Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3323-3336.doi: 10.3864/j.issn.0578-1752.2019.19.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Colored Plastic Film Mulching and Planting Density on Soil Temperature, Evapotranspiration and Yield of Spring Maize

SUN ShiJun,ZHU ZhenChuang,CHEN ZhiJun,YANG Dan,ZHANG XuDong   

  1. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866
  • Received:2019-04-09 Accepted:2019-07-25 Online:2019-10-01 Published:2019-10-11

Abstract:

【Objective】 Field experiments were conducted to explore the effects of different colored plastic film mulching and planting density on the topsoil temperature, evapotranspiration, grain yield of spring maize and precipitation utilization efficiency in the rain-fed area of Northeast China, in order to further tap the water production potential of dryland and rain-fed maize. 【Method】 Complete combination field, including three types of mulching ( non-mulching, transparent plastic film mulching and black plastic film mulching ) and three planting densities ( 60 000, 75 000 and 90 000 plants/hm 2) , were conducted to monitor the topsoil temperature dynamics in 0-25 cm depths and the soil moisture dynamics in 0-120 cm depths, and to analyze the water use efficiency combined with grain yield of maize in 2016-2018.【Result】 The results showed that the accumulated temperature of the plough layer in the transparent mulching film treatment was significantly higher than that in the black mulching film, and the accumulated temperature of the plough layer in the black mulching film treatment was significantly higher than that in the non-mulching treatment in the early growth stages of maize. The increase of planting density reduced the accumulated temperature of the plough layer after jointing stage of maize. For the evapotranspiration of the growing season, there was no significant difference between the black plastic film mulching treatment and the transparent plastic film mulching treatment, but they were significantly lower than the non-mulching treatment. The evapotranspiration increased with the increasing of the planting density whether in the normal precipitation year or the dry year. Maize grain yields and water use efficiency were significantly improved in the black plastic film mulching treatment, with an average of 4.3% and 4.6% higher than that of the transparent plastic film mulching treatment, respectively, and 9.2% and 13.3% higher than that of the non-mulching treatment, respectively. Yield and water use efficiency increased in tandem with planting density under the same mulching treatment. The plastic film mulching significantly improved the economic benefits under high-density treatment, and the profit of the black plastic film mulching was 807.82 yuan/hm 2 more than that of the transparent plastic film mulching.【Conclusion】 The cultivation mode of black plastic film mulching and high density (90 000 plants/hm 2) combined treatment could improve the utilization rate of natural precipitation and achieve the highest water use efficiency on the basis of ensuring high grain yields. This paper provided a scientific and effective way to further tap the water and crop production potential in the dryland and rain-fed regions of China

Key words: maize, different colored plastic film, accumulated temperature of the plough layer, evapotranspiration, yield, water use efficiency, economic benefit.

Fig. 1

Monthly rainfall distribution in 2016-2018 and annual monthly rainfall in the recent 40 years during the growing season"

Fig. 2

Air temperature during the growing season in 2016-2018"

Fig. 3

Schematic diagram of large-ridge-double-lines planting method"

Table 1

Field experimental design"

覆盖处理
Mulching
种植密度
Planting density (plants/hm2)
处理编号
Treatment
裸地
Non-mulching
60000 M0D1
75000 M0D2
90000 M0D3
透明地膜覆盖
Transparent plastic film mulching
60000 M1D1
75000 M1D2
90000 M1D3
黑色地膜覆盖
Black plastic film mulching
60000 M2D1
75000 M2D2
90000 M2D3

Fig. 4

Effects of different treatments on the accumulated temperature of the plough layer of maize in 2016-2018"

Fig. 5

Effects of different treatments on the accumulated temperature of the plough layer of maize in different growth stages in 2016-2018 S: Seeding stage (2016.05.01-2016.06.12, 2017.05.03-2017.06.15, 2018.04.28-2018.06.11); J: Jointing stage (2016.06.13-2016.07.09, 2017.06.16-2017.07.11, 2018.06.12-2018.07.07); H: Heading stage (2016.07.10-2016.07.23, 2017.07.12-2017.07.24, 2018.07.08-2018.07.19); G: Filling stage (2016.07.24-2016.08.16, 2017.07.25-2017.08.15, 2018.07.20-2018.08.12); M: Mature stage (2016.08.17-2016.08.27, 2017.08.16-2017.09.23, 2018.08.13-2018.09.19). Different lowercase letters indicated significant differences under different treatments (P<0.05). The same as below"

Fig. 6

Effects of different treatments on evapotranspiration of maize in 2017-2018"

Fig. 7

Effects of different treatments on evapotranspiration of maize in different growth stages in 2017-2018"

Table 2

Effects of different treatments on maize grain yields in 2016-2018"

处理 Treatment 2016 2017 2018
M0D1 10516.0±369.6b 10540.1±351.9b 9708.3±422.4b
M0D2 13086.0±511.7a 12124.1±565.3a 11032.8±307.8a
M0D3 12885.7±120.1a 12576.1±173.0a 11504.8±699.5a
均值Mean 12162.6±1277.6B 11746.7±987.7C 10748.7±917.2C
M1D1 11426.6±126.4c 11024.6±254.1c 10346.8±428.3b
M1D2 12839.9±334.6b 12244.3±470.8b 11500.1±604.2a
M1D3 13687.2±743.2a 13419.8±265.9a 12306.4±246.9a
均值Mean 12651.2±1071.6AB 12229.6±1079.4B 11384.4±938.0B
M2D1 11503.5±549.1c 11350.1±495.0b 10773.0±488.0c
M2D2 13201.7±621.4b 13300.7±267.4a 12101.8±326.9b
M2D3 14264.6±315.3a 13804.5±546.2a 13140.3±86.0a
均值Mean 12989.9±1285.1A 12818.5±1189.1A 12005.0±1069.6A
M * ** *
D ** ** **
M×D * ns ns

Fig. 8

Regression equation of different treatments between the accumulated temperature of the plough layer and grain yield of maize in 2016-2018"

Table 3

Path analysis of yield and accumulated temperature of maize in different growth stages"

因子
Factor
相关系数
Correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient R2贡献率Contribution rate R2
X1 X2 X3 X4 X5
X1 0.23 0.9133 -0.4942 -0.093 -0.0296 -0.0686 0.2101
X2 -0.38* -0.8244 0.5474 -0.0162 0.0228 -0.1107 0.3133
X3 0.31 -0.1982 0.4284 -0.0676 -0.0158 0.1597 -0.0614
X4 -0.22 -0.1632 0.1658 0.1154 -0.0191 -0.3209 0.0359
X5 -0.54** -0.4220 0.1486 -0.2163 0.075 -0.1241 0.2279

Fig. 9

Regression equation of different treatments between evapotranspiration and grain yield of maize in 2017-2018"

Table 4

Path analysis of yield and evapotranspiration of maize in different growth stages"

因子Factor 相关系数
Correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient R2贡献率Contribution rate R2
X1 X2 X3 X4 X5
X1 0.33 0.4398 0.0328 -0.0611 -0.0655 -0.0162 0.1451
X2 0.72* 0.1175 0.1227 0.1051 0.1787 0.1937 0.0846
X3 0.74** 0.4075 -0.0659 0.0303 0.2213 0.1488 0.3016
X4 -0.41 0.2944 0.0897 -0.1983 -0.3724 -0.2254 -0.1207
X5 -0.70* -0.2406 0.1988 -0.0894 -0.3064 -0.2641 0.1684

Fig. 10

Effects of different treatments on water use efficiency of maize in 2017-2018"

Table 5

Effects of different treatments on evapotranspiration and water use efficiency of maize in 2017-2018"

处理
Treatment
2017 2018
耗水量 ET (mm) 水分利用效率 WUE (kg·hm-2·mm-1) 耗水量 ET (mm) 水分利用效率 WUE (kg·hm-2·mm-1)
M0D1 366.0±7.5b 28.7±1.0b 493.8±12.7c 19.7±0.9b
M0D2 372.9±4.4a 32.5±1.5a 499.8±8.1b 22.1±0.6a
M0D3 373.2±10.5a 33.7±0.5a 504.8±14.0a 22.8±1.4a
均值Mean 371.0±8.2A 31.6±2.4C 499.4±12.4A 21.5±1.7B
M1D1 355.3±7.4b 31.0±0.7c 482.7±11.4b 21.4±0.9c
M1D2 357.1±12.7b 34.3±1.3b 485.6±15.3ab 23.7±1.2b
M1D3 362.8±7.9a 37.0±0.7a 488.5±12.9a 25.2±0.5a
均值Mean 358.4±10.5B 34.1±2.7B 485.6±13.1B 23.4±1.8A
M2D1 357.6±11.3b 31.7±1.4b 482.7±10.4c 22.3±1.0c
M2D2 358.8±6.4b 37.1±0.7a 487.5±12.5b 24.8±0.7b
M2D3 365.8±8.4a 37.7±1.5a 493.2±9.7a 26.6±0.2a
均值Mean 360.7±8.9B 35.5±3.0A 487.8±11.7B 24.6±2.0A
M ** ** ** **
D * ** ** **
M×D ns ns ns ns

Table 6

Economic benefits under different treatments in 2016-2018 (yuan/hm2)"

年份
Year
处理
Treatment
毛收入
Gross income
种子
Seeds input
地膜
Film input
肥料/农药
Fertilizer/Pesticide input
人工/机械
Labor/Mechanical input
净收入
Net income
2016 M0D1 16825.63 600 0 3075 1900 11250.63
M0D2 20937.64 750 0 3075 1900 15212.64
M0D3 20617.07 900 0 3075 1900 14742.07
M1D1 18282.58 600 975 3075 2125 11507.58
M1D2 20543.80 750 975 3075 2125 13618.80
M1D3 21899.56 900 975 3075 2125 14824.56
M2D1 18405.56 600 1125 3075 2125 11480.56
M2D2 21122.79 750 1125 3075 2125 14047.79
M2D3 22823.29 900 1125 3075 2125 15598.29
2017 M0D1 16864.16 600 0 3075 1900 11289.16
M0D2 19398.50 750 0 3075 1900 13673.50
M0D3 20121.71 900 0 3075 1900 14246.71
M1D1 17639.44 600 975 3075 2125 10864.44
M1D2 19590.83 750 975 3075 2125 12665.83
M1D3 21471.76 900 975 3075 2125 14396.76
M2D1 18160.22 600 1125 3075 2125 11235.22
M2D2 21281.13 750 1125 3075 2125 14206.13
M2D3 22087.25 900 1125 3075 2125 14862.25
2018 M0D1 15533.34 600 0 3075 1900 9958.34
M0D2 17652.53 750 0 3075 1900 11927.53
M0D3 18407.74 900 0 3075 1900 12532.74
M1D1 16554.95 600 975 3075 2125 9779.95
M1D2 18400.15 750 975 3075 2125 11475.15
M1D3 19690.23 900 975 3075 2125 12615.23
M2D1 17236.78 600 1125 3075 2125 10311.78
M2D2 19362.88 750 1125 3075 2125 12287.88
M2D3 21024.46 900 1125 3075 2125 13799.46
[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明 . 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50(11):1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WNAG L C, WANG P, LIU W P, WANG J H, YANG Q F, WANG Z M . Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017,50(11):1941-1959. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.001
[2] 张琳琳, 孙仕军, 陈志君, 姜浩, 张旭东, 迟道才 . 不同颜色地膜与种植密度对春玉米干物质积累和产量的影响. 应用生态学报, 2018,29(1):113-124.
ZHANG L L, SUN S J, CHEN Z J, JIANG H, ZHANG X D, CHI D C . Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize. Chinese Journal of Applied Ecology, 2018,29(1):113-124. (in Chinese)
[3] 朱大威, 金之庆 . 气候及其变率变化对东北地区粮食生产的影响. 作物学报, 2008,34(9):1588-1597
doi: 10.3724/SP.J.1006.2008.01588
ZHU D W, JIN Z Q . Impacts of changes in both climate and its variability on food production in Northeast China. Acta Agronomica Sinica, 2008,34(9):1588-1597. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01588
[4] 陈林, 杨新国, 翟德苹, 宋乃平, 杨明秀, 候静 . 柠条秸秆和地膜覆盖对土壤水分和玉米产量的影响. 农业工程学报, 2015,31(2):108-116.
CHEN L, YANG X G, ZHAI D P, SONG N P, YANG M X, HOU J . Effects of mulching with caragana powder and plastic film on soil water and maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(2):108-116. (in Chinese)
[5] 宋振伟, 郭金瑞, 邓艾兴, 寇太记, 任军, 张卫建 . 耕作方式对东北春玉米农田土壤水热特征的影响. 农业工程学报, 2012,28(16):108-114.
SONG Z W, GUO J R, DENG A X, KOU T J, REN J, ZHANG W J . Effects of surface tillage regimes on soil moisture and temperature of spring corn farmland in Northeast China. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(16):108-114. (in Chinese)
[6] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军 . 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017,50(13):2463-2475.
doi: 10.3864/j.issn.0578-1752.2017.13.006
XU Z G, SUN L, WANG H, WANG S L, WANG X L, LI J . Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Scientia Agricultura Sinica, 2017,50(13):2463-2475. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.13.006
[7] NYAKUDYA I W, STROOSNIJDER L . Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop. Agricultural Water Management, 2014,146:280-296.
[8] LI Z X, LIU K C, LIU C X, ZHANG X Q, LIU X, ZHANG H, LIU S C, WANG Q C, LI Q Q . Aboveground dry matter and grain yield of summer maize under different varieties and densities in North China Plain. Maydica, 2013,58:189-194.
[9] SANGOI L, GRACIETTI M A, RAMPAZZO C, BIANCHETTI P . Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research, 2002,79:39-51
[10] REN X M, SUN D B, WANG Q S . Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agricultural Water Management, 2016,171:40-48.
[11] KUCHARIK C J . Contribution of planting date trends to increased maize yields in the central united states. Agronomy Journal, 2008,100(2):328-336.
[12] BURKEN D B, HARDING J L, MCGEE A L, HOEGEMEYER T C, KLOPFENSTEIN T J, ERICKSON G E . Effects of corn hybrid, plant density, and harvest time on yield and quality of corn plants. Nebraska Beef Cattle Report, 2013: 42-43.
[13] 张杰, 任小龙, 罗诗峰, 海江波, 贾志宽 . 环保地膜覆盖对土壤水分及玉米产量的影响. 农业工程学报, 2010,26(6):14-19.
ZHANG J, REN X L, LUO S F, HAI J B, JIA Z K . Influences of different covering materials mulching on soil moisture and corn yield. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(6):14-19. (in Chinese)
[14] WU Y, HUANG F Y, JIA Z K, REN X L, CAI T . Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil & Tillage Research, 2017,166:113-121.
[15] GAN Y T, SIDDIQUE K H M, TURNER N C, LI X G, NIU J Y, YANG C, LIU L P, CHAI Q . Chapter seven-ridge-furrow mulching systems: An innovative technique for boosting crop productivity in semiarid rain-fed environments. Advances in Agronomy, 2013,118:429-476
[16] LIU C A, JIN S L, ZHOU L M, JIA Y, LI F M, XIONG Y C, LI X G . Effects of plastic film mulch and tillage on maize productivity and soil parameters. European Journal of Agronomy, 2009,31(4):241-249.
[17] LIU Q F, CHEN Y, LI W W, LIU Y, HAN J, WEN X X, LIAO Y C . Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China. Scientific Reports, 2016,6:28150.
[18] 路海东, 薛吉全, 郝引川, 高杰 . 黑色地膜覆盖对旱地玉米土壤环境和植株生长的影响. 生态学报, 2016,36(7):1997-2004.
doi: 10.5846/stxb201409301936
LU H D, XUE J Q, HAO Y C, GAO J . Effects of black film mulching on soil environment and maize growth in dry land. Acta Ecologica Sinica, 2016,36(7):1997-2004. (in Chinese)
doi: 10.5846/stxb201409301936
[19] FILIPOVIC V, ROMIC D, ROMIC M, BOROSIC J, FILIPOVIC L, MALLMANN F J K, ROBINSON D A . Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study. Agricultural Water Management, 2016,176:100-110.
[20] SUN S J, CHEN Z J, JIANG H, ZHANG L L . Black film mulching and plant density influencing soil water-temperature conditions and maize root growth. Vadose Zone Journal, 2018,17(1):1-12
[21] HUANG Y L, CHEN L D, FU B J, HUANG J L, GONG J . The wheat yields and water-use efficiency in the Loess Plateau: Straw mulch and irrigation effects. Agricultural Water Management, 2005,72:209-222.
[22] RAMAKRISHNA A, TAM H M, WANI S P, LONG T D . Effect of mulch on soil temperature moisture, weeds infestation and yield of groundnut in northern Vietnam. Field Crops Research, 2006,95:115-125.
[23] 张琴 . 不同颜色地膜覆盖对玉米土壤水热状况及产量的影响. 节水灌溉, 2017(4):57-61.
ZHANG Q . Effects of different color film mulching on soil moisture- heat and yield of maize. Water Saving Irrigation, 2017(4):57-61. (in Chinese)
[24] TARARA J M . Microclimate modification with plastic mulch. HortScience, 2000,35(2):169-180.
[25] ZHAO H, WANG R Y, MA B L, XIONG Y C, QIANG S C, WANG C L, LIU C A, LI F M . Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rain-fed ecosystem. Field Crops Research, 2014,161:137-148.
[26] WANG Y P, LI X G, ZHU J, FAN C Y, KONG X J, TURNER N C, SIDDIQUE K H M, LI F M . Multi-site assessment of the effects of plastic-film mulch on dry land maize productivity in semiarid areas in China. Agricultural and Forest Meteorology, 2016,220:160-169.
[27] ZHOU L M, LI F M, JIN S L, SONG Y J . How double ridges and furrows mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Research, 2009,113(1):41-47.
[28] 王罕博, 龚道枝, 梅旭荣, 郝卫平 . 覆膜和露地旱作春玉米生长与蒸散动态比较. 农业工程学报, 2012,28(22):88-94.
WANG H B, GONG D Z, MEI X R, HAO W P . Dynamics comparison of rain-fed spring maize growth and evapotranspiration in plastic mulching and un-mulching fields. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(22):88-94. (in Chinese)
[29] 张冬梅, 张伟, 陈琼, 黄学芳, 姜春霞, 韩彦龙, 刘恩科, 池宝亮 . 种植密度对旱地玉米植株性状及耗水特性的影响. 玉米科学, 2014,22(4):102-108.
ZHANG D M, ZHANG W, CHEN Q, HUANG X F, JIANG C X, HAN Y L, LIU E K, CHI B L . Effects of planting density on plant traits and water consumption characteristics of dryland maize. Journal of Maize Sciences, 2014,22(4):102-108. (in Chinese)
[30] 刘战东, 肖俊夫, 于景春, 刘祖贵, 南纪琴 . 春玉米品种和种植密度对植株性状和耗水特性的影响. 农业工程学报, 2012,28(11):125-131.
LIU Z D, XIAO J F, YU J C, LIU Z G, NAN J Q . Effects of varieties and planting density on plant traits and water consumption characteristics of spring maize. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(11):125-131. (in Chinese)
[31] ANTONIETTA M, FANELLO D D, ACCIARESI H A, GUIAMET J J . Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Research, 2014,155:111-119.
[32] CHEN C Q, LEI C X, DENG A X, QIAN C R, HOOGMOED W, ZHANG W J . Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965 to 2008. Agricultural and Forest Meteorology, 2011,151(12):1580-1588.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[14] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[15] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!