Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3278-3288.doi: 10.3864/j.issn.0578-1752.2022.17.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG XiaoPing(),SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing()
[1] |
ENGINEER C B, GHASSEMIAN M, ANDERSON J C, PECK S C, HU H, SCHROEDER J I. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature, 2014, 513: 246-250.
doi: 10.1038/nature13452 |
[2] | YANG J, LI C, KONG D, GUO F, WEI H. Light-mediated signaling and metabolic changes coordinate stomatal opening and closure. Front Plant Science, 2020, 4: 11: 601478. |
[3] | AGURLA S, GAHIR S, MUNEMASA S, MURATA Y, RAGHAVENDRA A S. Mechanism of stomatal closure in plants exposed to drought and cold stress. Advances in Experimental Medicine and Biology, 2018, 1081: 215-232. |
[4] | LUO D D, WANG C K, JIN Y. Stomatal regulation of plants in response to drought stress. Ying Yong Sheng Tai Xue Bao, 2019, 30(12): 4333-4343. |
[5] |
FANOURAKIS D, ALINIAEIFARD S, SELLIN A, GIDAY H, KORNER O, REZAEI NEJAD A, DELIS C, BOURANIS D, KOUBOURIS G, KAMBOURAKIS E, NIKOLOUDAKIS N, TSANIKLIDIS G. Stomatal behavior following mid- or long-term exposure to high relative air humidity. Plant Physiology and Biochemistry, 2020, 153: 92-105.
doi: 10.1016/j.plaphy.2020.05.024 |
[6] |
HARA K, YOKOO T, KAJITA R, ONISHI T, YAHATA S, PETERSON K M, TORII K U, KAKIMOTO T. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiology, 2009, 50: 1019-1031.
doi: 10.1093/pcp/pcp068 |
[7] |
OHKI S, TAKEUCHI M, MORI M. The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones. Nature Communication, 2011, 2: 512-512.
doi: 10.1038/ncomms1520 |
[8] |
SUGANO S S, SHIMADA T, IMAI Y, OKAWA K, TAMAI A, MORI M, HARA-NISHIMURA I. Stomagen positively regulates stomatal density in Arabidopsis. Nature, 2010, 463: 241-244.
doi: 10.1038/nature08682 |
[9] |
WANG Y L, XIE T, ZHANG C L, LI J J, WANG Z, LI H B, LIU X P, YIN L N, WANG S W, ZHANG S Q, DENG X P, KE Q B. Overexpression of the potato StEPF-2 gene confers enhanced drought tolerance in Arabidopsis. Plant Biotechnology Reports, 2020, 14(4): 479-490
doi: 10.1007/s11816-020-00627-4 |
[10] |
TPRII K U. Stomatal development in the context of epidermal tissues. Annals of Botany, 2021, 128(2): 137-148.
doi: 10.1093/aob/mcab052 |
[11] |
LIM S L, FKUTCH S, LIU J, DISTEFANO L, SANTELIA D, LIM B L. Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening. Nature Communication, 2022, 13(1): 652.
doi: 10.1038/s41467-022-28263-2 |
[12] |
HAAS K T, WIGHTMAN R, MEYEROWITZ E M, PWAUCELLE A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science, 2020, 367(6481): 1003-1007.
doi: 10.1126/science.aaz5103 |
[13] |
CHEN Y, LI W, TURNER J A, ANDERSON C T. PECTATE LYASE LIKE12 patterns the guard cell wall to coordinate turgor pressure and wall mechanics for proper stomatal function in Arabidopsis. The Plant Cell, 2021, 33(9): 3134-3150.
doi: 10.1093/plcell/koab161 |
[14] |
GOU J, MILLER L M, HOU G, YU X, CHEN X, LIU C. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. The Plant Cell, 2012, 24: 50-65.
doi: 10.1105/tpc.111.092411 |
[15] |
WOLF S, MOUILLE G, PELLOUX J. Homogalacturonan methyl- esterification and plant development. Molecular Plant, 2009, 2(5): 851-860.
doi: 10.1093/mp/ssp066 |
[16] |
SENECHAL F, WATTIER C, RUSTERUCCI C, PELLOUX J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. Journal of Experiment Botany, 2014, 65(18): 5125-5160.
doi: 10.1093/jxb/eru272 |
[17] |
KIM Y J, JEONG H Y, KANG S Y, SILVA J, KIM E J, PARK S K, JUNG K H, LEE C. Physiological importance of pectin modifying genes during rice pollen development. International Journal of Molecular Science, 2020, 21(14): 4840.
doi: 10.3390/ijms21144840 |
[18] |
PELLOUX J, RUSTERUCCI C, MELLEROWICZ E J. New insights into pectin methyl-esterase structure and function. Trends in Plant Science, 2007, 12: 267-277.
doi: 10.1016/j.tplants.2007.04.001 |
[19] |
CAMEJO D, MARTI M C, JIMENEZ A, CABRERA J C, OLMOS E, SEVILLA F. Effect of oligogalacturonides on root length, extracellular alkalinization and O-accumulation in alfalfa. Journal of Plant Physiology, 2011, 168: 566-575.
doi: 10.1016/j.jplph.2010.09.012 |
[20] |
DRAYE M, VAN CUTSEM P. Pectinmethylesterasesinduce an abrupt increase of acidic pectin during strawberry fruit ripening. Journal of Plant Physiology, 2008, 165: 1152-1160.
doi: 10.1016/j.jplph.2007.10.006 |
[21] |
LIU H, DAI T, CHEN J, LIU W, LIU C, DENG L, LIANG R. Extraction, characterization and spontaneous gelation mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds. International Journal of Biology Macromolecules, 2022, 195: 523-529.
doi: 10.1016/j.ijbiomac.2021.12.032 |
[22] |
MERCED A, RENZAGLIA K. Developmental changes in guard cell wall structure and pectin composition in the moss Funaria: Implications for function and evolution of stomata. Annals of Botany, 2014, 114(5): 1001-1010.
doi: 10.1093/aob/mcu165 |
[23] |
RUI Y, ANDERSON C T. Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis. Plant Physiology, 2016, 170(3): 1398-1419.
doi: 10.1104/pp.15.01066 |
[24] | 撒世娟, 殷倩, 伍涵宇, 席云凤, 郑蕊, 姚新灵. 过量表达线粒体膜结合蛋白编码基因St536减少普通烟草的纤维素积累. 农业生物技术学报, 2021, 29(5): 915-923. |
SA S J, YIN Q, WU H Y, XI Y F, ZHENG R, YAO X L. Effects of overexpression of St536 gene on cellulose accumulation in Nicotiana tabacum. Journal of Agricultural Biotechnology, 2021, 29(5): 915-923. | |
[25] | SPANOS C, MOORE J B. Sample preparation approaches for iTRAQ labeling and quantitative proteomic analyses in systems biology. Methods of Molecular Biology, 2016, 1394: 15-24. |
[26] | VAUDEL M, BURKHART J M, ZAHEDI RP, MARTENS L, SICKMANN A. iTRAQ data interpretation. Methods of Molecular Biology, 2012, 893: 501-509. |
[27] |
HAN S K, KWAK J M, QI X. Stomatal lineage control by developmental program and environmental cues. Front in Plant Science, 2021, 12: 751852.
doi: 10.3389/fpls.2021.751852 |
[28] |
SALA K, KARCZ J, RYPIEN A, KURCZYNSKA E U. Unmethyl- esterified homogalacturonan and extensins seal Arabidopsis graft union. BMC Plant Biology, 2019, 19(1): 151.
doi: 10.1186/s12870-019-1748-4 |
[29] |
RATHINAM M, RAO U, SREEVATHSA R. Novel biotechnological strategies to combat biotic stresses: Polygalacturonase inhibitor (PGIP) proteins as a promising comprehensive option. Applied Microbiology and Biotechnology, 2020, 104(6): 2333-2342.
doi: 10.1007/s00253-020-10396-3 |
[30] |
WARREN J G, KASUN G W, LEONARD T, KIRKPATRICK B C. A phage display-selected peptide inhibitor of Agrobacterium vitis polygalacturonase. Molecular Plant Pathology, 2016, 17(4): 480-486.
doi: 10.1111/mpp.12293 |
[31] |
BAKSHI G, ANANTHANARAYAN L. Isolation, purification, and characterization of pectin methylesterase inhibitor and polygalacturonase inhibitor protein from Indian lemon (Citrus limon L.). Phytochemistry, 2021, 189: 112802.
doi: 10.1016/j.phytochem.2021.112802 |
[1] | HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30. |
[2] | MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202. |
[3] | FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641. |
[4] | QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694. |
[5] | PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432. |
[6] | LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212. |
[7] | WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815. |
[8] | YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824. |
[9] | ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624. |
[10] | TONG ShiFeng,REN ZhiBin,LIN Fei,GE YuZhu,TAO JingLi,LIU Yang. Proteomic Analysis of Sperm with Different Freezing Tolerance in Erhualian Boar [J]. Scientia Agricultura Sinica, 2022, 55(23): 4743-4752. |
[11] | YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625. |
[12] | PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210. |
[13] | ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338. |
[14] | ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806. |
[15] | CHEN FengQiong, CHEN QiuSen, LIN JiaXin, WANG YaTing, LIU HanLin, LIANG BingRuoShi, DENG YiRu, REN ChunYuan, ZHANG YuXian, YANG FengJun, YU GaoBo, WEI JinPeng, WANG MengXue. Genome-Wide Identification of DIR Family Genes in Tomato and Response to Abiotic Stress [J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3821. |
|