Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (21): 3782-3793.doi: 10.3864/j.issn.0578-1752.2019.21.007

• SPECIAL FOCUS: MAIZE AND SOYBEAN RESPONSE TO LIGHT AND WATER IN STRIP INTERCROPPING • Previous Articles     Next Articles

Effects of Maize Shading on Photosynthetic Characteristics, Vein and Stomatal Characteristics of Soybean

LI ShengLan,TAN TingTing,FAN YuanFang,YANG WenYu(),YANG Feng()   

  1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
  • Received:2019-08-04 Accepted:2019-09-19 Online:2019-11-01 Published:2019-11-12
  • Contact: WenYu YANG,Feng YANG E-mail:mssiwyyang@sicau.edu.cn;f.yang@sicau.edu.cn

Abstract:

【Objective】 The aim of this study was to explore the effects of maize shading on the photosynthetic characteristics, leaf veins and stomatal characteristics of soybean during the symbiosis period under the maize-soybean intercropping system. 【Method】 Two factors were used in a completely randomized pot experiment under natural light, strong shade tolerant Nandou 12 and light shade tolerant Guixia 3, including the T1 (intercropping of 2 rows of maize and 2 rows of soybean), T2 (intercropping of 1 row of maize and 1 row of soybean) and CK (net for soybean) three treatments, respectively, to analyze photosynthetic parameters, veins and the porosity characteristic parameters’ responding under shading. 【Result】 By contrast with the net treatment, the far-red spectral irradiance of soybean canopy increased significantly under the shade of maize, and the light intensity under T1 and T2 treatment decreased by 48.62% and 77.39%, respectively. Photosynthetic rate, stomatal conductance, leaf vein density and stomatal density of soybean under maize shading were significantly less than those under CK (P<0.05), and the decrease rate increased with the increase of shade (from T1 to T2). Compared with CK, the net photosynthetic rate of Nandou 12 decreased significantly by 41.00% and 44.15% respectively under T1 and T2 treatment, the net photosynthetic rate of Guixia 3 decreased significantly by 44.62% and 47.93%, respectively, while stomatal conductance of Nandou 12 decreased significantly by 29.19% and 39.69%, and that of Guixia 3 decreased significantly by 26.83% and 49.50%, respectively. The vein density and stomatal density of Nandou 12 decreased by 14.99%, 20.01% and stomatal density decreased by 12.79%, 18.27% respectively under T1 and T2 treatment compared with CK; The vein density and stomatal density of Guixia 3 decreased by 10.38%, 27.62% and stomatal density decreased by 15.77%, 22.46% respectively under T1 and T2 treatment compared with CK. The net photosynthetic rate of soybean had significant positive correlation (P<0.05) with stomatal conductance, vein closure, stomatal density as well as vein density, and extremely negative correlation (P<0.01) with vein distance. In addition, there was an extremely significant positive correlation (P<0.01) between vein density and stomatal density. The vein density, vein length, veins closure, and the distance between the veins of Nandou 12 under maize shading were better than those of Guixia 3. In addition, the shade degree under T1 treatment was higher, while transpiration rate and vein closure, photosynthetic, vein and stomatal parameters of strong shade tolerant Nandou12 all change were less than those of Guixai 3, and Nandou had higher photosynthetic rate.【Conclusion】 In the maize-soybean intercropping system, the changes of canopy light environment, leaf vein and stomatal characteristics of soybean could reduce the photosynthetic ability of soybean, but the response of leaf vein and stomatal characteristics of different shade-tolerant soybean varieties to shading was different.

Key words: intercropping, soybean, photosynthetic characteristics, veins, stomatal

Fig. 1

Spectral irradiance and PPFD of soybean canopy under monoculture and maize shading A shows the spectral irradiance at 9:00; B shows the spectral irradiance at 11:00; C shows the spectral irradiance at 13:00; D shows the spectral irradiance at 15:00; E shows the spectral irradiance at 17:00; F shows the PPFD of the soybean canopy from 9:00 to 17:00"

Table 1

Photosynthetic parameters of soybean leaves under monoculture and maize shading"

品种
Variety
处理
Treatment
净光合速率
Pn (μmol·m-2·s-1)
气孔导度
Gs (μmol·m-2·s-1)
胞间CO2浓度
Ci (μmol·m-2·s-1)
蒸腾速率
Tr (g·m-2·h-1)
南豆12
Nandou 12
CK 27.93±0.82a 0.45±0.01a 243.00±6.53a 5.15±0.08b
T1 16.73±0.66b 0.32±0.02b 237.33±8.06a 6.16±0.27a
T2 15.60±0.99b 0.27±0.02c 251.67±20.17a 3.06±0.22c
桂夏3号
Guixia 3
CK 27.67±1.52a 0.43±0.02a 230.67±5.56a 4.40±0.14b
T1 15.10±1.49b 0.32±0.05b 209.00±36.51a 5.33±0.32a
T2 14.20±1.07b 0.22±0.02c 251.33±5.73a 2.78±0.05c
F
品种Variety 2.64 8.96 0.30 38.56**
处理Treatment 289.39** 84.23** 2.84 93.37**
品种×处理Variety×Treatment 1.78 1.36 5.11 2.01

Table 2

Characteristics of leaf veins in soybean under monoculture and maize shading"

品种
Variety
处理
Treatment
叶脉密度
Vein density (mm·mm-2)
叶脉长度
The length of the veins (mm)
叶脉直径
Vein diameter (μm)
叶脉闭合度
Vein Closure (No./mm2
叶脉间距
Distance between veins (μm)
南豆12
Nandou 12
CK 66.11±4.88a 19.79±2.46a 22.38±1.65c 4.23±1.52a 130.34±5.72c
T1 59.25±3.66b 17.74±1.38b 28.11±1.86b 3.21±0.93b 167.92±7.77b
T2 47.85±3.05c 14.33±1.47c 32.11±2.39a 2.36±0.79c 188.28±6.44a
桂夏3号
Guixia 3
CK 61.84±4.82a 18.51±2.27a 26.80±1.68b 3.85±1.27a 133.48±5.81c
T1 52.57±4.33b 15.74±1.36b 28.03±1.72b 2.00±1.45b 160.72±8.04b
T2 49.46±3.97c 14.81±1.43c 33.26±2.17a 1.92±0.84b 188.86±7.96a
F
品种Variety 24.406** 24.406** 3.731 11.641** 10.853**
处理Treatment 2.677 2.677 24.259** 3.470* 2.387
品种×处理Variety×Treatment 6.012** 6.012** 4.969* 19.198** 8.194**

Fig. 2

The characters of leaf veins under monoculture and maize shading A, C, E show the CK, T1, T2 treatments of Nandou 12; B, D, F show the CK, T1, T2 treatments of Guixia 3"

Table 3

Stomatal characteristic of soybean under monoculture and maize shading"

品种
Variety
处理
Treatment
气孔密度
Stomatal density
(No./mm2)
气孔长度
Stomatal length
(nm)
气孔宽度
Stomatal width
(nm)
气孔周长
Stomatal circumference (nm)
气孔面积
Stomatal area
(nm2)
南豆12
Nandou 12
CK 149.96±11.56a 21.67±0.41b 3.52±0.18a 54.77±0.82b 130.15±6.93a
T1 130.78±2.82b 22.71±1.49b 2.98±0.09b 56.15±0.37a 123.42±1.06a
T2 122.56±6.68b 23.90±1.38a 2.54±0.28c 57.08±1.01a 98.21±4.06b
桂夏3号
Guixia 3
CK 151.12±0.63a 21.50±0.64c 2.83±0.05a 55.06±3.28b 130.91±3.78a
T1 127.29±0.55ab 23.19±1.42b 2.08±0.12b 56.78±0.93a 91.56±2.30c
T2 117.18±1.99b 24.495±0.28a 1.85±0.01b 57.93±2.25a 120.00±3.28b
F
品种Variety 0.17 0.92 138.89** 2.96 1.57
处理Treatment 9.33* 25.05** 86.65** 21.11** 67.66**
品种×处理Variety×Treatment 0.11 0.59 1.05 0.25 0.70

Fig. 3

Stomatal distribution of soybean leaves under monoculture and maize shading A, C, D show the CK, T1, T2 treatment of Nandou 12; B, D, F show the CK, T1, T2 treatment of Guixia 3"

Table 4

Correlation analysis of photosynthetic parameters, leaf veins and stomatal characteristics of soybean"

参数
Parameter
净光合速率
Pn
气孔导度
Gs
叶脉密度
Vein density
叶脉直径
Vein diameter
叶脉闭合度
Vein closure
叶脉间距
Distance between veins
气孔导度 Gs 0.94**
叶脉密度 Vein density 0.87* 0.92*
叶脉直径 Vein diameter -0.81 -0.93** -0.92**
叶脉闭合度 Vein closure 0.93** 0.91* 0.94** -0.84*
叶脉间距 Distance between veins -0.92* -0.98** -0.91* 0.93** -0.85*
气孔密度 Stomatal density 0.97** 0.98** 0.92** -0.87* 0.94** -0.97**
[1] 王威, 吴领祖, 盛林霞, 黄金根 . 国内大豆加工产业现状及对策. 现代食品, 2017(1):55-57.
WANG W, WU L Z, SHENG L X, HUANG J G . Current situation and countermeasures of soybean processing industry in China.Modern Food, 2017(1):55-57. (in Chinese)
[2] 崔戈, 焦玉平 . 国家粮食安全视角下的中国大豆贸易. 社会科学, 2019,462(2):15-30.
CUI G, JIAO Y P . China’s soybean trade from the perspective of national food security. Journal of Social Sciences, 2019,462(2):15-30. (in Chinese)
[3] 赵景云, 刘志强, 王建立 . 浅谈中国大豆种业发展现状. 中国种业, 2017(5):9-10
ZHAO J Y, LIU Z Q, WANG J L . On the development status of soybean seed industry in China. China Seed Industry, 2017(5):9-10. (in Chinese)
[4] 王一, 杨文钰, 张霞, 雍太文, 刘卫国, 苏本营 . 不同生育时期遮阴对大豆形态性状和产量的影响. 作物学报, 2013,39(10):1871-1879.
WANG Y, YANG W Y, ZHANG X, YONG T W, LIU W G, SU B Y . Effects of shading at different growth stages on different traits and yield of soybean. Acta Agronomica Sinica, 2013,39(10):1871-1879. (in Chinese)
[5] 雍太文, 杨文钰, 向达兵, 陈小容, 万燕 . 小麦/玉米/大豆套作的产量、氮营养表现及其种间竞争力的评定. 草业学报, 2012,21(1):50-58.
YONG T W, YANG W Y, XIANG D B, CHEN X R, WAN Y . Production and nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition. Acta Prataculturae Sinica, 2012,21(1):50-58. (in Chinese)
[6] 陈圣伦 . 玉/豆套作模式的群体配置技术及其对大豆的效应研究[D]. 雅安: 四川农业大学, 2008.
CHEN S L . Research on techniques of plant population configuration under maize/soybean relay-cropping system and their effects on soybean. Ya’an: Sichuan Agricultural University.(in Chinese)
[7] 陈玉柱 . 玉/豆间作下品种和田间配置对玉米生长和产量形成的影响[D]. 南京: 南京农业大学, 2015
CHEN Y Z . Effects of varieties and field configurations on growth and yield of maize under maize/soybean intercropping systems[D]. Nanjing: Nanjing Agricultural University.(in Chinese)
[8] 任梦露, 刘卫国, 刘小明, 方萍, 杨文钰 . 荫蔽信号对大豆幼苗生长和光合特性的影响. 中国生态农业学报, 2016,24(4):499-505.
REN M L, LIU W G, LIU X M, FANG P, YANG W Y . Effect of shading signal on growth and photosynthetic characteristics of soybean seedlings. Chinese Journal of Eco-Agriculture, 2016,24(4):499-505. (in Chinese)
[9] 王竹, 杨文钰, 吴其林 . 玉/豆套作荫蔽对大豆光合特性与产量的影响. 作物学报, 2007,33(9):1502-1507.
WANG Z, YANG W Y, WU Q L . Effects of shading in maize soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. Acta Agronomica Sinica, 2007,33(9):1502-1507. (in Chinese)
[10] 王春艳, 庞艳梅, 李茂松, 王秀芬 . 干旱胁迫对大豆气孔特征和光合参数的影响. 中国农业科技导报, 2013,15(1):109-115.
WANG C Y, PANG Y M, LI M S, WANG X F . Effects of drought stress on soybean stomatal characteristics and photosynthetic parameter. Journal of Agricultural Science and Technology, 2013,15(1):109-115. (in Chinese)
[11] 龚容, 高琼 . 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 2015,39(3):300-308.
GONG R, GAO Q . Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 2015,39(3):300-308. (in Chinese)
[12] 许周伟, 闻丹妮, 欧阳由男, 沈波 . 气孔调节剂对水稻秧苗素质的影响. 中国稻米, 2018,24(1):24-27.
XU Z W, WEN D N, OUYANG Y N, SHEN B . Effects of stomatal regulator on seedling quality of rice. China Rice, 2018,24(1):24-27. (in Chinese)
[13] 于显枫, 张绪成, 方彦杰, 王红丽, 侯慧芝, 马一凡, 赵记军 . 高大气CO2浓度下遮阴对小麦叶片气孔特性及光合特性的影响. 甘肃农业科技, 2017,3(6):31-36.
YU X F, ZHANG X C, FNAG Y J, WANG H L, HOU H Z, MA Y F, ZHAO J J . Effects of shading on stomatal characteristics and photosynthetic characteristics of spring wheat under elevated atmospheric CO2 concentration. Gansu Agricultural Science and Technology, 2017,3(6):31-36. (in Chinese)
[14] 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲 . 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析. 植物生态学报, 2016,40(12):1289-1297.
DUAN B B, ZHAO C Z, XU T, ZHENG H L, FENG W, HAN L . Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan mountain in Lanzhou. Chinese Journal of Plant Ecology, 2016,40(12):1289-1297. (in Chinese)
[15] 宋丽清, 胡春梅, 侯喜林, 石雷, 刘立安, 杨景成, 姜闯道 . 高梁、紫苏叶脉密度与光合特性的关系. 植物学报, 2015,50(1):100-106.
SONG L Q, HU C M, HOU X L, SHI L, LIU L A, YANG J C, JIANG C D . Relationship between photosynthetic characteristics and leaf vein density in Sorghum bicolor and Perilla frutescens. Chinese Bulletin of Botany, 2015,50(1):100-106. (in Chinese)
[16] 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 . 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 2015,39(4):362-370.
SHI Y C, ZHAO C Z, SONG Q H, DU J, CHEN J, WANG J W . Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 2015,39(4):362-370. (in Chinese)
[17] 杨文权, 褚继鹏, 寇建村, 赵娇, 韩明玉 . 遮阴对白三叶叶片解剖结构和光合特性的影响. 草地学报, 2015,23(3):653-656.
YANG W Q, ZHU J P, KOU J C, ZHAO J, HAN M Y . Effects of shading on the leaf anatomical structure and photosynthetic characteristics of white clover. Acta Agrestia Sinica, 2015, 23(3):653-656. (in Chinese)
[18] 徐坤, 邹琦, 赵燕 . 土壤水分胁迫与遮阴对生姜生长特性的影响. 应用生态学报, 2003,14(10):1645-1648.
XU K, ZOU Q, ZHAO Y . Effects of soil water stress and shading on growth characteristics of ginger. Chinese Journal of Applied Ecology, 2003,14(10):1645-1648. (in Chinese)
[19] 杨磊, 吴晗, 赵立华, 梁艳丽, 何汉明, 杨静, 李成云 . 玉米与大豆间作对玉米叶片气孔及光合效率的影响. 云南农业大学学报(自然科学), 2012,27(1):39-43.
YANG L, WU H, ZHAO L H, LIANG Y L, HE H M, YANG J, LI C Y . The effect of intercropping of maize and soybean on stomata and photosynthetic efficiency of maize. Journal of Yunnan Agricultural University (Natural Science), 2012,27(1):39-43. (in Chinese)
[20] 李瑞 . 不同遮荫下大豆幼苗光合特性研究[D]. 雅安: 四川农业大学, 2014.
LI R . Research of photosynthetic characteristics of soybean seedling under different shading[D]. Ya’an: Sichuan Agricultural University, 2014. ( in Chinese)
[21] 杨虎彪, 李晓霞, 罗丽娟 . 植物石蜡制片中透明和脱蜡技术的改良. 植物学报, 2009,44(2):230-235.
YANG H B, LI X X, LUO L J . An improved clearing and de-waxing method for plant paraffin sectioning. Chinese Bulletin of Botany ,2009,44(2):230-235. (in Chinese)
[22] 范元芳, 杨峰, 刘沁林, 谌俊旭, 王锐, 罗仕玲, 杨文钰 . 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响. 作物学报, 2017,43(2):277-285.
FAN Y F, YANG F, LIU Q L, CHEN J X, WANG R, LUO S L, YANG W Y . Effects of shading on leaf structure and photosynthetic fluorescence characteristics of soybean seedlings in maize-soybean relay intercropping system. Acta Agronomica Sinica, 2017,43(2):277-285. (in Chinese)
[23] YANG F, HUANG S, GAO R C, LIU W G, YONG T W, WANG X C, WU X L, YANG W Y . Growth of soybean seedlings in relay strip intercropping system in relation to light quantity and red: far-red ratio. Field Crops Research, 2014,155(13):245-253.
[24] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰 . 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015,41(4):43-49.
YANG F, LOU Y, LIAO D P, GAO R C, YONG T W, WANG X C, LIU W G, YANG W Y . Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2015,41(4):43-49. (in Chinese)
[25] 刘悦秋, 孙向阳, 王勇, 刘音 . 遮阴对异株荨麻光合特性和荧光参数的影响. 生态学报, 2007,27(8):3457-3464.
LIU Y Q, SUN X Y, WANG Y, LIU Y . Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica. Acta Ecologica Sinica, 2007,27(8):3457-3464. (in Chinese)
[26] NIINEMETS Ü, PORTSMUTH A, TOBIAS M . Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: A neglected source of leaf physiological differentiation. Functional Ecology, 2010,21(1):28-40.
[27] 史作民, 李东胜, 冯秋红, 刘峰 . 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应. 植物生态学报, 2013,37(9):793-802.
SHI Z M, LI D S, FENG Q H, LIU F . Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 2013,37(9):793-802. (in Chinese)
[28] FELDMAN A B, LEUNG H, BARAOIDAN M, ELMIDO- MABILANGAN A, CANICOSA I, QUICK W P, SHEEHY J, MURCHIE E H . Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce. Frontiers in Plant Science, 2017,8(1):1883.
[29] 张亚, 杨石建, 孙梅, 曹坤芳 . 基部被子植物气孔性状与叶脉密度的关联进化. 植物科学学报, 2014,32(4):320-328.
ZHANG Y, YANG S J, SUN M, CAO K F . Stomatal traits are evolutionarily associated with vein density in basal angiosperms. Plant Science Journal, 2014,32(4):320-328. (in Chinese)
[30] SACK L, SCOFFONI C . Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phycologist, 2013,198(4):983-1000.
[31] 李乐, 曾辉, 郭大立 . 叶脉网络功能性状及其生态学意义. 植物生态学报, 2013,37(7):691-698.
LI Y, ZENG H, GUO D L . Leaf venation functional traits and their ecological significance. Chinese Journal of Plant Ecology, 2013,37(7):691-698. (in Chinese)
[32] MCCULLOH K A, JOHNSON D M, PETITMERMET J, MCNELLIS B, MEINZER F C, LACHENBRUCH B . A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height. Tree Physiology, 2015,35(7):723-731.
[33] 赵延涛, 许洺山, 张志浩, 周刘丽, 张晴晴, ARSHAD A, 宋彦君, 阎恩荣 . 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征. 植物生态学报, 2016,40(2):116-126.
ZHAO Y T, XU M S, ZHANG Z H, ZHOU L L, ZHANG Q Q, ARSHAD A, SONG Y J, YAN E R . Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang province, China. Chinese Journal of Plant Ecology, 2016,40(2):116-126. (in Chinese)
[34] 熊栋梁 . 水稻叶片结构对水力导度与光合作用的影响及其机理[D]: 武汉: 华中农业大学, 2016.
XIONG D L . Coordination of leaf morphoanatomical photosynthesis and hydraulic conductance in Oryza[D]. Wuhan: Huazhong Agricultural University, 2016. ( in Chinese)
[35] 孙素静, 李芳兰, 包维楷 . 叶脉网络系统的构建和系统学意义研究进展. 热带亚热带植物学报, 2015,18(3):353-360.
SUN S J, LI F L, BAO W K . Advances on construction of leaf venation system and its significance of phylogeny. Journal of Tropical and Subtropical Botany, 2015, 18(3):353-360. (in Chinese)
[36] 韩玲, 赵成章, 冯威, 徐婷, 郑惠玲, 段贝贝 . 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应. 植物生态学报, 2017,41(8):872-881.
HAN L, ZHAO C Z, FENG W, XU T, ZHENG H L, DUAN B B . Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland. Chinese Journal of Plant Ecology, 2017,41(8):872-881. (in Chinese)
[37] ZHAO W, SUN Y, KJELGREN R, LIU X . Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiological Plantarum, 2015,37(1):1704.
[38] 陈温福, 徐正进, 张龙步, 杨守仁 . 水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究. 中国水稻科学, 1990,4(4):163-168.
CHEN W F, XU Z J, ZHANG L B, YANG S R . Comparative studies on stomatal density and its relations to gas diffusion resistance and net photosynthetic rate in rice leaf. Chinese Journal of Rice Science, 1990,4(4):163-168. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[7] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[8] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[9] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[10] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[11] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[12] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[13] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[14] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[15] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!