Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (14): 2797-2811.doi: 10.3864/j.issn.0578-1752.2022.14.010

• HORTICULTURE • Previous Articles     Next Articles

Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape

JI XiaoHao(),LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo()   

  1. Fruit Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Xingcheng 125100, Liaoning
  • Received:2021-11-01 Accepted:2021-12-31 Online:2022-07-16 Published:2022-07-26
  • Contact: HaiBo WANG E-mail:jixiaohao2006@163.com;haibo8316@163.com

Abstract:

【Objective】The purpose of this study was to develop molecular markers suitable for the identification of grape aroma phenotypes, so as to provide a theoretical basis for grape molecular assisted breeding. 【Method】 The aroma components and content of 45 grape varieties were determined by solid-phase microextraction combined with gas-phase mass spectrometry, and the structural variation and SNP variation of VvAAT gene were analyzed by Sanger sequencing and amplicon sequencing, respectively. 【Result】A total of 65 aroma components were found in 45 grape varieties, which could be divided into four types: esters, alcohols, terpenes and aldehydes. Among them, the content of esters showed significant variety differences, and 20 grape varieties such as Kyoho were rich in volatile esters, but little volatile esters was detected in other 25 grape varieties such as 87-1. A total of 5 structural variants have been found in the VvAAT gene. Types I, II, IV and V could not be translated correctly due to premature termination codons or fragment insertion mutations. Only type III could be translated aright. According to the results of the phylogenetic tree analysis of their amino acid sequences, Type III could be divided into two types: III.1 and III.2. Combining the aroma data, it could be inferred that III.1 was functional, while the rest were non-functional. Amplicon sequencing and bioinformatics analysis revealed 8 SNP sites (T32C, A69T, G436C, A1247G, A1818T, G1929T, A1959G, and C1975G) located in the exon region of the VvAAT gene, all of which caused mutations in the coding amino acids. It could accurately distinguish between ester-rich varieties and ester-poor varieties, with an accuracy rate of 97.8%. 【Conclusion】VvAAT gene locus had abundant genetic variation, including gene structure variation and SNP variation; 8 SNP loci located in the coding region of VvAAT gene could accurately determine the phenotype of volatile esters, which could be applied to grape molecular assisted breeding.

Key words: grape, aroma, alcohol acyltransferase, VvAAT, amplicon sequencing, marker-assisted selection

Table 1

Statistics of aroma components and content (ng∙g-1) of 45 grape varieties"

化合物类型 Type of compound 种类 Number 变异范围 Variation range (ng∙g-1) 平均值 Mean (ng∙g-1) 方差 Variance
酯类Esters 22 0—3238.77 465.67 777.60
醇类Alcohols 2 0—164.84 12.58 31.91
醛类Aldehydes 12 642.80—5485.97 1890.40 1171.33
萜类Terpenoids 29 0—8548.37 471.41 1601.95
总计 Total 65 800.43—11387.75 2835.44 2381.58

Fig. 1

Distribution diagram of the volatile esters content of grape"

Table 2

Classification of volatile ester content of grape varieties"

酯香型品种
Varieties rich in volatile esters
非酯香型品种
Varieties poor in volatile esters
红香蕉 Hongxiangjiao (6, 244.27) 8611 (0, 0)
高砂 Gaosha (9, 278.59) 累克基特 Leikejite (0, 0)
秦龙大穗 Qinlongdasui (8, 220.90) 蓓蕾玫瑰 Muscat Bailey (0, 0)
黑蜜 Heimi (9, 199.58) 克瑞森无核 Crimson_Seedless (0, 0)
秋蜜 Qiumi (13, 402.83) 8612 (0, 0)
琥珀 Hupo (9, 330.06) 齐查卡普列 Qichakapulie (0, 0)
红丹 Hongdan (16, 920.17) 牧丹红 Mudanhong (0, 0)
火星无核 Mars_Seedless (9, 408.72) 红意大利Red_Italian (0, 0)
着色香 Zhuosexiang (6, 543.78) 玫瑰花 Meiguihua (0, 0)
黑虎香 Heihuxiang (14, 591.16) 泽玉 Zeyu (0, 0)
藤稔 Fujiminori (13, 701.42) 巧保2号 Qiaobao2 (0, 0)
红富士 BenniFuji (10, 723.95) 红巴拉多蒂 Hongbaladuodi (0, 0)
井川1014 Jingchun1014 (9, 800.74) 乌兹别克玫瑰 Ojin_Kokn (0, 0)
巨峰 Kyoho (15, 1453.39) 阿登纳玫瑰 Muscat_Adda (0, 0)
尼加拉 Nigara (13, 1697.20) 228 (0, 0)
奥利文 Irsay_Oliver (7, 1708.50) 里扎马特 Rizamat (0, 0)
安尼斯基 Ayaneskeal (9, 1920.01) 香槟 Champion (0, 0)
吉香 Jixiang (9, 2200.84) 京秀 Jingxiu (0, 0)
紫早 Zizao (9, 2370.34) 索罗门 Madeleine_Salomon (0, 0)
早巨选 Zaojuxuan (19, 3238.77) 郑州早红 Zhengzhouzaohong (0, 0)
87-1 (0, 0)
晚17 Wan17 (0, 0)
香妃 Xiangfei (0, 0)
京早晶 Jingzaojing (0, 0)
阳光玫瑰 Shine_Musca (0, 0)

Table 3

VvAAT genotype statistics of 27 grape varieties"

品种
Variety
基因名称
Gene name
NCBI注册号
GenBank accession number
基因结构类型
Gene structure type
表型
Phenotype
巨峰
Kyoho
VvAAT-Kyoho-1 OK559426 III.2 酯香型
Esters-rich
VvAAT-Kyoho-2 OK559427 III.1
阳光玫瑰
Shine-Muscat
VvAAT-Shine_Musca-1 OK559428 IV 非酯香型
Esters-poor
VvAAT-Shine_Musca-2 OK559429 V
着色香
Zhuosexiang
VvAAT-Zhuosexiang-1 OK559430 III.1 酯香型
Esters-rich
VvAAT-Zhuosexiang-2 OK559431 V
87-1 VvAAT-87_1 OK559432 III.2 非酯香型 Esters-poor
晚17 Wan17 VvAAT-Wan17 OK559433 II 非酯香型 Esters-poor
8611 VvAAT-8611-1 OK559434 III.2 非酯香型
Esters-poor
VvAAT-8611-2 OK559435 III.2
香妃 Xiangfei VvAAT-Xiangfei OK559436 III.2 非酯香型 Esters-poor
京早晶 Jingzaojing VvAAT-Jingzaojing OK559437 III.2 非酯香型 Esters-poor
郑州早红Zhengzhouzaohong VvAAT-Zhengzhouzaohong OK559438 V 非酯香型 Esters-poor
索罗门
Madeleine_Salomon
VvAAT-Madeleine_Salomon-1 OK559439 III.2 非酯香型
Esters-poor
VvAAT-Madeleine_Salomon-2 OK559440 III.2
京秀
Jingxiu
VvAAT-Jingxiu-1 OK559441 III.2 非酯香型
Esters-poor
VvAAT-Jingxiu-2 OK559442 II
早巨选
Zaojuxuan
VvAAT-Zaojuxuan-1 OK559443 III.2 酯香型
Esters-rich
VvAAT-Zaojuxuan-2 OK559444 III.1
VvAAT-Zaojuxuan-3 OK559445 III.2
VvAAT-Zaojuxuan-4 OK559446 III.2
奥利文 Irsay_Oliver VvAAT-Irsay_Oliver OK559447 III.1 酯香型 Esters-rich
香槟 Champion VvAAT-Champion OK559448 V 非酯香型 Esters-poor
紫早 Zizao VvAAT-Zizao OK559449 III.1 酯香型 Esters-rich
里扎马特
Rizamat
VvAAT-Rizamat-1 OK559450 III.2 非酯香型
Esters-poor
VvAAT-Rizamat-2 OK559451 III.2
228 VvAAT-228 OK559452 III.2 非酯香型 Esters-poor
安尼斯基 Ayaneskeal VvAAT-Ayaneskeal OK559453 III.1 酯香型 Esters-rich
阿登纳玫瑰 Muscat_Adda VvAAT-Muscat_Adda OK559454 II 非酯香型 Esters-poor
红富士 BenniFuji VvAAT-BenniFuji OK559455 III.1 酯香型 Esters-rich
吉香 Jixiang VvAAT-Jixiang OK559456 III.1 酯香型 Esters-rich
藤稔 Fujiminori VvAAT-Fujiminori OK559457 III.1 酯香型 Esters-rich
尼加拉
Nigara
VvAAT-Nigara-1 OK559458 III.2 酯香型
Esters-rich
VvAAT-Nigara-2 OK559459 III.1
乌兹别克玫瑰 Ojin_Kokn VvAAT-Ojin_Kokn OK559460 III.2 非酯香型 Esters-poor
井川1014
Jingchun1014
VvAAT-Jingchun1014-1 OK559461 III.2 酯香型
Esters-rich
VvAAT-Jingchun1014-2 OK559462 III.1
秦龙大穗
Qinlongdasui
VvAAT-Qinlongdasui-1 OK559463 III.1 酯香型
Esters-rich
VvAAT-Qinlongdasui-2 OK559464 III.2
累克基特
Leikejite
VvAAT-Leikejite-1 OK559465 I 非酯香型
Esters-poor
VvAAT-Leikejite-2 OK559466 II

Fig. 2

Schematic diagram of VvAAT gene structure"

Fig. 3

Phylogenetic tree analysis of the amino acid sequence of type III VvAAT gene"

Table 4

VvAAT gene structure type and ester aroma content (ng∙g-1) statistics"

I II III.1 III.2 IV V
I 0 - - - - -
II 0 - 0 - -
III.1 1604.18 1482.20 - 543.78
III.2 0 - -
IV - 0
V 0

Table 5

Statistics of amplicon sequencing results of VvAAT"

品种 Variety Clean reads (K) Clean bases (M) Q20 (%) Q30 (%) 覆盖度 Coverage (K)
奥利文 Irsay_Oliver 235.22 30.18 90.66 87.57 15.09
早巨选 Zaojuxuan 407.65 52.72 90.77 86.72 26.36
火星无核 Mars_Seedless 359.00 46.58 90.83 87.73 23.29
红香蕉 Hongxiangjiao 445.26 56.83 90.85 87.80 28.41
琥珀 Hupo 553.36 71.05 91.05 88.03 35.52
红富士 BenniFuji 373.19 47.93 90.47 87.29 23.96
秋蜜 Qiumi 295.73 37.96 90.76 87.69 18.98
巨峰 Kyoho 379.10 48.84 90.93 87.88 24.42
井川1014 Jingchun1014 518.11 66.35 90.89 87.84 33.17
黑虎香 Heihuxiang 729.92 95.28 90.87 87.79 47.64
黑蜜 Heimi 601.47 78.07 91.05 88.01 39.03
秦龙大穗 Qinlongdasui 693.37 90.00 90.50 87.34 45.00
红丹 Hongdan 338.81 42.87 90.80 87.78 21.43
高砂 Gaosha 343.88 43.87 91.00 88.01 21.93
红巴拉多蒂 Hongbaladuodi 521.69 67.30 91.20 88.17 33.65
巧保2号 Qiaobao2 355.88 45.40 91.04 88.00 22.70
泽玉 Zeyu 1187.71 155.61 90.83 87.68 77.80
玫瑰花 Meiguihua 1771.53 234.87 90.68 87.46 117.43
红意大利 Red Italian 627.85 79.59 89.91 86.61 39.79
牧丹红 Mudanhong 1348.14 173.77 89.67 86.65 86.88
8612 1342.69 173.45 89.86 86.51 86.72
克瑞森无核 Crimson Seedless 569.85 70.73 90.29 87.14 35.36

Fig. 4

IGV visualization of the comparison results (taking the Olivine variety as an example)"

Fig. 5

SNP filtering and visualization by VcfR"

Fig. 6

Analysis of the proportion of SNP sites in esters-rich and esters-poor varieties SNPs of different ratio types are marked with different colors. The value next to the circle indicates the number of SNPs. The larger the circle, the more the number of SNPs with the same ratio"

Fig. 7

Analysis of SNP locus in gene The upper letter of the structure diagram indicates the nucleotide mutation, and the lower letter indicate the corresponding amino acid mutation. The order is the reference sequence type: Variant sequence type. FGWG and HXXXD: Conserved domains"

Table 6

Analysis of 8 SNPs in the Sanger sequencing data"

基因名称
Gene name
SNPs 基因结构类型
Gene structure type
32 69 438 1247 1818 1929 1959 1975
VvAAT-Kyoho-1 T A G A A G A C III.2
VvAAT-Kyoho-2 C T C G T T G G III.1
VvAAT-Shine_Musca-1 T A G A A G A C IV
VvAAT-Shine_Musca-2 T A G A A G A C V
VvAAT-Zhuosexiang-1 C T C G T T G G III.1
VvAAT-Zhuosexiang-2 T A G A A G A C V
VvAAT-87_1 T A G A A G A C III.2
VvAAT-Wan17 T A G A A G A C II
VvAAT-8611-1 T A G A A G A C III.2
VvAAT-8611-2 T A G A A G A C III.2
VvAAT-Xiangfei T A G A A G A C III.2
VvAAT-Jingzaojing T A G A A G A C III.2
VvAAT-Zhengzhouzaohong T A G A A G A C V
VvAAT-Madeleine_Salomon-1 T A G A A G A C III.2
VvAAT-Madeleine_Salomon-2 T A G A A G A C III.2
VvAAT-Jingxiu-1 T A G A A G A C III.2
VvAAT-Jingxiu-2 T A G A A G A C II
VvAAT-Zaojuxuan-1 T A G A A G A C III.2
VvAAT-Zaojuxuan-2 C T C G T T G G III.1
VvAAT-Zaojuxuan-3 T A G A A G A C III.2
VvAAT-Zaojuxuan-4 T A G G T T G G III.2
VvAAT-Irsay_Oliver C T C G T T G G III.1
VvAAT-Champion T A G A A G A C V
VvAAT-Zizao C T C G T T G G III.1
VvAAT-Rizamat-1 T A G A A G A C III.2
VvAAT-Rizamat-2 T A G A A G A C III.2
VvAAT-228 T A G A A G A C III.2
VvAAT-Ayaneskeal C T C G T T G G III.1
VvAAT-Muscat_Adda T A G A A G A C II
VvAAT-BenniFuji C T C G T T G G III.1
VvAAT-Jixiang C T C G T T G G III.1
VvAAT-Fujiminori C T C G T T G G III.1
VvAAT-Nigara-1 T A G A A G A C III.2
VvAAT-Nigara-2 C T C G T T G G III.1
VvAAT-Ojin_Kokn T A G A A G A C III.2
VvAAT-Jingchun1014-1 T A G A A G A C III.2
VvAAT-Jingchun1014-2 C T C G T T G G III.1
VvAAT-Qinlongdasui-1 C T C G T T G G III.1
VvAAT-Qinlongdasui-2 T A G A A G A C III.2
VvAAT-Leikejite-1 T A G G T T G G I
VvAAT-Leikejite-2 T A G A A G A C II
[1] 穆维松, 冯建英, 田东, 牟鑫. 我国鲜食葡萄产业的国际贸易与国内需求形势. 中国果树, 2019(2): 5-10. doi: 10.16626/j.cnki.issn1000-8047.2019.02.002.
doi: 10.16626/j.cnki.issn1000-8047.2019.02.002
MU W S, FENG J Y, TIAN D, MU X. The international trade and domestic demand of the table grape industry in China. China Fruits, 2019(2): 5-10. doi: 10.16626/j.cnki.issn1000-8047.2019.02.002. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2019.02.002
[2] YANG C X, WANG Y J, LIANG Z C, FAN P G, WU B H, YANG L, WANG Y N, LI S H. Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC-MS. Food Chemistry, 2009, 114: 1106-1114.
doi: 10.1016/j.foodchem.2008.10.061
[3] FENOLL J, MANSO A, HELLÍN P, RUIZ L, FLORES P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chemistry, 2009, 114: 420-428.
doi: 10.1016/j.foodchem.2008.09.060
[4] KALUA C M, BOSS P K. Evolution of volatile compounds during the development of Cabernet Sauvignon grapes (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 2009, 57: 3818-3830.
doi: 10.1021/jf803471n
[5] YANG C X, WANG Y J, WU B H, FANG J B, LI S H. Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chemistry, 2011, 128: 823-830.
doi: 10.1016/j.foodchem.2010.11.029
[6] WANG D, CAI J, ZHU B Q, WU G F, DUAN C Q, CHEN G, SHI Y. Study of free and glycosidically bound volatile compounds in air-dried raisins from three seedless grape varieties using HS-SPME with GC-MS. Food Chemistry, 2015, 177: 346-353. doi: 10.1016/j.foodchem.2015.01.018.
doi: 10.1016/j.foodchem.2015.01.018
[7] WU Y S, DUAN S Y, ZHAO L P, GAO Z, LUO M, SONG S R, XU W P, ZHANG C X, MA C, WANG S P. Aroma characterization based on aromatic series analysis in table grapes. Scientific Reports, 2016, 6: 31116. doi: 10.1038/srep31116.
doi: 10.1038/srep31116
[8] AUBERT C, CHALOT G. Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chemistry, 2018, 240: 524-533. doi: 10.1016/j.foodchem.2017.07.152.
doi: 10.1016/j.foodchem.2017.07.152
[9] 李秋棉, 罗均, 李雪萍, 陈维信. 果实香气物质的合成与代谢研究进展. 广东农业科学, 2012, 39(19): 104-107. doi: 10.16768/j.issn.1004-874x.2012.19.061.
doi: 10.16768/j.issn.1004-874x.2012.19.061
LI Q M, LUO J, LI X P, CHEN W X. Advances in the study on the biosynthesis and metabolism of volatile compounds in fruits. Guangdong Agricultural Sciences, 2012, 39(19): 104-107. doi: 10.16768/j.issn.1004-874x.2012.19.061. (in Chinese)
doi: 10.16768/j.issn.1004-874x.2012.19.061
[10] SHALIT M, KATZIR N, TADMOR Y, LARKOV O, BURGER Y, SHALEKHET F, LASTOCHKIN E, RAVID U, AMAR O, EDELSTEIN M, KARCHI Z, LEWINSOHN E. Acetyl-coa: alcohol acetyltransferase activity and aroma formation in ripening melon fruits. Journal of Agricultural and Food Chemistry, 2001, 49(2): 794-799. doi: 10.1021/jf001075p.
doi: 10.1021/jf001075p
[11] SOULEYRE E J F, CHAGNÉ D, CHEN X Y, TOMES S, TURNER R M, WANG M Y, MADDUMAGE R, HUNT M B, WINZ R A, WIEDOW C, HAMIAUX C, GARDINER S E, ROWAN D D, ATKINSON R G. The AAT1 locus is critical for the biosynthesis of esters contributing to ‘ripe apple’ flavour in ‘Royal Gala’ and ‘Granny Smith’ apples. The Plant Journal, 2014, 78(6): 903-915. doi: 10.1111/tpj.12518.
doi: 10.1111/tpj.12518
[12] HARADA M, UEDA Y, IWATA T. Purification and some properties of alcohol acetyltransferase from banana fruit. Plant and Cell Physiology, 1985, 26(6): 1067-1074. doi: 10.1093/oxfordjournals.pcp.a077002.
doi: 10.1093/oxfordjournals.pcp.a077002
[13] PÉREZ A G, SANZ C, OLÍAS J M. Partial purification and some properties of alcohol acyltransferase from strawberry fruits. Journal of Agricultural and Food Chemistry, 1993, 41: 1462-1466.
doi: 10.1021/jf00033a021
[14] BEEKWILDER J, ALVAREZ-HUERTA M, NEEF E, VERSTAPPEN F W A, BOUWMEESTER H J, AHARONI A. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology, 2004, 135(4): 1865-1878. doi: 10.1104/pp.104.042580.
doi: 10.1104/pp.104.042580
[15] AHARONI A, KEIZER L C P, BOUWMEESTER H J, SUN Z K, ALVAREZ-HUERTA M, VERHOEVEN H A, BLAAS J, VAN HOUWELINGEN A M M L, DE VOS R C H, VAN DER VOET H, JANSEN R C, GUIS M, MOL J, DAVIS R W, SCHENA M, VAN TUNEN A J, O'CONNELL A P. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell, 2000, 12: 647-661.
doi: 10.1105/tpc.12.5.647
[16] YAHYAOUI F E L, WONGS-AREE C, LATCHÉ A, HACKETT R, GRIERSON D, PECH J C. Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening. European Journal of Biochemistry, 2002, 269(9): 2359-2366. doi: 10.1046/j.1432-1033.2002.02892.x.
doi: 10.1046/j.1432-1033.2002.02892.x
[17] SOULEYRE E J F, GREENWOOD D R, FRIEL E N, KARUNAIRETNAM S, NEWCOMB R D. An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. The FEBS Journal, 2005, 272(12): 3132-3144. doi: 10.1111/j.1742-4658.2005.04732.x.
doi: 10.1111/j.1742-4658.2005.04732.x
[18] BALBONTÍN C, GAETE-EASTMAN C, FUENTES L, FIGUEROA C R, HERRERA R, MANRIQUEZ D, LATCHÉ A, PECH J C, MOYA-LEÓN M A. VpAAT1, a gene encoding an alcohol acyltransferase, is involved in ester biosynthesis during ripening of mountain papaya fruit. Journal of Agricultural and Food Chemistry, 2010, 58(8): 5114-5121. doi: 10.1021/jf904296c.
doi: 10.1021/jf904296c
[19] GÜNTHER C S, CHERVIN C, MARSH K B, NEWCOMB R D, SOULEYRE E J F. Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences. Phytochemistry, 2011, 72(8): 700-710. doi: 10.1016/j.phytochem.2011.02.026.
doi: 10.1016/j.phytochem.2011.02.026
[20] 任雪岩, 刘光财, 李国鹏, 叶春海, 丰锋, 王俊宁. 乙烯利和1-MCP对菠萝蜜果实中AheAATAheERF表达的影响. 中国农业科学, 2019, 52(21): 3890-3902. doi: 10.3864/j.issn.0578-1752.2019.21.017.
doi: 10.3864/j.issn.0578-1752.2019.21.017
REN X Y, LIU G C, LI G P, YE C H, FENG F, WANG J N. Effects of ethephon and 1-MCP on the expression of AheAAT gene and AheERF transcription factors in jackfruit fruit. Scientia Agricultura Sinica, 2019, 52(21): 3890-3902. doi: 10.3864/j.issn.0578-1752.2019.21.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.21.017
[21] LI D P, XU Y F, XU G M, GU L K, LI D Q, SHU H R. Molecular cloning and expression of a gene encoding alcohol acyltransferase (MdAAT2) from apple (cv. Golden Delicious). Phytochemistry, 2006, 67(7): 658-667. doi: 10.1016/j.phytochem.2006.01.027.
doi: 10.1016/j.phytochem.2006.01.027
[22] 董静, 王桂霞, 钟传飞, 常琳琳, 孙健, 张宏力, 孙瑞, 石琨, 隗永青, 张运涛. 森林草莓醇酰基转移酶基因FvAATW2功能研究. 园艺学报, 2018, 45(1): 41-50. doi: 10.16420/j.issn.0513-353x.2017-0085.
doi: 10.16420/j.issn.0513-353x.2017-0085
DONG J, WANG G X, ZHONG C F, CHANG L L, SUN J, ZHANG H L, SUN R, SHI K, WEI Y Q, ZHANG Y T. Studying function of alcohol acyltransferase gene FvAATW2 of Fragaria vesca by over- expressing in tobacco and cultivated strawberry. Acta Horticulturae Sinica, 2018, 45(1): 41-50. doi: 10.16420/j.issn.0513-353x.2017-0085. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2017-0085
[23] D'AURIA J C. Acyltransferases in plants: A good time to be BAHD. Current Opinion in Plant Biology, 2006, 9: 331-340.
doi: 10.1016/j.pbi.2006.03.016
[24] WANG J H, DE LUCA V. The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ‘foxy’ methylanthranilate. The Plant Journal, 2005, 44(4): 606-619. doi: 10.1111/j.1365-313X.2005.02552.x.
doi: 10.1111/j.1365-313X.2005.02552.x
[25] XU X Q, CHENG G, DUAN L L, JIANG R, PAN Q H, DUAN C Q, WANG J. Effect of training systems on fatty acids and their derived volatiles in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Chemistry, 2015, 181: 198-206. doi: 10.1016/j.foodchem.2015.02.082.
doi: 10.1016/j.foodchem.2015.02.082
[26] JI X H, WANG B L, WANG X D, WANG X L, LIU F Z, WANG H B. Differences of aroma development and metabolic pathway gene expression between Kyoho and 87-1 grapes. Journal of Integrative Agriculture, 2021, 20(6): 1525-1539. doi: 10.1016/S2095-3119(20)63481-5.
doi: 10.1016/S2095-3119(20)63481-5
[27] JI X H, WANG B L, WANG X D, SHI X B, LIU P P, LIU F Z, WANG H B. Effects of different color paper bags on aroma development of Kyoho grape berries. Journal of Integrative Agriculture, 2019, 18(1): 70-82. doi: 10.1016/S2095-3119(18)62008-8.
doi: 10.1016/S2095-3119(18)62008-8
[28] HU B, JIN J P, GUO A Y, ZHANG H, LUO J C AND GAO G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 2015, 31(8): 1296-1297.
doi: 10.1093/bioinformatics/btu817
[29] CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): 884-890. doi: 10.1093/bioinformatics/bty560.
doi: 10.1093/bioinformatics/bty560
[30] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760. doi: 10.1093/bioinformatics/btp324.
doi: 10.1093/bioinformatics/btp324
[31] DANECEK P, BONFIELD J K, LIDDLE J, MARSHALL J, OHAN V, POLLARD M O, WHITWHAM A, KEANE T, MCCARTHY S A, DAVIES R M, LI H. Twelve years of SAMtools and BCFtools. GigaScience, 2021, 10(2): giab008. doi: 10.1093/gigascience/giab008.
doi: 10.1093/gigascience/giab008
[32] ROBINSON J T, THORVALDSDÓTTIR H, WINCKLER W, GUTTMAN M, LANDER E S, GETZ G, MESIROV J P. Integrative genomics viewer. Nature Biotechnology, 2011, 29(1): 24-26. doi: 10.1038/nbt.1754.
doi: 10.1038/nbt.1754
[33] MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis toolkiT: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303. doi: 10.1101/gr.107524.110.
doi: 10.1101/gr.107524.110
[34] KNAUS B J, GRÜNWALD N J. Vcfr: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 2017, 17(1): 44-53. doi: 10.1111/1755-0998.12549.
doi: 10.1111/1755-0998.12549
[35] PINO J A, MESA J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour and Fragrance Journal, 2006, 21: 207-213.
doi: 10.1002/ffj.1703
[36] YANG Y Z, CUENCA J, WANG N, LIANG Z C, SUN H H, GUTIERREZ B, XI X J, ARRO J, WANG Y, FAN P G, LONDO J, COUSINS P, LI S H, FEI Z J, ZHONG G Y. A key ‘foxy’ aroma gene is regulated by homology-induced promoter indels in the iconic juice grape ‘Concord’. Horticulture Research, 2020, 7: 67-78.
doi: 10.1038/s41438-020-0304-6
[37] ESLING P, LEJZEROWICZ F, PAWLOWSKI J. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic Acids Research, 2015, 43(5): 2513-2524. doi: 10.1093/nar/gkv107.
doi: 10.1093/nar/gkv107
[38] LUNDBERG D S, YOURSTONE S, MIECZKOWSKI P, JONES C D, DANGL J L. Practical innovations for high-throughput amplicon sequencing. Nature Methods, 2013, 10(10): 999-1002. doi: 10.1038/nmeth.2634.
doi: 10.1038/nmeth.2634
[39] TAKEDA M, SAKAI K, TERASHIMA M, KANEDA H, HAYASHI H, TANAKA K, OKAMOTO K, TAKAHAMA T, YOSHIDA T, IWASA T, SHIMIZU T, NONAGASE Y, KUDO K, TOMIDA S, MITSUDOMI T, SAIGO K, ITO A, NAKAGAWA K, NISHIO K. Clinical application of amplicon-based next-generation sequencing to therapeutic decision making in lung cancer. Annals of Oncology, 2015, 26(12): 2477-2482. doi: 10.1093/annonc/mdv475.
doi: 10.1093/annonc/mdv475
[40] GUO Z F, WANG H W, TAO J J, REN Y H, XU C, WU K S, ZOU C, ZHANG J N, XU Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 2019, 39(3): 37. doi: 10.1007/s11032-019-0940-4.
doi: 10.1007/s11032-019-0940-4
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[6] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[7] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[8] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[9] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[10] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[11] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[12] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[13] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[14] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[15] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!