1111/afe.2018.20.issue-1
[9] SANTOIEMMA G, MORI N, TONINA L, MARINI L. Semi-natural habitats boost Drosophila suzukii populations and crop damage in sweet cherry. Agriculture, Ecosystems and Environment, 2018, 257: 152-158.
doi: 10.1016/j.agee.2018.02.013
[10] 阿布力孜·布力布力, 叶丽珍. 新疆特色林果业转型升级发展研究. 山西农业科学, 2017, 45(2): 297-300.
ABULIZI B, YE L Z. Study on transformation and upgrading development of Xinjiang characteristic forestry and fruit industry. Journal of Shanxi Agricultural Sciences, 2017, 45(2): 297-300. (in Chinese)
[11] 李雪冬, 李玉春, 姜中武. 新疆阿克苏地区苹果生产现状及发展前景. 烟台果树, 2020(3): 10-12.
LI X D, LI Y C, JIANG Z W. Present situation and development prospect of apple production in Aksu area of Xinjiang. Yantai Fruits, 2020(3): 10-12. (in Chinese)
[12] 顾沛雯, 辛明. 葡萄病理与昆虫学. 银川: 宁夏阳光出版社, 2018: 408.
GU P W, XIN M. Grape Pathology and Entomology. Yinchuan: Ningxia Sunshine Publishing House, 2018: 408. (in Chinese)
[13] 林伟丽, 于江南, 薛光华, 王永平. 新疆阿克苏地区苹果蠹蛾和梨小食心虫消长规律的研究. 新疆农业科学, 2006, 43(2): 100-102.
LIN W L, YU J N, XUE G H, WANG Y P. Study on population fluctuations of Cydia pomonella (L.) and Grapholitha molesta Busck in Aksy, Xinjiang. Xinjiang Agricultural Sciences, 2006, 43(2): 100-102. (in Chinese)
[14] 江世宏. 园林植物病虫害防治. 重庆: 重庆大学出版社, 2015: 326.
JIANG S H. Plant Pest Control in Gardens. Chongqing: Chongqing University Press, 2015: 326. (in Chinese)
[15] 帕热提·艾山. 阿克苏地区梨小食心虫发生规律及综合防治技术. 农村科技, 2020(4): 38-39.
PARETI A. Occurrence regularity and comprehensive control method of Grapholita molesta in Aksu area. Rural Science and Technology, 2020(4): 38-39. (in Chinese)
[16] 宋博, 丁圣彦, 赵爽, 李子晗, 侯笑云. 农业景观异质性对生物多样性及其生态系统服务的影响. 中国生态农业学报, 2016, 24(4): 443-450.
SONG B, DING S Y, ZHAO S, LI Z H, HOU X Y. Effects of agricultural landscape heterogeneity on biodiversity and ecosystem services. Chinese Journal of Eco-Agriculture, 2016, 24(4): 443-450. (in Chinese)
[17] 鲍晓文, 郑峰, 蔡明飞, 仵均祥. 补充营养对梨小食心虫成虫生殖及寿命的影响. 西北农林科技大学学报 (自然科学版), 2010, 38(8): 119-123.
BAO X W, ZHENG F, CAI M F, WU J X. Effects of complementary nutrients on adult’s reproduction and longevity of oriental fruit moth, Grapholitha molesta Busck. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(8): 119-123. (in Chinese)
[18] MYERS C T, HULL L A, KRAWCZYK G. Seasonal and cultivar- associated variation in oviposition preference of oriental fruit moth (Lepidoptera: Tortricidae) adults and feeding behavior of neonate larvae in apples. Journal of Economic Entomology, 2006, 99(2): 349-358.
doi: 10.1093/jee/99.2.349
[19] 徐瑞斌, 林硕, 田厚军, 陈艺欣, 赵建伟, 陈勇, 杨广, 魏辉. 不同营养源对小菜蛾成虫嗅觉行为、触角电位反应和繁殖力的影响. 福建农业学报, 2016, 31(2): 161-165.
XU R B, LIN S, TIAN H J, CHEN Y X, ZHAO J W, CHEN Y, YANG G, WEI H. Effect of adult feeding on the olfactory behavior, electroantennogram and fecundity of the diamondback moth, Plutella xylostella. Fujian Journal of Agricultural Sciences, 2016, 31(2): 161-165. (in Chinese)
[20] GREZ A A, ZAVIEZO T, MANCILLA A. Effect of prey density on intraguild interactions among foliar- and ground-foraging predators of aphids associated with alfalfa crops in Chile: A laboratory assessment. Entomologia Experimentalis et Applicata, 2011, 139(1): 1-7.
doi: 10.1111/eea.2011.139.issue-1
[21] 庾琴. 影响梨小食心虫暴发为害的主要因子及其寄主选择研究[D]. 太谷: 山西农业大学, 2019.
YU Q. Studies on main factors of outbreak damage of Grapholitha molesta Busck and host selection[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
[22] 潘云飞. 南疆农田景观组成与农药使用对棉田天敌发生及其控蚜功能的影响[D]. 北京: 中国农业科学院, 2020.
PAN Y F. Effects of landscape composition and pesticide application on natural enemies and their aphid biocontrol services in cotton fields in southern Xinjiang[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[23] 杨龙. 农田景观格局对华北地区小麦蚜虫天敌发生与控害的影响[D]. 北京: 中国农业科学院, 2016.
YANG L. Effects of landscape pattern on enemy abundance and its control of wheat aphids in northern China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[24] 何潭. 多样化农业生态系统在害虫治理中的作用调查. 西南农业学报, 1989, 2(1): 54-59.
HE T. Effects of the diversified agricultural ecosystems on pest management. Southwest China Journal of Agricultural Sciences, 1989, 2(1): 54-59. (in Chinese)
[25] 俞晓平, 胡萃, HEONG K L. 非作物生境对农业害虫及其天敌的影响. 中国生物防治, 1996, 12(3): 130-133.
YU X P, HU C, HEONG K L. The effects of non-crop habitats on crop pests and their natural enemies. Chinese Journal of Biological Control, 1996, 12(3): 130-133. (in Chinese)
[26] 侯茂林, 盛承发. 农田生态系统植物多样性对害虫种群数量的影响. 应用生态学报, 1999, 10(2): 245-250.
HOU M L, SHENG C F. Effect of plant diversity in agroecosystems on insect pest populations. Chinese Journal of Applied Ecology, 1999, 10(2): 245-250. (in Chinese)
[27] 武晶, 刘志民. 生境破碎化对生物多样性的影响研究综述. 生态学杂志, 2014, 33(7): 1946-1952.
WU J, LIU Z M. Effect of habitat fragmentation on biodiversity: A review. Chinese Journal of Ecology, 2014, 33(7): 1946-1952. (in Chinese)
[1] ZHENG XuSong, TIAN JunCe, YANG YaJun, ZHU PingYang, LI Kuan, XU HongXing, Lü ZhongXian. The feasibility of using graminaceous weeds as a functional plant for controlling rice leaffolder (Cnaphalocrocis medinalis) [J]. Scientia Agricultura Sinica, 2017, 50(21): 4129-4137.
[2] 吕Yi-1 , SONG Fu-Hai-1, LI Yuan-Yuan-2, SHEN Xiang-1, CHEN Xue-Sen-1, WU Shu-Jing-1, MAO Zhi-Quan-1. The Influence of Different Crops Rotation on the Environment of Soil and Physiological Characteristics of Malus hupehensis Rehd. Seedlings [J]. Scientia Agricultura Sinica, 2014, 47(14): 2830-2839.
[3] YIN Cheng-Miao-1, WANG Gong-Shuai-1, LI Yuan-Yuan-2, CHE Jin-Shui-3, SHEN Xiang-1, CHEN Xue-Sen-1, MAO Zhi-Quan-1, WU Shu-Jing-1. A New Method for Analysis of Phenolic Acids in the Soil —Soil from Replanted Apple Orchards was Investigated [J]. Scientia Agricultura Sinica, 2013, 46(21): 4612-4619.
[4] ZHANG Lin-Sen-1, LIU Fu-Ting-1, ZHANG Yong-Wang-1, LI Xue-Wei-1, LI Bing-Zhi-1, XU Sheng-Rong-1, GU Jie-2, HAN Ming-Yu-1. Effects of Different Mulching on Soil Organic Carbon Fractions and Soil Microbial Community of Apple Orchard in Loess Plateau [J]. Scientia Agricultura Sinica, 2013, 46(15): 3180-3190.
[5] WANG Jie,TIAN Guo-zhong,XU Qi-cong,LIU Yong-guang,GAO Rui,LI Xiang-dong,ZHU Xiao-ping
. Molecular Detection of Phytoplasma Strains From Several Plants Around Diseased Paulownia Infected with Paulownia Witches’-broom Phytoplasma
[J]. Scientia Agricultura Sinica, 2010, 43(2): 304-312 .
[6] GAO Mao-sheng,LIAO Yun-cheng,LI Xia,HUANG Jin-hui
. Effects of Different Mulching Patterns on Soil Water-Holding Capacity of Non-Irrigated Apple Orchard in the Weibei Plateau
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2080-2087 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!