Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (14): 2500-2514.doi: 10.3864/j.issn.0578-1752.2019.14.009

• HORTICULTURE • Previous Articles     Next Articles

Genome-Wide Identification and Expression Analysis of SAP Family in Grape

DING Lan,GU Bao,LI PeiYing,SHU Xin,ZHANG JianXia()   

  1. College of Horticulture, Northwest Agriculture and Forestry University/State Key Laboratory of Crop Stress Biology in Arid Areas Yangling 712100, Shaanxi
  • Received:2019-02-25 Accepted:2019-05-07 Online:2019-07-16 Published:2019-07-26
  • Contact: JianXia ZHANG E-mail:zhangjx666@126.com

Abstract:

【Objective】The aim of this paper was to identify the Stress Associated Protein (SAP) family genes of grape (Vitis vinifera L.) genome and to know the profile of SAP family regarding the number and structure of genes. The biological rhythm of SAP family and its expression pattern under different hormones and abiotic stress were analyzed by qRT-PCR. The study would provide theoretical basis for further exploring the roles of SAP family genes in grapevine. 【Method】SAP15, a gene selected from the transcriptome database of Vitis amurensis cv. ‘Shuangyou’ and Vitis vinifera cv. ‘Red Globe’, had a significantly up-regulated expression under the cold treatment. According to the conserved structural domains, the SAPs in grape genome-wide were identified by BLAST of NCBI and grape genome database. DNAMAN5.0, MEME, GSDS2.0, ExPASy and MEGA6 software were used for various bioinformatics analysis of VvSAPs, including the study of nucleotide sequences, gene structure, protein structure, physical and chemical properties, chromosome localization and phylogeny. Quantitative real-time PCR (qRT-PCR) was employed to detect the circadian rhythm of VvSAPs and their relative expression levels under hormone and abiotic stress.【Result】In total, 15 SAPs with conservative domains of AN1 were identified from grape genome and most of them contained A20 conservative domain. They could be classified into Class Ⅰ, Class Ⅱ and Class Ⅲ based on their conservative structure domain and the location on chromosome in grape. Analysis of physical and chemical properties of VvSAP family showed that the numbers of amino acids were between 109 and 293, and the theoretical equivalence points were between 7.99 and 9.68. Localization of genes on the chromosome revealed that 15 VvSAPs were distributed on 9 chromosomes of the grape, and there were 3 SAPs on chromosome 8. By the sub-cellular location analysis, we noticed that VvSAPs were mainly expressed in nucleus, chloroplast and cytoskeleton in grape. The secondary structure of VvSAP were mainly irregular crimp and α-helix. The gene structures were highly conserved, and VvSAP1-VvSAP12 had no intron, while VvSAP13-VvSAP15 contained one intron. The results of qRT-PCR analysis showed that VvSAP1 and VvSAP9 had extremely low expression or no expression under hormone and abiotic treatment, so they were preliminarily identified as pseudogenes. While VvSAP10 was proved to be down-regulated under 400 mmol·L -1NaCl treatment, the remaining genes were up-regulated under 50 μmol·L -1 ABA, 100 μmol·L -1SA and 400 mmol·L -1NaCl treatment, respectively. VvSAP10-VvSAP14 were highly responsive to 50 μmol·L -1ABA treatment, and their relative expressions were improved by 37.19, 36.63, 21.69, 58.34 and 267.35 times, respectively, after 24 hours treatment. After 4 hours under NaCl treatment, VvSAP8 and VvSAP11 had the highest relative expression level, which were 13.16 and 12.42 times higher than those without NaCl treatment, respectively. The VvSAP15 had the highest response towards 4℃ treatment, and its relative expression level was 35.90 times after 8 hours treatment comparing to the 0 hour.【Conclusion】15 VvSAPs family were identified from the grape genome, of which VvSAP1 and VvSAP9 were preliminarily identified as pseudogenes. These members were localized across 9 chromosomes of the grape, and the evolution of VvSAP was highly conservative. All members of VvSAP family responded to adversity and had circadian rhythm, However, the expression pattern of VvSAPs was varied under different stress.

Key words: grape, SAP family, circadian rhythm, hormone, abiotic stress, expression analysis

Table 1

qRT-PCR primers for expression on analysis of VvSAP"

基因Gene 上游引物(5′-3′)Forward primer(5′-3′) 下游引物(5′-3′) Reverse primer(5′-3′)
VvSAP1 TCCACGAAGAAGTCGGAGCA GCAAACGATGCTTCCCACAG
VvSAP2 TGAGCTGCAACAAGAAGGTG TCAGCCTTAACCACCGGATT
VvSAP3 ATTGTCGATGCGGTCACCTT CCTTGACAACAGGGTTGGCT
VvSAP4 CTGCAATTCTCTGCGCCAAT CTTCCTCGATTCCCGAACC
VvSAP5 GCGGCCAATGAAATCACTGTT ACAGAACGTGATCCCACACC
VvSAP6 AGTCCAAGGTCAAGGAGGGA TGCAGCAGTCCGGTAATCAA
VvSAP7 TTCTGCGCTGAGCATCGGTA CAGACTCTCACGATCTTCGCA
VvSAP8 TTGTGCTTCACCAAGCGAGA CGGTCCTGTAGTCGAATGGG
VvSAP9 GGTGTGGGAGTATGTTCT CATAACCTTCCTGGTAACTTC
VvSAP10 TTGTTACCTCCATGACTCAATTATC ACATACTTCCACATCGGCACTT
VvSAP11 CATGAGCTGCAACAAGAAGG AGCCTTAACCACCGGATTAG
VvSAP12 CCGAAACTCTAACCCTATGCG TTCACCTCCCTCCTTCTCACA
VvSAP13 GAGGGAGGTGAACTGGTGCT GTCCTGCCGCCTTGTAATCG
VvSAP14 GATGGAGTGGGACAGAGCAG CTTACAGCAGCTCGGTTGGA
VvSAP15 ACTGCGACCCGTCAAAGAAA AACCGATGCTTGAGGCAGAA

Fig. 1

The chromosome location of the SAP family in Vitis vinifera"

Table 2

Physicochemical property of VvSAP proteins"

基因
Gene
基因号
Gene ID
氨基酸数
Amino acid number
等电点
Theoretical
pI
分子量
Molecular weight (Da)
不稳定指数 Instability index 脂溶指数 Aliphatic index 总平均疏水指数
Average of hydropathicity (GRAVY)
VvSAP1 LOC100266326 152 9.10 17119.98 33.30 55.52 -0.600
VvSAP2 LOC100259845 172 8.77 18460.83 46.68 46.05 -0.494
VvSAP3 LOC100267237 172 7.99 18502.95 27.15 56.80 -0.500
VvSAP4 LOC100242410 141 8.28 15277.21 36.57 54.75 -0.509
VvSAP5 LOC100264822 161 8.92 17192.68 49.44 66.21 -0.300
VvSAP6 LOC100243583 172 7.99 18153.57 30.43 68.72 -0.327
VvSAP7 LOC100852428 172 8.95 18359.69 32.98 57.50 -0.486
VvSAP8 LOC100852460 172 8.22 18504.11 46.99 61.40 -0.371
VvSAP9 LOC100265156 153 9.10 17153.98 38.56 50.39 -0.699
VvSAP10 LOC100265151 152 8.77 16850.54 21.92 58.36 -0.558
VvSAP11 LOC100852756 109 9.23 11757.33 54.13 43.85 -0.471
VvSAP12 LOC100251836 126 9.13 14293.29 54.43 53.41 -0.901
VvSAP13 LOC10085429 126 9.68 14575.89 41.04 53.41 -0.904
VvSAP14 LOC100255506 293 8.56 32457.78 40.16 58.84 -0.614
VvSAP15 LOC100245574 189 8.74 21133.11 49.61 47.99 -0.800

Table 3

Subcellular location prediction of SAP family in Vitis vinifera"

基因
Gene
细胞核
Nucleus
叶绿体
Chloroplast
细胞外
Extracellular
细胞骨架
Cytoskeleton
线粒体
Mitochondria
过氧化物酶体
Peroxisome
细胞质和细胞核
Cyto_nucl
质膜
Plasma membrane
VvSAP1 6 4 2 1 1 - - -
VvSAP2 8 1 2 1 2 - - -
VvSAP3 9 1 - 4 - - - -
VvSAP4 3 10 - 1 - - - -
VvSAP5 4 3 - 3 4 - - -
VvSAP6 5 4 2 3 - - - -
VvSAP7 4 6 1 1 2 - - -
VvSAP8 8 2 1 3 - - - -
VvSAP9 2.5 4 - 1.5 - 6 2.5 -
VvSAP10 2.5 3 - 2.5 - 6 3 -
VvSAP11 4 2 2 3 3 - - -
VvSAP12 5 6 1 1 1 - - -
VvSAP13 8 2 1 1 1 - - 1
VvSAP14 14 - - - - - - -
VvSAP15 13 - - - - - - 1

Table 4

The secondary structure of VvSAP"

蛋白名称 Protein name α-螺旋 Alpha helix (%) 拓展链结构 Extended strand (%) β-转角 Beta turn (%) 无规则卷曲 Random coil (%)
VvSAP1 30.26 11.18 4.61 53.95
VvSAP2 26.74 11.05 2.91 59.30
VvSAP3 31.40 12.21 3.49 52.91
VvSAP4 29.79 12.77 3.55 53.90
VvSAP5 25.47 10.56 4.35 59.63
VvSAP6 29.65 11.05 3.49 55.81
VvSAP7 23.84 12.21 4.07 59.88
VvSAP8 23.84 12.79 5.23 58.14
VvSAP9 23.53 11.11 5.23 60.13
VvSAP10 34.87 11.84 3.29 50.00
VvSAP11 15.60 23.85 10.09 50.46
VvSAP12 17.46 20.63 3.97 57.94
VvSAP13 27.78 17.46 7.14 47.62
VvSAP14 24.91 10.92 2.05 62.12
VvSAP15 11.11 11.11 4.76 73.02

Fig. 2

SAP family sequence analysis in Vitis vinifera A: SAP family motif analysis in Vitis vinifera; B: LOGO of 8 conserved motif of SAP domain"

Fig. 3

Identify analysis of grape SAP proteins"

Fig. 4

The phylogenetic tree and gene structure of SAP family in Vitis vinifera"

Fig. 5

Phylogenetic tree of SAP gene family in V.vinifera(●), A. thaliana and O. sativa"

Fig. 6

Relative expression of SAPs under circadian and different treatments CR: Circadian rhythm; ABA: Abscisic acid; SA: Salicylic acid; NaCl: Sodium chloride; LT: Low temperature (Abscissa)CR 1-8: Beijing time 0:00, 3:00, 6:00, 9:00, 12:00, 15:00, 18:00, 21:00;ABA/SA/NaCl/LT 1-8: 0 h, 0.5 h, 1 h, 2 h, 4 h, 8 h, 12 h and 24 h after treatmentError bars represent the standard deviation of three biological replicates. *, **, *** indicate P<0.05, P<0.01and P<0.001, respectively"

[1] 贺普超 . 葡萄学. 北京: 中国农业出版社, 1999: 60-61.
HE P C. Enology. Beijing: China Agriculture Press, 1999: 60-61. (in Chinese)
[2] 康天兰, 郑平生, 王艳玲, . 甘肃葡萄栽培的历史、现状与未来发展趋势. 中外葡萄与葡萄酒, 2009(5):77-79.
KANG T L, ZHENG P S, WANG Y L . History, present situation and future progress of viticulture in Gansu.Chinese and Foreign Grapes and Wine, 2009(5):77-79. (in Chinese)
[3] 何红红, 马宗桓, 张元霞, 张娟, 卢世雄, 张志强, 赵鑫, 吴玉霞, 毛娟 . 葡萄LBD基因家族的鉴定与表达分析. 中国农业科学, 2018,51(21):4102-4118.
HE H H, MA Z H, ZHANG Y X, ZHANG J, LU S X, ZHANG Z Q, ZHAO X, WU Y X, MAO J . Identification and expression analysis of LBD gene family in grape. Scientia Agricultura Sinica, 2018,51(21):4102-4118. (in Chinese)
[4] 丁林云, 张微, 王晋成, 田亮亮, 李妮娜, 郭琪, 杨淑明, 何曼林, 郭旺珍 . 过量表达棉花GhSAP1提高转基因烟草的耐盐性. 中国农业科学, 2014,47(8):1458-1470.
doi: 10.3864/j.issn.0578-1752.2014.08.002
DING L Y, ZHANG W, WANG J C, TIAN L L, LI N N, GUO Q, YANG S M, HE M L, GUO W Z . Overexpression of a Gossypium hirsutum stress-associated protein gene( GhSAP1) improves salt stress tolerance in transgenic tobacco. Scientia Agricultura Sinica, 2014,47(8):1458-1470. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.08.002
[5] OPIPARI A W, BOGUSKI M S, DIXIT V M . The A20 cDNA induced by tumor necrosis factor α encodes a novel type of zinc finger protein. The Journal of Biological Chemistry, 1990,265(25):14705-14708.
[6] HEYNINCK K, BEYAERT R . A20 inhibits NF-kB activation by dual ubiquitin-editing functions. Trends in Biochemical Sciences, 2005,30(1):1-4.
doi: 10.1016/j.tibs.2004.11.001
[7] HUANG J, TENG L, LI L X, LIU T, LI L Y, CHEN D Y, XU L G, ZHAI Z H, SHU H B . ZNF216 is an A20-like and IkB kinase γ-interacting inhibitor of NFκB activation. The Journal of Biological Chemistry, 2004,279(16):16847-16853.
doi: 10.1074/jbc.M309491200
[8] DANSANA P K, KOTHARI K S, VIJ S, TYAGI A K . OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Reports, 2014,33(9):1425-1440.
[9] DIXIT A, TOMAR P, VAINE E, ABDULLAH H, HAZEN S, DHANKHER O P . A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant, Cell & Environment, 2018,41(5):1171-1185.
[10] SOLANKE A U, SHARMA M K, TYAGI A K, SHARMA A K . Characterization and phylogenetic analysis of environmental stress- responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Molecular Genetics and Genomics, 2009,282(2):153-164.
[11] 李晓君, 蔡文伟, 张树珍, 许莉萍, 陈萍, 王俊刚 . 甘蔗锌指蛋白基因ShSAP1的克隆与表达模式. 生物工程学报, 2011,27(6):868-875.
LI X J, CAI W W, ZANG S Z, XU L P, CHEN P, WANG J G . Cloning and expression pattern of a zinc finger protein gene ShSAP1 in Saccharum officinarum. Chinese Journal of Biotechnology, 2011,27(6):868-875. (in Chinese)
[12] SREEDHARAN S, SHEKHAWAT U K, GANAPATHI T R . MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Molecular Biology, 2012,80(4/5):503-517.
[13] LIU J Y, YANG X N, YANG X Z, XU M Y, LIU J, XUE M M, MA P D . Isolation and characterization of LcSAP, a Leymus chinensis gene which enhances the salinity tolerance of Saccharomyces cerevisiae. Molecular Biology Reports, 2017,44(1):5-9.
[14] SHARMA G, GIRI J, TYAGI A K . Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. Plant Science, 2015,237:80-92.
[15] KANNEGANTI V, GUPTA A K . Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 2008,66(5):445-462.
[16] WANG Y H, ZHANG L R, ZHANG L L, XING T, PENG J Z, SUN S L, CHEN G, WANG X J . A novel stress-associated protein SbSAP14 from Sorghum bicolor confers tolerance to salt stress in transgenic rice. Molecular Breeding, 2013,32(2):437-449.
[17] GHNEIM T, SELVARAJ M G, MEYNARD D, FABRE D, PENA A, BEN ROMDHANE W, BEN S R, OGAWA S, REBOLLEDO M C, ISHITANI M, TOHME J, AL-DOSS A, GUIDERDONI E, HASSAIRI A . Expression of the Aeluropus littoralis AlSAP gene enhances rice yield under field drought at the reproductive stage. Frontiers in Plant Science, 2017,8:994.
[18] ZHANG Z B, ZHANG J W, CHEN Y J, LI R F, WANG H Z, WEI J H . Genome-wide analysis and identification of HAK potassium transporter gene family in maize( Zea mays L.). Molecular Biology Reports, 2012,39(8):8465-8473.
[19] HORTON P, PARK K J, OBAYASHI T, FUJITA N, HARADA H, ADAMS-COLLIER C J, NAKAI K . WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 2007,35:W585-587.
doi: 10.1093/nar/gkm259
[20] YU D D, ZHANG L H, ZHAO K, NIU R X, ZHAI H, ZHANG J X . VaERD15, a transcription factor gene associated with cold-tolerance in Chinese wild Vitis amurensis. Frontiers in Plant Science, 2017,8(e63064):297.
[21] 陈代, 李德美, 战吉宬, 黄卫东 . 温度和日照时间对河北怀来霞多丽葡萄成熟度指标的影响. 中国农业科学, 2011,44(3):545-551.
CHEN D, LI D M, ZHAN J C, HUANG W D . Temperature and duration of sunshine on maturity indices of chardonnay in Huailai county of Hebei province. Scientia Agricultura Sinica, 2011,44(3):545-551. (in Chinese)
[22] 刘辉, 李德军 . 植物应答低温胁迫的转录调控网络研究进展. 中国农业科学, 2014,47(18):3523-3533.
doi: 10.3864/j.issn.0578-1752.2014.18.001
LIU H, LI D J . Advances in research of transcriptional regulatory network in response to cold stress in plants. Scientia Agricultura Sinica, 2014,47(18):3523-3533. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.001
[23] XU W R, JIAO Y T, LI R M, ZHANG N B, XIAO D M, DING X L, WANG Z P . Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS ONE, 2014,9(7):e102303.
[24] YIN X J, HUANG L, ZHANG X M, GUO C L, WANG H, LI Z, WANG X P . Expression patterns and promoter characteristics of the Vitis quinquangularis VqSTS36 gene involved in abiotic and biotic stress response. Protoplasma, 2017,254(6):2247-2261.
[25] 秦玲, 康文怀, 齐艳玲, 蔡爱军 . 盐胁迫对酿酒葡萄叶片细胞结构及光合特性的影响. 中国农业科学, 2012,45(20):4233-4241.
doi: 10.3864/j.issn.0578-1752.2012.20.013
QIN L, KANG W H, QI Y L, CAI A J . Effects of salt stress on mesophyll cell structures and photosynthetic characteristics in leaves of wine grape (Vitis spp.). Scientia Agricultura Sinica, 2012,45(20):4233-4241. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.20.013
[26] LINNEN J M, BAILEY C P, WEEKS D L . Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins. Gene, 1993,128(2):181-188.
[27] DUAN W, SUN B G, LI T W, TAN B J, LEE M K, TEO T S . Cloning and characterization of AWP1, a novel protein that associates with serine/threonine kinase PRK1 in vivo. Gene, 2000,256(1/2):113-121.
[28] EVANS P C, OVAA H, HAMON M, KILSHAW P E, HAMM S, BAUER S, PLOEGH H L, SMITH T S . Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochemical Journal, 2004,378(Pt 3):727-734.
doi: 10.1042/bj20031377
[29] CHEN Z J . Ubiquitin signaling in the NF-κB pathway. Nature Cell Biology, 2005,7(8):758-765.
doi: 10.1038/ncb0805-758
[30] HISHIYA A, IEMURA S, NATSUME T, TAKAYAMA S, IKEDA K, WATANABE K . A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. The EMBO Journal, 2006,25(3):554-564.
doi: 10.1038/sj.emboj.7600945
[31] VIJ S, TYAGI A K . Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Molecular Genetics and Genomics, 2006,276(6):565-575.
[32] JIA H X, LI J B, ZHANG J, REN Y Q, HU J J, LU M Z . Genome-wide survey and expression analysis of the stress-associated protein gene family in desert poplar, Populus euphratica. Tree Genetics & Genomes, 2016,12(4):78.
[33] CANNON S B, MITRA A, BAUMGARTEN A, YOUNG N D, MAY G . The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004,4(1):10.
[34] WANG G, LOVATO A, POLVERARI A, WANG M, LIANG Y H, MA Y C, CHENG Z M . Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). BMC Plant Biology, 2014,14(1):219.
[35] HU W, HOU X W, HUANG C, YAN Y, TIE W W, DING Z H, WEI Y X, LIU J H, MIAO H X, LU Z W, LI M Y, XU B Y, JIN Z Q . Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana . International Journal of Molecular Sciences, 2015,16(8):19728-19751.
doi: 10.3390/ijms160819728
[36] GIRI J, DANSANA P K, KOTHARI K S, SHARMA G, VIJ S, TYAGI A K . SAPs as novel regulators of abiotic stress response in plants. BioEssays, 2013,35(7):639-648.
doi: 10.1002/bies.201200181
[37] JEFFARES D C, PENKETT C J, BÄHLER J . Rapidly regulated genes are intron poor. Trends in Genetics, 2008,24(8):375-378.
doi: 10.1016/j.tig.2008.05.006
[38] KAMAKSHI S K, PRASANT K D, JITENDER G, AKHILESH K T . Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Frontiers in Plant Science, 2016,7(18):1057.
[39] STROHER E, WANG X J, ROLOFF N, KLEIN P, HUSEMANN A, DIETZ K J . Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Molecular Plant, 2009,2(2):357-367.
[1] YANG GaiQing, WANG LinFeng, LI WenQing, ZHU HeShui, FU Tong, LIAN HongXia, ZHANG LiYang, TENG ZhanWei, ZHANG LiJie, REN Hong, XU XinYing, LIU XinHe, WEI YuXuan, GAO TengYun. Study on Milk Quality Based on Circadian Rhythm [J]. Scientia Agricultura Sinica, 2023, 56(2): 379-390.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[6] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[7] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[8] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[9] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[10] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[11] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[12] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[13] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[14] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[15] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!