Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4252-4264.doi: 10.3864/j.issn.0578-1752.2022.21.012

• HORTICULTURE • Previous Articles     Next Articles

Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology

GAO XiaoQin1(),NIE JiYun2(),CHEN QiuSheng3,HAN LingXi2,LIU Lu3,CHENG Yang1,LIU MingYu2   

  1. 1Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning
    2College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, Shandong
    3Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381
  • Received:2022-02-16 Accepted:2022-04-27 Online:2022-11-01 Published:2022-11-09
  • Contact: JiYun NIE E-mail:gaoxiaoqin5280@163.com;jiyunnie@163.com

Abstract:

【Objective】 The aim of this study was to explore the geographical characteristics of the mineral element content in Fuji apple peel and the feasibility of geographical origin tracing, to screen out effective discriminant indicators by combining multivariate statistical analysis, and to establish an origin tracing model, so as to realize Fuji apple geographical origin identification. 【Method】 The 124 Fuji apple samples were collected from the two main production areas in China, namely, the Bohai Bay production area and the Loess Plateau production area, which were taken as the research object. Inductively coupled plasma-mass spectrometry (ICP-MS) was applied to determine the contents of 31 mineral elements in the peel, including macroelements (Sodium (Na), Magnesium (Mg), Potassium (K), and Calcium (Ca)), microelements (Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Molybdenum (Mo), Cadmium (Cd), Antimony (Sb), Barium (Ba), Lead (Pb), and Uranium (U)), and rare earth elements (Yttrium (Y), Lanthanum (La), Caesium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), and Erbium (Er)). The independent samples t-test, principal component analysis (PCA), linear discriminant analysis, and orthogonal partial least squares discriminant analysis were conducted for geographical origin tracing. 【Result】 The mineral elements Mg, Ca, Na, Fe, Mn, Cu, Ba, Ni, Nd, Pb, V, Ce, Pr, La, Dy, U, Ho and Co in the peel samples from the Bohai Bay and Loess Plateau production areas were significantly different (P<0.05). The results of the PCA showed that the cumulative variance contribution rate of the 12 extracted principal components was 81%, which allowed the preliminary clustering of the samples from the two major production areas. After linear discriminant analysis, 10 mineral elements (Mg, Ca, Cr, Mn, Fe, Ni, Gd, Tb, Dy, and U) were screened as the ideal indicators to discriminate the geographical origin of Fuji apples in the two major production areas. The discriminant rate of the established discriminant model for the original whole was 92%, and the cross-validation discriminant rate was 89.5%. The orthogonal partial least squares discriminant analysis showed that five mineral elements, Co, Ba, Ho, Dy and Pr, played the key roles in the sample classification, and the accuracy of origin identification by the model could reach 98%, which realized the origin traceability of Fuji apples in the two production areas. 【Conclusion】 The peel of Fuji apple could be used as an effective site for origin tracing. The contents of rare earth elements Dy, Ho, Pr, Gd and Tb were important indicators for the geographical origin tracing of Fuji apples. This study provided a theoretical basis and technical support for Fuji apple origin tracing.

Key words: Fuji apple, multivariate statistical analysis, mineral elements, traceability, production area

Table 1

The list of Fuji apple sample sampling information"

序号
Serial number
产地
Place of origin
序号
Serial number
产地
Place of origin
序号
Serial number
产地
Place of origin
序号
Serial number
产地
Place of origin
1 烟台 Yantai 2 烟台 Yantai 3 威海 Weihai 4 威海 Weihai
5 威海 Weihai 6 威海 Weihai 7 威海 Weihai 8 威海 Weihai
9 威海 Weihai 10 威海 Weihai 11 威海 Weihai 12 威海 Weihai
13 泰安 Tai’an 14 泰安 Tai’an 15 泰安 Tai’an 16 泰安 Tai’an
17 泰安 Tai’an 18 泰安 Tai’an 19 泰安 Tai’an 20 泰安 Tai’an
21 泰安 Tai’an 22 泰安 Tai’an 23 青岛 Qingdao 24 青岛 Qingdao
25 青岛 Qingdao 26 保定 Baoding 27 保定 Baoding 28 保定 Baoding
29 保定 Baoding 30 保定 Baoding 31 保定 Baoding 32 保定 Baoding
33 保定 Baoding 34 保定 Baoding 35 衡水 Hengshui 36 衡水 Hengshui
37 石家庄 Shijiazhuang 38 石家庄 Shijiazhuang 39 石家庄 Shijiazhuang 40 石家庄 Shijiazhuang
41 石家庄 Shijiazhuang 42 石家庄 Shijiazhuang 43 石家庄 Shijiazhuang 44 石家庄 Shijiazhuang
45 石家庄 Shijiazhuang 46 营口 Yingkou 47 营口 Yingkou 48 营口 Yingkou
49 营口 Yingkou 50 营口 Yingkou 51 营口 Yingkou 52 营口 Yingkou
53 营口 Yingkou 54 营口 Yingkou 55 营口 Yingkou 56 渭南 Weinan
57 渭南 Weinan 58 渭南 Weinan 59 渭南 Weinan 60 渭南 Weinan
61 渭南 Weinan 62 渭南 Weinan 63 延安 Yan’an 64 延安 Yan’an
65 延安 Yan’an 66 延安 Yan’an 67 延安 Yan’an 68 延安 Yan’an
69 延安 Yan’an 70 延安 Yan’an 71 咸阳 Xianyang 72 咸阳 Xianyang
73 咸阳 Xianyang 74 咸阳 Xianyang 75 咸阳 Xianyang 76 咸阳 Xianyang
77 咸阳 Xianyang 78 咸阳 Xianyang 79 咸阳 Xianyang 80 平凉 Pingliang
81 平凉 Pingliang 82 平凉 Pingliang 83 平凉 Pingliang 84 平凉 Pingliang
85 平凉 Pingliang 86 天水 Tianshui 87 天水 Tianshui 88 天水 Tianshui
89 天水 Tianshui 90 天水 Tianshui 91 天水 Tianshui 92 天水 Tianshui
93 天水 Tianshui 94 天水 Tianshui 95 天水 Tianshui 96 运城 Yuncheng
97 运城 Yuncheng 98 运城 Yuncheng 99 运城 Yuncheng 100 运城 Yuncheng
101 运城 Yuncheng 102 运城 Yuncheng 103 运城 Yuncheng 104 运城 Yuncheng
105 运城 Yuncheng 106 晋中 Jinzhong 107 晋中 Jinzhong 108 晋中 Jinzhong
109 临汾 Linfen 110 临汾 Linfen 111 临汾 Linfen 112 临汾 Linfen
113 临汾 Linfen 114 临汾 Linfen 115 临汾 Linfen 116 三门峡 Sanmenxia
117 三门峡 Sanmenxia 118 三门峡 Sanmenxia 119 三门峡 Sanmenxia 120 三门峡 Sanmenxia
121 三门峡 Sanmenxia 122 三门峡 Sanmenxia 123 三门峡 Sanmenxia 124 三门峡 Sanmenxia

Table 2

Analysis of variance of mineral element contents (mg·kg-1) in Fuji apple peel from different producing areas"

元素 Element 渤海湾产区 Bohai Bay production area 黄土高原产区 The Loess Plateau production area
K 1811±441a 1710±302a
Mg 168.9±30.0a 159.7±18.6b
Ca 121.2±17.9b 155.4 ±32.1a
Na 10.61±6.11a 8.41±4.18b
Fe 6.16±1.78a 5.02±1.73b
Mn 1.60±0.63a 1.31±0.30b
Cu 0.70±0.45a 0.51±0.14b
Zn 0.61±0.15a 0.67±0.42a
Cr 0.23±0.14a 0.23±0.14a
Ba 0.19±0.09b 0.32±0.16a
Ni 0.07±0.04a 0.05±0.03b
Mo 0.03±0.02a 0.03±0.01a
Nd 0.013±0.017a 0.007±0.011b
Pb 0.013±0.006b 0.016±0.008a
As 0.0088±0.0139a 0.0063±0.0033a
V 0.0068±0.0054a 0.0049±0.0024b
Ce 0.0062±0.0035b 0.0118±0.0169a
Pr 0.0049±0.0082a 0.0019±0.0024b
La 0.0040±0.0026b 0.0093±0.0173a
Dy 0.0023±0.0029a 0.0010±0.0018b
Y 0.0018±0.0008a 0.0016±0.0010a
Sb 0.0012±0.0007a 0.0013±0.0007a
U 0.0012±0.0011a 0.0008±0.0006b
Cd 0.0010±0.0029a 0.0008±0.0005a
Ho 0.000697±0.001250a 0.000258±0.000503b
Gd 0.000589±0.000369a 0.000675±0.000722a
Sm 0.000439±0.000240a 0.000470±0.000420a
Er 0.000185±0.000101a 0.000176±0.000123a
Co 0.000143±0.000199a 0.000034±0.000027b
Eu 0.000109±0.000051a 0.000110±0.000069a
Tb 0.000089±0.000077a 0.000074±0.000060a

Table 3

Component matrix and the cumulative variance contribution rate of each variable in the first twelve principal components"

元素
Element
主成分 Principal component
1 2 3 4 5 6 7 8 9 10 11 12
Dy 0.793 -0.463 0.175 -0.070 0.062 0.125 0.018 0.024 -0.010 0.028 0.010 0.038
Nd 0.786 -0.423 0.100 -0.121 -0.021 0.145 -0.088 -0.008 0.021 0.032 0.023 -0.086
Er 0.754 0.214 0.012 -0.261 -0.070 -0.025 0.097 -0.074 -0.043 -0.143 -0.198 0.056
Ho 0.729 -0.436 0.132 -0.214 -0.045 0.112 -0.095 -0.012 -0.035 -0.049 0.237 0.016
Pr 0.691 -0.440 0.143 -0.231 -0.039 0.136 -0.108 0.007 0.009 -0.043 0.247 -0.034
Gd 0.668 -0.141 -0.169 -0.077 -0.184 0.232 0.027 -0.213 -0.045 -0.045 -0.054 -0.027
Fe 0.646 0.408 0.221 0.281 0.009 -0.224 0.030 -0.141 -0.068 0.038 0.002 -0.193
Y 0.611 0.604 -0.008 -0.142 -0.126 -0.113 -0.008 -0.002 0.076 -0.097 -0.225 -0.010
Eu 0.608 0.414 -0.142 0.041 -0.258 -0.396 -0.039 -0.185 0.046 -0.094 0.052 0.071
Tb 0.592 -0.313 -0.056 -0.095 -0.075 0.032 0.077 -0.111 -0.232 0.298 0.011 -0.019
V 0.567 0.014 0.171 0.432 0.217 -0.240 0.147 0.193 0.116 -0.079 0.011 0.012
Mg -0.232 0.640 0.305 -0.235 0.103 0.194 0.120 -0.160 -0.103 -0.119 0.247 -0.021
Na 0.144 0.586 0.411 0.052 -0.069 -0.027 -0.331 -0.018 0.066 0.193 0.008 -0.036
K -0.198 0.538 0.382 0.134 0.067 0.117 -0.205 -0.199 -0.128 -0.089 0.401 -0.085
Mn -0.082 0.525 0.414 -0.188 0.193 0.335 0.228 -0.165 0.034 -0.206 0.039 -0.076
Pb 0.263 0.495 -0.492 -0.042 0.269 0.241 -0.229 0.237 -0.139 -0.006 -0.177 0.117
Sm 0.416 0.477 -0.200 0.014 -0.146 -0.422 -0.142 -0.122 0.270 -0.233 0.013 -0.039
Sb 0.215 0.370 -0.330 0.192 0.216 0.183 -0.296 0.140 0.262 0.281 0.090 -0.028
Ca 0.183 0.310 -0.628 -0.433 0.162 -0.088 0.184 0.022 0.044 0.161 0.257 -0.031
Ba 0.071 0.262 -0.593 -0.294 0.164 -0.113 0.343 0.161 -0.030 0.065 0.408 -0.009
Cu 0.134 0.382 0.448 -0.099 -0.408 0.190 0.089 0.431 0.091 0.279 0.016 0.052
La 0.035 0.026 -0.430 0.417 -0.380 0.426 0.095 -0.170 0.182 -0.170 0.163 0.152
Ce 0.124 0.098 -0.438 0.523 -0.280 0.432 0.090 -0.150 0.141 -0.080 -0.020 0.054
Mo 0.363 0.160 -0.043 0.482 0.268 -0.146 0.301 0.315 -0.236 0.042 0.010 0.180
U 0.087 0.402 0.271 -0.178 -0.531 0.176 0.308 0.416 0.077 0.025 -0.035 0.060
Zn 0.171 0.332 -0.114 -0.328 0.453 0.346 0.146 -0.161 0.084 0.008 -0.431 -0.094
As 0.333 0.284 0.002 0.105 0.192 0.193 -0.550 0.148 -0.380 -0.070 0.067 0.285
Ni 0.151 -0.120 0.255 0.041 0.365 0.043 -0.090 -0.080 0.676 0.325 0.084 0.103
Cr 0.229 0.231 0.051 0.433 0.024 0.072 0.291 -0.290 -0.287 0.486 -0.024 -0.269
Cd 0.254 -0.167 0.000 0.264 0.242 0.160 0.016 0.409 0.091 -0.384 0.061 -0.575
Co 0.263 -0.097 0.411 0.164 0.401 0.007 0.393 -0.097 0.068 -0.188 0.055 0.444
特征值Eigenvalue 6.070 4.373 2.826 2.039 1.773 1.501 1.376 1.189 1.110 1.052 0.094 0.854
方差贡献率
Variance contribution rate (%)
19.58 14.11 9.12 6.58 5.72 4.84 4.44 3.83 3.58 3.39 3.04 2.76
累计贡献率
Cumulative
variance (%)
19.58 33.69 42.81 49.39 55.11 59.95 64.39 68.22 71.80 75.19 78.23 80.99

Fig. 1

Standardized score chart of the first three principal components"

Table 4

Discriminant analysis of mineral elements in Fuji apple peel samples from two production areas a, b"

验证方法
Verification method
产区
Production area
预测组成员 Forecast group members
渤海湾 Bohai Bay (%) 黄土高原 Loess Plateau (%)
原始 Original 渤海湾 Bohai Bay 90.9 9.1
黄土高原 Loess Plateau 7.2 92.8
交叉验证 Cross validated c 渤海湾 Bohai Bay 87.3 12.7
黄土高原 Loess Plateau 8.7 91.3

Fig. 2

VIP diagram of OPLS-DA origin traceability model in two major production areas"

Fig. 3

OPLS-DA score map of mineral elements in two major production areas"

[1] 葛玉全, 李红锋, 王春燕, 魏晓霞, 苏娟, 东莎莎. 我国苹果产业现状及可持续发展建议. 现代食品, 2021(11): 4-6.
GE Y Q, LI H F, WANG C Y, WEI X X, SU J, DONG S S. Status and sustainable development proposals of apple industry in China. Modern Food, 2021(11): 4-6. (in Chinese)
[2] LIU X, ZHAO Y, MU J, ZHANG J, ZHANG A. Determination of geographical origin of concentrated apple juice through analysis of stable isotopic and mineral elemental fingerprints: Preliminary results. Journal of the Science of Food and Agriculture, 2021, 101(9): 3795-3803. doi: 10.1002/jsfa.11012.
[3] 李卓, 郭玉蓉, 孙立军, 刘婧琳, 李景景, 付成程. 不同产地长富2号苹果品质差异及其与地理坐标的相关性. 陕西师范大学学报(自然科学版), 2012, 40(4): 98-103.
LI Z, GUO Y R, SUN L J, LIU J L, LI J J, FU C C. Quality differences of Nagafu 2 apple from different habitats and its correlation with geographical coordinates. Journal of Shaanxi Normal University (Natural Science Edition), 2012, 40(4): 98-103. (in Chinese)
[4] 匡立学, 聂继云, 李银萍, 程杨, 沈友明. 中国不同地区‘富士’苹果品质评价. 中国农业科学, 2020, 53(11): 2253-2263.
KUANG L X, NIE J Y, LI Y P, CHENG Y, SHEN Y M. Quality evaluation of ‘Fuji’ apples cultivated in different regions of China. Scientia Agricultura Sinica, 2020, 53(11): 2253-2263. (in Chinese)
[5] ZHANG Q, LI X L, LI M J, ZHOU B B, ZHANG J K, WEI Q P. Correlation analysis between quality characteristics and fruit mineral element contents in ‘Fuji’ apples. Agricultural Basic Science and Technology, 2017, 18(2): 212-218.
[6] BERTOLDI D, COSSIGNANI L, BLASI F, PERINI M, BARBERO A, PIANEZZE S, MONTESANO D. Characterisation and geographical traceability of Italian goji berries. Food Chemistry, 2019, 275: 585-593. doi: 10.1016/j.foodchem.2018.09.098.
[7] 李富荣, 刘雯雯, 文典, 徐爱平, 李蕾, 陈永坚, 陈楚国, 王旭. 基于矿质元素指纹分析的陈皮产地溯源研究. 食品工业科技, 2022, 43(11): 295-302.
LI F R, LIU W W, WEN D, XU A P, LI L, CHEN Y J, CHEN C G, WANG X. Study on origin tracing of dried tangerine peel using mineral element fingerprints. Science and Technology of Food Industry, 2022, 43(11): 295-302. (in Chinese)
[8] 谭曌, 吴文琴, 张炜奇, 印南日, 贾明明, 陈小媚, 张兆威, 李培武. 农产品及产地环境中微量元素检测研究进展. 中国油料作物学报, 2020, 42(3): 334-340.
TAN Z, WU W Q, ZHANG W Q, YIN N R, JIA M M, CHEN X M, ZHANG Z W, LI P W. Development of detection for trace elements in agricultural products and their field environment. Chinese Journal of Oil Crop Sciences, 2020, 42(3): 334-340. (in Chinese)
[9] 郭波莉, 魏益民, 潘家荣, 李勇. 多元素分析判别牛肉产地来源研究. 中国农业科学, 2007, 40(12): 2842-2847.
GUO B L, WEI Y M, PAN J R, LI Y. Determination of beef geographical origin based on multi-element analysis. Scientia Agricultura Sinica, 2007, 40(12): 2842-2847. (in Chinese)
[10] 夏魏, 刘志, 邵圣枝, 聂晶, 李祖光, 袁玉伟, ROGERS K M. 茶叶与产地环境中稳定同位素和矿物元素特征及其相关性研究. 核农学报, 2020, 34(3): 573-581.
XIA W, LIU Z, SHAO S Z, NIE J, LI Z G, YUAN Y W, ROGERS K M. Characteristics and correlation of stable isotopes and mineral elements in tea and producing environment. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 573-581. (in Chinese)
[11] ZHANG J Y, NIE J Y, ZHANG L B, XU G F, ZHENG H D, SHEN Y Y, KUANG L X, GAO X Q, ZHANG H. Multielement authentication of apples from the cold Highlands in southwest China. Journal of the Science of Food and Agriculture, 2022, 102(1): 241-249. doi: 10.1002/jsfa.11351.
[12] CHEAJESADAGUL P, ARNAUDGUILHEM C, SHIOWATANA J, SIRIPINYANOND A, SZPUNAR J. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry. Food Chemistry, 2013, 141(4): 3504-3509. doi: 10.1016/j.foodchem.2013.06.060.
[13] 李彩虹, 开建荣, 王彩艳, 王芳, 闫玥, 张静, 杨春霞, 葛谦. 基于矿物元素技术的品种、产区葡萄酒的判别分析. 食品与发酵工业, 2022, 48(12): 281-287.
LI C H, KAI J R, WANG C Y, WANG F, YAN Y, ZHANG J, YANG C X, GE Q. Discriminant analysis of wine variety and origin based on the content of mineral elements. Food and Fermentation Industries, 2022, 48(12): 281-287. (in Chinese)
[14] LI L, WEN B, ZHANG X L, ZHAO Y, DUAN Y, SONG X F, REN S, WANG Y H, FANG W P, ZHU X J. Geographical origin traceability of tea based on multi-element spatial distribution and the relationship with soil in district scale. Food Control, 2018, 90: 18-28.
[15] 周秀雯, 吴浩, 陈海泉, 颜治, 靳保辉, 谢丽琪, 赵燕, 赵超敏, 陈辉, 潘家荣. 基于矿物元素指纹差异的榴莲产地甄别. 食品科学, 2021, 42(14): 255-262.
ZHOU X W, WU H, CHEN H Q, YAN Z, JIN B H, XIE L Q, ZHAO Y, ZHAO C M, CHEN H, PAN J R. Discrimination of durian from different geographical origins based on mineral element fingerprint characteristics. Food Science, 2021, 42(14): 255-262. (in Chinese)
[16] COELHO I, MATOS A S, TEIXEIRA R, NASCIMENTO A, BORDADO J, DONARD O, CASTANHEIRA I. Combining multielement analysis and chemometrics to trace the geographical origin of Rocha pear. Journal of Food Composition and Analysis, 2019, 77: 1-8.
[17] 陈秋生, 张强, 殷萍, 刘烨潼, 孟兆芳, 张玺, 郭永泽. 电感耦合等离子体质谱法同时测定冬枣中多种元素的含量. 天津农业科学, 2015, 21(2): 5-8.
CHEN Q S, ZHANG Q, YIN P, LIU Y T, MENG Z F, ZHANG X, GUO Y Z. Study on simultaneous determination of multiple elements in Chinese winter jujube with inductively coupled plasma mass spectrometry. Tianjin Agricultural Sciences, 2015, 21(2): 5-8. (in Chinese)
[18] 纪龙, 申红芳, 徐春春, 陈中督, 方福平. 基于非线性主成分分析的绿色超级稻品种综合评价. 作物学报, 2019, 45(7): 982-992.
JI L, SHEN H F, XU C C, CHEN Z D, FANG F P. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis. Acta Agronomica Sinica, 2019, 45(7): 982-992. (in Chinese)
[19] 姜雪, 刘楠, 孙永, 牟伟丽, 周德庆. 统计分析方法在食品品质评价中的应用. 食品安全质量检测学报, 2017, 8(1): 13-19.
JIANG X, LIU N, SUN Y, MOU W L, ZHOU D Q. Application of statistical analysis methods in food quality evaluation. Journal of Food Safety & Quality, 2017, 8(1): 13-19. (in Chinese)
[20] 卓俊纳, 吴卫宇, 何霜, 赵金松. 基于ICP-MS结合化学计量学的不同品牌酱香型白酒鉴别方法. 食品与发酵工业, 2022(7): 269-275.
ZHUO J N, WU W Y, HE S, ZHAO J S. Identification of Maotai-flavor Baijiu with different brands based on ICP-MS and chemometrics. Food and Fermentation Industries, 2022(7): 269-275. (in Chinese)
[21] 佘僧, 李熠, 宋洪波, 陈兰珍. 低聚糖和多酚结合偏最小二乘判别分析鉴别油菜蜜产地. 食品科学, 2019, 40(12): 290-295.
SHE S, LI Y, SONG H B, CHEN L Z. Discrimination of geographical origins of rape honey by polyphenol and oligosaccharide measurements combined with partial least square-discrimination analysis. Food Science, 2019, 40(12): 290-295. (in Chinese)
[22] 钟慧怡, 黄海波, 陈玉娥, 覃挺红. 基于稳定同位素比值的阳春砂产地判别分析. 广州中医药大学学报, 2021, 38(10): 2224-2230.
ZHONG H Y, HUANG H B, CHEN Y E, QIN T H. Discrimination and analysis of geographical origin of Amomum villosum based on stable isotope ratio. Journal of Guangzhou University of Traditional Chinese Medicine, 2021, 38(10): 2224-2230. (in Chinese)
[23] 匡立学, 聂继云, 李志霞, 关棣锴, 毋永龙, 闫震, 程杨. 不同苹果品种果实矿质元素含量的因子分析和聚类分析. 中国农业科学, 2017, 50(14): 2807-2815.
KUANG L X, NIE J Y, LI Z X, GUAN D K, WU Y L, YAN Z, CHENG Y. Factor analysis and cluster analysis of mineral elements contents in different apple varieties. Scientia Agricultura Sinica, 2017, 50(14): 2807-2815. (in Chinese)
[24] 张强, 李民吉, 周贝贝, 李兴亮, 孙健, 张军科, 魏钦平. 两大优势产区‘富士’苹果园土壤养分与果实品质关系的多变量分析. 应用生态学报, 2017, 28(1): 105-114.
ZHANG Q, LI M J, ZHOU B B, LI X L, SUN J, ZHANG J K, WEI Q P. Multivariate analysis of relationship between soil nutrient factors and fruit quality characteristic of ‘Fuji’ apple in two dominant production regions of China. Chinese Journal of Applied Ecology, 2017, 28(1): 105-114. (in Chinese)
[25] 张强, 李民吉, 周贝贝, 李兴亮, 张军科, 魏钦平. 环渤海湾和黄土高原‘富士’苹果园土壤养分与果实矿质元素关系的多变量分析. 园艺学报, 2017, 44(8): 1439-1449.
ZHANG Q, LI M J, ZHOU B B, LI X L, ZHANG J K, WEI Q P. Multivariate analysis of relationship between soil nutrient and fruit mineral elements of ‘Fuji’ apple orchards in circum-Bohai and Loess plateau producing regions of China. Acta Horticulturae Sinica, 2017, 44(8): 1439-1449. (in Chinese)
[26] 黄小龙, 何小青, 张念, 霍巨垣, 陈树娣, 邓宏玉. ICP-MS法测定多种微量元素用于地理标志产品苹果的鉴定. 食品科学, 2010, 31(8): 171-173.
HUANG X L, HE X Q, ZHANG N, HUO J Y, CHEN S D, DENG H Y. ICP-MS analysis of trace elements in apples for identification of geographical origin. Food Science, 2010, 31(8): 171-173. (in Chinese)
[27] 郭利攀, 裴华, 邢丽丽, 孙玉梅, 章路, 巩佳第, 戚亭. 微波消解-电感耦合等离子体质谱法测定花椒中稀土元素. 食品安全质量检测学报, 2021, 12(14): 5613-5619.
GUO L P, PEI H, XING L L, SUN Y M, ZHANG L, GONG J D, QI T. Determination of rare earth elements in Zanthoxylum bungeanum Maxim. by microwave digestion with inductively coupled plasma mass spectrometry. Journal of Food Safety and Quality, 2021, 12(14): 5613-5619. (in Chinese)
[28] 石春红, 曹美萍, 胡桂霞. 基于矿物元素指纹图谱技术的松江大米产地溯源. 食品科学, 2020, 41(16): 300-306.
SHI C H, CAO M P, HU G X. Geographical origin traceability of Songjiang rice based on mineral elements fingerprints. Food Science, 2020, 41(16): 300-306. (in Chinese)
[29] CAO T T, WANG J. Overview of soil swellability in major geographical areas of Shaanxi Province. World Scientific Research Journal, 2022, 8(3): 1-5.
[30] 史崇文, 赵玲芝, 郭新波, 高山, 杨建萍, 李建宏. 山西土壤元素背景值及其特征. 华北地质矿产杂志, 1994, 9(2): 188-196.
SHI C W, ZHAO L Z, GUO X B, GAO S, YANG J P, LI J H. Background values of soil elementsin Shanxi and their distribution feature. Journal Geology and Mineral Resources North China, 1994, 9(2): 188-196. (in Chinese)
[31] 乔德华, 魏胜文, 王恒炜, 梁志宏, 白贺兰. 甘肃苹果产业发展优势及提质增效对策. 中国农业资源与区划, 2016, 37(8): 168-174.
QIAO D H, WEI S W, WANG H W, LIANG Z H, BAI H L. The apple industry development advantages in Gansu and quality efficiency countermeasures. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(8): 168-174. (in Chinese)
[32] 任圆圆, 张学雷. 河南省地形、土壤和地表水体多样性格局特征. 土壤学报, 2017, 54(3): 590-600.
REN Y Y, ZHANG X L. Characteristics of the diversity of terrain, soil and surface water body of Henan Province in pattern. Acta Pedologica Sinica, 2017, 54(3): 590-600. (in Chinese)
[33] 李瑾璞, 石垚, 袁大鹏, 陈奇乐, 王树涛. 河北省典型样带土壤类型空间格局特征. 农业资源与环境学报, 2020, 37(5): 681-688.
LI J P, SHI Y, YUAN D P, CHEN Q L, WANG S T. Spatial pattern characteristics of soil types in typical transects of Hebei Province, China. Journal of Agricultural Resources and Environment, 2020, 37(5): 681-688. (in Chinese)
[34] 赵海燕, 郭波莉, 张波, 魏益民, 孙淑敏, 严军辉, 张磊. 小麦产地矿物元素指纹溯源技术研究. 中国农业科学, 2010, 43(18): 3817-3823.
ZHAO H Y, GUO B L, ZHANG B, WEI Y M, SUN S M, YAN J H, ZHANG L. The application of multi-element analysis to determine the geographical origin of wheat. Scientia Agricultura Sinica, 2010, 43(18): 3817-3823. (in Chinese)
[35] 王天豪, 韩春兰, 王秋兵. 辽宁省植稻土壤在中国土壤系统分类中的归属. 土壤通报, 2018, 49(1): 1-8.
WANG T H, HAN C L, WANG Q B. Identifying categories in Chinese soil taxonomy for typical rice field soils in Liaoning province. Chinese Journal of Soil Science, 2018, 49(1): 1-8. (in Chinese)
[36] 夏立娅, 高巍, 李亚平, 尹洁璇, 张晓瑜, 李晓杨. 基于多元素分析的冬枣产地鉴别方法. 食品工业科技, 2016, 37(24): 49-52, 57.
XIA L Y, GAO W, LI Y P, YIN J X, ZHANG X Y, LI X Y. Identification of Ziziphus jujuba origin by multi-element analysis. Science and Technology of Food Industry, 2016, 37(24): 49-52, 57. (in Chinese)
[37] 王亚盟, 郭家平, 刘洁, 于斐, 田咏梅, 吴拥军, 刘利娥. 不同产地黑果枸杞中主要矿质元素含量比较及主成分分析. 食品工业科技, 2021, 42(11): 233-239.
WANG Y M, GUO J P, LIU J, YU F, TIAN Y M, WU Y J, LIU L E. Comparison and principal component analysis of main mineral elements in Lycium ruthenicum Murray from different habitats. Science and Technology of Food Industry, 2021, 42(11): 233-239. (in Chinese)
[38] 赵多勇, 康露, 王智, 乔坤云, 刘志虎, 袁玉伟, 郭航, 张瑞, 王成. 基于锶元素含量及其稳定同位素比值的库尔勒香梨产地鉴别. 食品科学, 2021, 42(18): 240-245.
ZHAO D Y, KANG L, WANG Z, QIAO K Y, LIU Z H, YUAN Y W, GUO H, ZHANG R, WANG C. Geographical origin identification of Korla fragrant pear based on strontium content and stable isotopic ratio. Food Science, 2021, 42(18): 240-245. (in Chinese)
[39] 琚彤军, 田均良, 刘普灵, 李雅琦, 张梅花. 利用INAA法研究黄土高原土壤REE含量及地域分布特征. 核农学报, 2002, 16(4): 242-246.
JU T J, TIAN J L, LIU P L, LI Y Q, ZHANG M H. Study on ree contents in soil of loess plateau and their distributing characteristic by INAA method. Acta Agriculturae Nucleatae Sinica, 2002, 16(4): 242-246. (in Chinese)
[40] 季宏兵, 王立军, 董云社, 王世杰, 罗建美, 孙媛媛. 稀土元素的环境生物地球化学循环研究现状. 地理科学进展, 2004, 23(1): 51-61.
JI H B, WANG L J, DONG Y S, WANG S J, LUO J M, SUN Y Y. An overview on the study of biogeochemical cycle for rare earth elements(REEs). Progress in Geography, 2004, 23(1): 51-61. (in Chinese)
[41] 刘春娥, 林洪, 宋雁, 郭斌, 刘兆平, 隋建新. 基于稀土元素指纹分析技术的紫菜产地溯源. 食品工业科技, 2016, 37(10): 57-61.
LIU C E, LIN H, SONG Y, GUO B, LIU Z P, SUI J X. Geographical origin traceability of laver based on rare earth element fingerprints. Science and Technology of Food Industry, 2016, 37(10): 57-61. (in Chinese)
[42] 林昕, 黎其万, 和丽忠, 兰珊珊, 林涛, 刘宏程. 基于稀土元素指纹分析判别普洱古树茶和台地茶的研究. 现代食品科技, 2013, 29(12): 2921-2925, 2893.
LIN X, LI Q W, HE L Z, LAN S S, LIN T, LIU H C. Application of heavy rare earth element fingerprints in discrimination of Pu'er old plant tea and tableland tea. Modern Food Science and Technology, 2013, 29(12): 2921-2925, 2893. (in Chinese)
[43] 姚清华, 林虬, 颜孙安, 苏德森, 林香信, 方灵. 基于稀土元素指纹分析判别安溪铁观音和华安铁观音的研究. 现代食品科技, 2017, 33(4): 295-299.
YAO Q H, LIN Q, YAN S N, SU D S, LIN X X, FANG L. Application of heavy rare earth elements as a fingerprint in discriminant analysis of An’xi Tieguanyin tea and Hua’an Tieguanyin tea. Modern Food Science and Technology, 2017, 33(4): 295-299. (in Chinese)
[44] 李安, 陈秋生, 赵杰, 潘立刚, 张强, 靳欣欣, 张少军, 钱训. 基于稳定同位素与稀土元素指纹特征的大桃产地判别分析. 食品科学, 2020, 41(6): 322-328.
LI A, CHEN Q S, ZHAO J, PAN L G, ZHANG Q, JIN X X, ZHANG S J, QIAN X. Discriminations of the geographical origin of peach based on stable isotope and rare earth element fingerprint characteristics. Food Science, 2020, 41(6): 322-328. (in Chinese)
[45] POTORÌ A G, DI BELLA G, MOTTESE A F, BUA G D, FEDE M R, SABATIONO G, SALVO A, SOMMA R, DUGO G, LO TURCO V. Traceability of protected geographical indication (PGI) interdonato lemon pulps by chemometric analysis of the mineral composition. Journal of Food Composition and Analysis, 2018, 69: 122-128.
[1] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[2] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[3] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[4] TingHui HU,LiangQiang CHENG,Jun WANG,JianWei LÜ,QingLin RAO. Evaluation of Shade Tolerance of Peanut with Different Genotypes and Screening of Identification Indexes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1140-1153.
[5] LI MinJi,ZHANG Qiang,LI XingLiang,ZHOU BeiBei,YANG YuZhang,ZHANG JunKe,ZHOU Jia,WEI QinPing. Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard [J]. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271.
[6] JiaHao WANG,YaQian DUAN,LanChun NIE,LiYan SONG,WenSheng ZHAO,SiYu FANG,JiaTeng ZHAO. Factor Analysis and Comprehensive Evaluation of the Fruit Quality of ‘Yangjiaocui’ Melons [J]. Scientia Agricultura Sinica, 2019, 52(24): 4582-4591.
[7] JiRong LI,TangWei ZHANG,DeJi CIREN,XiaoJun YANG,Dun CI. Fractionation Effect of Stable Isotopic Ratios in Tsamba Processing [J]. Scientia Agricultura Sinica, 2019, 52(24): 4592-4602.
[8] HE Ping, LI LinGuang, WANG HaiBo, CHANG YuanSheng. Effects of Five Dwarfing Interstocks on Shoot Growth, Fruiting and Accumulation of Mineral Elements in Leaves of Yishui Red Fuji Apple [J]. Scientia Agricultura Sinica, 2018, 51(4): 750-757.
[9] GOU XiaoJu, TIAN You, GUO YuRong, YANG Xi, HOU YanJie, PING JiaXin, LI Ting. Analysis and Evaluation on Quality of Not from Concentrate Apple Juices in Different Maturation Period [J]. Scientia Agricultura Sinica, 2018, 51(19): 3778-3790.
[10] HU DeYu, LIU XueFeng, HE ShaoLan, XIE RangJin, QIAN Chun, Lü Qiang, YI ShiLai, ZHENG YongQiang, DENG Lie. Effect of Plant Canopy Transformation on Chlorophyll Fluorescence Characteristics and Fruit Yield and Quality in Closed Citrus Orchard [J]. Scientia Agricultura Sinica, 2017, 50(9): 1734-1746.
[11] FAN ZiLing, XU ChuChu, SHU Shi, XIAO XinHuan, WANG Gang, BAI YunLong, ZHANG Jiang, ZHAO Chang, XIA Cheng. Plasma Metabolic Profiling of Postpartum Dairy Cows with Inactive Ovaries Based on GC/MS Technique [J]. Scientia Agricultura Sinica, 2017, 50(15): 3042-3051.
[12] GAO Xu, XIE Ju-fang, FAN Lei, HU Yi-nong, JIA Wei-ya, LI Xue. Construction and Application of a Traceability System for the Vehicle Safety of Harmless Handling of Pigs Die of Diseases [J]. Scientia Agricultura Sinica, 2016, 49(12): 2290-2300.
[13] DIAO Hai-ting, NIE Yi-min. Platform Construction of Vegetable Safety Warning and Traceability Based on Modern Information Technology [J]. Scientia Agricultura Sinica, 2015, 48(3): 460-468.
[14] WANG Chun-qing, LI Xia, ZHANG Chun-hui, LI Xue-ke, DU Gui-hong, LI Hai, XIE Xiao-lei. Suitability Evaluation of Different Varieties of Chicken for Cooking Process [J]. Scientia Agricultura Sinica, 2015, 48(15): 3090-3100.
[15] SUN Ling-Wei, BAO Kai, LI Ying, LI Lan, ZHANG Hong-You, XIA Cheng, WU Ling. Plasma Metabolomics Study of Dairy Cows with Clinical and Subclinical Ketosis [J]. Scientia Agricultura Sinica, 2014, 47(8): 1588-1599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!