Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 977-990.doi: 10.3864/j.issn.0578-1752.2022.05.011

• HORTICULTURE • Previous Articles     Next Articles

eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape

WANG HuiLing1(),YAN AiLing2,SUN Lei3,ZHANG GuoJun1,WANG XiaoYue1,REN JianCheng1,XU HaiYing1()   

  1. 1Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093
    2Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100097
    3Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097
  • Received:2021-05-17 Accepted:2021-07-27 Online:2022-03-01 Published:2022-03-08
  • Contact: HaiYing XU E-mail:wanghui198216@126.com;haiyingxu63@sina.com

Abstract:

【Objective】The eQTL mapping for monoterpene biosynthesis related gene expression traits were performed and the candidate genes were mined to deeply understand the regulation mechanism of monoterpene synthesis, so as to lay a foundation for the cultivation of new Muscat grape varieties and germplasm improvement.【Method】The F1 population generated by crossing Moldova and Ruiduxiangyu were used as materials in this study, and the grape berry samples were collected at verasion and ripening stage respectively. The phenotypic data of expression traits were obtained by detecting the expression levels of seven monoterpene synthesis pathway genes (VvDXS1, VvDXS3, VvDXR, VvHDR, VvLiner, VvTerp, and VvGermD) by using real-time quantitative qPCR technique. eQTL mapping of monoterpene gene expression traits were performed with the mapQTL6.0 software based on the interval mapping method. The associated markers of eQTL were mapped to the genomic region, and the genes within eQTLs were annotated and analyzed via the databases of Ensembl Plants and NCBI. The expression profiles of candidate genes in the samples of parents at different developmental stages were detected by grape whole genome microarray.【Result】The expression levels of seven monoterpene biosynthesis related genes in F1 population showed a continuous quantitative genetic distribution. A significant correlation between the expression of monoterpene genes was observed. At verasion, 13 eQTLs for the seven expression traits were mapped on chromosome 1, 6, 14, 16, 17, 10 and 12, respectively, and the phenotypic explanation value ranged from 12.2% to 23.5%. Among them, eQTLs (qDXS1-v14, qHDR-v14-1 and qTerp-v14) on chromosome 14 covered the same genetic interval of 57.582-76.979 cM, and qLiner-v10, qTerp-v10 and qGermD-v10 were co-located on chromosome 10. At the mature stage, 16 eQTLs were detected, mainly located on chromosome 1, 6, 12, 8, 13 and 19. qDXS1-m6-2, qDXR-m6-2, qLiner-m6 and qGermD-m6 were co-located in the genetic interval 139.212-143.161 cM of chromosome 6. In addition, a total of 18 eQTLs on chromosomes 1, 3, 7, 10, 12, 15 and 19 were detected for the change ratio of each gene expression between maturity and verasion, respectively. qDXS1-r12-1, qDXR-r12-1, qHDR-r12, qLiner-r12 and qGermD-r12 covered the same genetic interval of 6.330-6.967cM on chromosome 12. The eQTL region for multiple expression traits co-located were further annotated, 90 transcription factor genes were screened, and 11 candidate genes were finally identified by expression profile and correlation analysis. Among them, four candidate genes of VIT_06s0009g01380, VIT_14s0006g02290, VIT_12s0028g01170 and VIT_15s0046g00290 were predicted to participate in the regulation of hormone signaling pathway, one candidate gene VIT_12s0028g01110 encodes a phytochrome interacting factor related to light response, and some other genes encode Myb, WRKY transcription factors or unknown functional proteins.【Conclusion】A total of 37 eQTLs linked to monoterpene synthesis gene expression traits were detected at two different development stages, which mainly located on chromosome 6, 12 and 14. Based on the results of gene annotation and expression profile analysis, 11 candidate genes including VIT_14s0006g02290 and VIT_06s0009g01380 were identified, and these candidate genes were highly correlated with the expression of multiple monoterpene genes.

Key words: grape, monoterpenes, key genes, eQTL

Fig. 1

Expression level of monoterpenes synthetic genes measured in F1 population A: Verasion stage; B : Mature stage; C : Expression ratio of mature stage to verasion stage; “*” represents Moldova; “▽” represents Ruiduxiangyu"

Table 1

Pearson correlation coefficients among monoterpene synthesis genes"

性状Traits eDXS1 eDXS3 eDXR eHDR eLiner eTerp eGermD
eDXS1 0.65** 0.89** 0.91** 0.86** 0.80** 0.71**
eDXS3 0.34** 0.53** 0.55** 0.54** 0.49** 0.40**
eDXR 0.90** 0.47** 0.85** 0.86** 0.85** 0.79**
eHDR 0.76** 0.41** 0.72** 0.80** 0.77** 0.75**
eLiner 0.85** 0.36** 0.81** 0.54** 0.91** 0.80**
eTerp 0.85** 0.35** 0.79** 0.55** 0.94** 0.85**
eGermD 0.77** 0.34** 0.74** 0.52** 0.80** 0.78**

Table 2

Summary of eQTLs for expression level of monoterpene synthesis genes on concensus genetic map"

时期
Stage
性状
Trait
eQTL 染色体
Chr
遗传区间
Genetic interval (cM)
连锁标记
Flanking markers
LOD 贡献率
PVE (%)
转色期
Verasion stage
eDXS1 qDXS1-v1 1 82.774-84.732 Marker 2482511-2542941 3.40 17.0
qDXS1-v6 6 142.161-144.209 Marker1008751-945452 3.34 15.7
qDXS1-v14 14 57.582-76.979 Marker3121221-2890139 3.25 15.9
eDXS3 qDXS3-v12 12 19.009-32.463 Marker2115844-2041250 3.31 16.4
qDXS3-v16 16 101.122-119.350 Marker3956150-4116611 3.89 23.5
qDXS3-v17 17 150.480-166.103 Marker99497-145961 4.32 23.1
eDXR qDXR-v17 17 159.789-171.002 Marker179340-108104 3.48 14.4
eHDR qHDR-v14-1 14 55.582-77.612 Marker3121221-3072285 3.47 16.7
qHDR-v14-2 14 118.734-126.198 Marker3063685-2947572 3.27 15.6
eLiner qLiner-v10 10 146.183-148.835 Marker352188-357432 3.06 14.8
eTerp qTerp-v10 10 141.902-158.171 Marker368243-378995 2.74 13.7
qTerp-v14 14 53.582-77.612 Marker2969612-3072285 2.58 12.2
eGermD qGermD-v10 10 145.183-148.835 Marker352188-357432 3.17 16.0
成熟期
Mature stage
eDXS1 qDXS1-m1 1 76.426-80.809 Marker2437047-2596447 3.66 17.7
qDXS1-m6-1 6 93.373-106.403 Marker924262-876360 3.55 17.2
qDXS1-m6-2 6 139.212-146.773 Marker930737-877032 3.82 18.3
qDXS1-m12 12 17.659-19.009 Marker2187251-2115844 3.54 17.1
eDXS3 qDXS3-m3 3 175.011-175.191 Marker831346-700177 3.07 13.9
eDXR qDXR-m1 1 78.832-81.788 Marker2560950-2467293 3.88 18.3
qDXR-m6-1 6 93.373-114.095 Marker924262-1008711 3.74 18.7
qDXR-m6-2 6 138.212-147.119 Marker990833-871012 3.68 17.7
qDXR-m12 12 16.435-19.009 Marker2088221-2115844 3.78 18.2
eHDR qHDR-m8 8 152.133-176.371 Marker1386586-1434785 3.4 15.1
qHDR-m13 13 25.115-36.319 Marker1631867-1651434 3.52 18.6
eLiner qLiner-m6 6 139.495-141.161 Marker930737-930878 3.53 17.1
qLiner-m12 12 6.330-6.967 Marker2067228-2134286 3.57 17.2
eTerp qTerp-m7 7 92.355 Marker2374114 3.52 17.5
qTerp-m19 19 158.927-163.008 Marker3714935-r3520942 3.79 18.2
eGermD qGermD-m6 6 139.212-143.161 Marker930737-930878 3.66 17.7
成熟期/转色期
Mature/Verasion
eDXS1 qDXS1-r7 7 92.355-100.371 Marker2345090-Marker2198875 3.72 15.5
qDXS1-r12-1 12 4.153-11.756 Marker2118601-2076541 3.86 15.7
qDXS1-r12-2 12 13.602-19.660 Marker2083394-2088370 3.66 14.4
eDXS3 qDXS3-r1 1 146.688-148.053 Marker2438419-2557770 3.85 15.3
qDXS3-r3 3 180.498-180.525 Marker751963-733688 3.65 13.6
eDXR qDXR-r7 7 92.355 Marker2345090-2374114 3.59 14.1
qDXR-r12-1 12 6.330-6.967 Marker2067228-2134286 3.54 13.2
qDXR-r12-2 12 13.602-18.491 Marker2083394-2178064 3.5 12.5
eHDR qHDR-r10 10 120.227-130.912 Marker237117-341831 3.8 18.8
qHDR-r12 12 9.490-10.127 Marker2051100-2158802 3.53 11.0
qHDR-r15 15 103.260-123.35 Marker1985545-1825916 3.75 14.9
eLiner qLiner-r12 12 5.419-10.756 Marker2067228-2076541 3.73 12.9
qLiner-r19 19 159.927-160.217 Marker3714935-3690871 3.58 12.2
eTerp qTerp-r7 7 92.355-100.371 Marker2345090-2198875 3.65 16.0
qTerp-r19 19 158.927-163.008 Marker3714935-3520942 3.86 14.8
eGermD qGermD-r3 3 178.095-180.525 Marker738834-733688 3.66 15.1
qGermD-r12 12 6.330-6.967 Marker2067228-2134286 3.55 14.6

Fig. 2

Expression analyses of candidate genes during fruit development of parents MA: Moldova sample at early development stage; MB: Moldova sample at verasion stage; MC: Moldova sample at ripening stage; RA: Ruiduxiangyu sample at early development stage; RB: Ruiduxiangyu sample at verasion stage; RC: Ruiduxiangyu sample at ripening stage"

Fig. 3

The top candidate genes correlated with monoterpene biosynthesis genes"

Table 3

The canidate genes for monoterpenes biosynthesis genes regulation"

染色体Chromosome 基因ID Gene ID 基因注释 Gene annotation
6 VIT_06s0009g00880 轴向调控蛋白YABBY2
PREDICTED: Putative axial regulator YABBY 2 [Vitis vinifera]
VIT_06s0004g05120 未知功能Myb类蛋白LOC100253567
PREDICTED: Uncharacterized protein LOC100253567 [Vitis vinifera] Myb-like
VIT_06s0009g01380 乙烯不敏感类蛋白3
PREDICTED: Protein ETHYLENE INSENSITIVE 3-like [Vitis vinifera]
14 VIT_14s0006g01280 未知功能蛋白LOC100265568
Uncharacterized protein LOC100265568 [Vitis vinifera]
VIT_14s0006g01620 转录抑制因子MYB4
PREDICTED: Transcription repressor MYB4 [Vitis vinifera]
VIT_14s0006g01340 未命名Myb类蛋白
Unnamed protein product [Vitis vinifera] Myb-like
VIT_14s0006g02290 类乙烯响应转录因子ERF034
PREDICTED: Ethylene-responsive transcription factor ERF034-like [Vitis vinifera]
10 VIT_10s0116g01200 类WRKY 6转录因子
PREDICTED: WRKY transcription factor 6-like [Vitis vinifera]
12 VIT_12s0028g01110 类光敏色素作用因子PIF5
PREDICTED: Transcription factor PIF5-like [Vitis vinifera]
VIT_12s0028g01170 类生长素响应因子6
PREDICTED: Auxin response factor 6-like [Vitis vinifera]
15 VIT_15s0046g00290 类生长素响应因子18
PREDICTED: Auxin response factor 18-like [Vitis vinifera]
[1] MATEO J J, JIMÉNEZ M. Monoterpenes in grape juice and wines. Journal of Chromatography A, 2000, 881(1/2):557-567. doi: 10.1016/s0021-9673(99)01342-4.
doi: 10.1016/s0021-9673(99)01342-4
[2] MARTIN D M, CHIANG A, LUND S T, BOHLMANN J. Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/ nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 2012, 236(3):919-929. doi: 10.1007/s00425-012-1704-0.
doi: 10.1007/s00425-012-1704-0
[3] DOLIGEZ A, AUDIOT E, BAUMES R, THIS P. QTLs for Muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Molecular Breeding, 2006, 18(2):109-125. doi: 10.1007/s11032-006-9016-3.
doi: 10.1007/s11032-006-9016-3
[4] DUCHÊNE E, BUTTERLIN G, CLAUDEL P, DUMAS V, JAEGLI N, MERDINOGLU D. A grapevine (Vitis vinifera L.) deoxy-D- xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theoretical and Applied Genetics, 2009, 118(3):541-552.
doi: 10.1007/s00122-008-0919-8
[5] BATTILANA J, COSTANTINI L, EMANUELLI F, SEVINI F, SEGALA C, MOSER S, VELASCO R, VERSINI G, GRANDO M S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theoretical and Applied Genetics, 2009, 118(4):653-669. doi: 10.1007/s00122- 008-0927-8.
doi: 10.1007/s00122- 008-0927-8
[6] EMANUELLI F, BATTILANA J, COSTANTINI L, CUNFF L L, GRANDO M S. A candidate gene association study for muscat flavor in grapevine Vitis vinifera L. BMC Plant Biology, 2010, 10(1):241.
doi: 10.1186/1471-2229-10-241
[7] BATTILANA J, EMANUELLI F, GAMBINO G, GRIBAUDO I, GASPERI F, BOSS P K, GRANDO M S. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. Journal of Experimental Botany, 2011, 62(15):5497-5508.
doi: 10.1093/jxb/err231
[8] 刘翠霞. 葡萄果实单萜化合物含量的QTL定位及其合成调控的候选基因筛选[D]. 武汉: 中国科学院武汉植物园, 2017.
LIU C X. QTL mapping of monoterpene content in grape berry and screening of candidate genes related to regulation [D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2017. (in Chinese)
[9] LIN H, GUO Y S, YANG X X, KONDO S, ZHAO Y H, LIU Z D, LI K, GUO X W. QTL identification and candidate gene identification for monoterpene content in grape(Vitis vinifera L.) berries. Vitis-Geilweilerhof, 2020, 59(1):19-28.
[10] 刘若瑾. 葡萄单萜遗传规律及全基因组单标记关联分析[D]. 北京: 北京林业大学, 2020.
LIU R J. Genetic rules and genome-wide single marker analysis of monoterpenoids in grapes[D]. Beijing: Beijing Forestry University, 2020. (in Chinese)
[11] JANSEN R C, NAP J P. Genetical genomics: The added value from segregation. Trends in Genetics, 2001, 17(7):388-391. doi: 10.1016/s0168-9525(01)02310-1.
doi: 10.1016/s0168-9525(01)02310-1
[12] KABELITZ T, KAPPEL C, HENNEBERGER K, BENKE E, NOH C, BAURLE I. eQTL Mapping of transposon silencing reveals a position-dependent stable escape from epigenetic silencing and transposition of AtMu1 in the Arabidopsis Lineage. The Plant Cell, 2014, 26(8):3261-3271.
doi: 10.1105/tpc.114.128512
[13] FU J J, CHENG Y B, LINGHU J J, YANG X H, KANG L, ZHANG Z X, ZHANG J, HE C, DU X M, PENG Z Y, WANG B, ZHAI L H, DAI C M, XU J B, WANG W D, LI X R, ZHENG J, CHEN L, LUO L H, LIU J J, QIAN X J, YAN J B, WANG J, WANG G Y. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 2013, 4:2832. doi: 10.1038/ncomms3832.
doi: 10.1038/ncomms3832
[14] JORDAN M C, SOMERS D J, BANKS T W. Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnology Journal, 2007, 5(3):442-453. doi: 10.1111/j.1467-7652.2007.00253.x.
doi: 10.1111/j.1467-7652.2007.00253.x
[15] HUANG Y F, BERTRAND Y, GUIRAUD J L, VIALET S, LAUNAY A, CHEYNIER V, TERRIER N, THIS P. Expression QTL mapping in grapevine: Revisiting the genetic determinism of grape skin colour. Plant Science, 2013, 207:18-24. doi: 10.1016/j.plantsci.2013.02.011.
doi: 10.1016/j.plantsci.2013.02.011
[16] HUANG Y F, VIALET S, GUIRAUD J L, TORREGROSA L, BERTRAND Y, CHEYNIER V, THIS P, TERRIER N. A negative MYB regulator of proanthocyanidin accumulation,identified through expression quantitative locus mapping in the grape berry. The New Phytologist, 2014, 201(3):795-809. doi: 10.1111/nph.12557.
doi: 10.1111/nph.12557
[17] XU H Y, SUN L, ZHANG G J, YAN A L. ‘Ruidu Xiangyu’: A new table grape with Muscat flavor. Vitis Geilweilerhof, 2012, 51(3):143-144.
[18] 牛早柱, 陈展, 赵艳卓, 牛帅科, 魏建国, 杨丽丽. 15个不同葡萄品种果实香气成分的GC-MS分析. 华北农学报, 2019, 34(Z1):85-91.
NIU Z Z, CHEN Z, ZHAO Y Z, NIU S K, WEI J G, YANG L L. Analysis of aromatic components from the berries of fifteen grape varieties by GC-MS. Acta Agriculturae Boreali-Sinica, 2019, 34(Z1):85-91. (in Chinese)
[19] WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015, 15:240. doi: 10.1186/s12870-015-0631-1.
doi: 10.1186/s12870-015-0631-1
[20] 王慧玲, 王晓玥, 闫爱玲, 孙磊, 张国军, 任建成, 徐海英. 不同架式‘爱神玫瑰’葡萄果实成熟期间单萜积累及相关基因的表达. 中国农业科学, 2019, 52(7):1136-1149. doi: 10.3864/j.issn.0578-1752.2019.07.002.
doi: 10.3864/j.issn.0578-1752.2019.07.002
WANG H L, WANG X Y, YAN A L, SUN L, ZHANG G J, REN J C, XU H Y. The accumulation of monoterpenes and the expression of its biosynthesis related genes in ‘Aishen Meigui’ grape berries cultivated in different trellis systems during ripening stage. Scientia Agricultura Sinica, 2019, 52(7):1136-1149. doi: 10.3864/j.issn.0578-1752.2019.07.002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.07.002
[21] 孙磊, 朱保庆, 孙晓荣, 许晓青, 王晓玥, 张国军, 徐海英. ‘亚历山大’葡萄果实单萜生物合成相关基因转录及萜类物质积累规律. 中国农业科学. 2014, 47(7):1379-1386.
SUN L, ZHU B Q, SUN X R, XU X Q, WANG X Y, ZHANG G J, XU H Y. Terpenes biosynthesis related gene transcript profiles and terpenes accumulation of ‘Aishen Meigui’ grape. Scientia Agricultura Sinica, 2014, 47(7):1379-1386. (in Chinese)
[22] WANG H L, YAN A L, SUN L, ZHANG G J, WANG X Y, REN J C, XU H Y. Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC Plant Biology, 2020, 20:411.
doi: 10.1186/s12870-020-02630-x
[23] VAN OOIJEN J W. MapQTL 6.0, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands: Kyazma B.V, 2009.
[24] XIA J, PSYCHOGIOS N, YOUNG N, WISHART D S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 2009, 37(web server issue):W652-W660. doi: 10.1093/nar/gkp356.
doi: 10.1093/nar/gkp356
[25] COSTANTINI L, KAPPEL C D, TRENTI M, BATTILANA J, EMANUELLI F, SORDO M, MORETTO M, CAMPS C, LARCHER R, DELROT S, GRANDO M S. Drawing links from transcriptome to metabolites: The evolution of aroma in the ripening berry of moscato bianco (Vitis vinifera L.). Frontiers in Plant Science, 2017, 8:780. doi: 10.3389/fpls.2017.00780.
doi: 10.3389/fpls.2017.00780
[26] MAHMOUD S S, CROTEAU R B. Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends in Plant Science, 2002, 7(8):366-373. doi: 10.1016/s1360-1385(02)02303-8.
doi: 10.1016/s1360-1385(02)02303-8
[27] 董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷. 转录因子调控植物萜类化合物生物合成研究进展. 植物学报, 2020, 55(3):340-350. doi: 10.11983/CBB19186.
doi: 10.11983/CBB19186
DONG Y M, ZHANG W Y, LING Z Y, LI J R, BAI H T, LI H, SHI L. Advances in transcription factors regulating plant terpenoids biosynthesis. Chinese Bulletin of Botany, 2020, 55(3):340-350. doi: 10.11983/CBB19186. (in Chinese)
doi: 10.11983/CBB19186
[28] SARKER L S, ADAL A M, MAHMOUD S S. Diverse transcription factors control monoterpene synthase expression in lavender (Lavandula). Planta, 2019, 251(1):1-5. doi: 10.1007/s00425-019-03298-w.
doi: 10.1007/s00425-019-03298-w
[29] LI X, XU Y Y, SHEN S L, YIN X R, KLEE H, ZHANG B, CHEN K S. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany, 2017, 68(17):4929-4938. doi: 10.1093/jxb/erx316.
doi: 10.1093/jxb/erx316
[30] LI T, JIANG Z, ZHANG L, TAN D, WEI Y, YUAN H, LI T, WANG A. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. The Plant Journal, 2016, 88(5):735-748. doi: 10.1111/tpj.13289.
doi: 10.1111/tpj.13289
[31] CRAMER G R, GHAN R, SCHLAUCH K A, TILLETT R L, HEYMANN H, FERRARINI A, DELLEDONNE M, ZENONI S, FASOLI M, PEZZOTTI M. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. BMC Plant Biology, 2014, 14:370.
doi: 10.1186/s12870-014-0370-8
[32] LICAUSI F, GIORGI F M, ZENONI S, OSTI F, PEZZOTTI M, PERATA P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11:719.
doi: 10.1186/1471-2164-11-719
[33] XU Y Y, ZHU C Q, XU C J, SUN J, CHEN K S. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules, 2019, 24(14):2564.
doi: 10.3390/molecules24142564
[34] LI X Y, HE L, AN X H. VviWRKY40, a WRKY transcription factor, regulates glycosylated monoterpenoid production by VviGT14 in grape berry. Genes, 2020, 11(5):485.
doi: 10.3390/genes11050485
[35] MANNEN K, MATSUMOTO T, TAKAHASHI S, YAMAGUCHI Y, TSUKAGOSHI M, SANO R, SUZUKI H, SAKURAI N, SHIBATA D, KOYAMA T, NAKAYAMA T. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochemical and Biophysical Research Communications, 2014, 443(2):768-774. doi: 10.1016/j.bbrc.2013.12.040.
doi: 10.1016/j.bbrc.2013.12.040
[36] ZHANG H H, FAN P G, LIU C X, WU B H, LI S H, LIANG Z C. Sunlight exclusion from Muscat grape alters volatile profiles during berry development. Food Chemistry, 2014, 164:242-250. doi: 10.1016/j.foodchem.2014.05.012.
doi: 10.1016/j.foodchem.2014.05.012
[37] SASAKI K, TAKASE H, MATSUYAMA S, KOBAYASHI H, MATSUO H, IKOMA G, TAKATA R. Effect of light exposure on linalool biosynthesis and accumulation in grape berries. Bioscience, Biotechnology, and Biochemistry, 2016, 80(12):2376-2382. doi: 10.1080/09168451.2016.1217148.
doi: 10.1080/09168451.2016.1217148
[38] ZHOU F, SUN T H, ZHAO L, PAN X W, LU S. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression. Frontier in Plant Science, 2015, 6:304
[39] TOLEDO-ORTIZ G, JOHANSSON H, LEE K P, BOU-TORRENT J, STEWART K, STEEL G, RODRÍGUEZ-CONCEPCIÓN M, HALLIDAY K J. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics, 2014, 10(6):e1004416.
doi: 10.1371/journal.pgen.1004416
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[5] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[6] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[7] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[8] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[9] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[10] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[11] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[12] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[13] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[14] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[15] SUN Lei,WANG XiaoYue,WANG HuiLing,YAN AiLing,ZHANG GuoJun,REN JianCheng,XU HaiYing. The Influence of Rootstocks on the Growth and Aromatic Quality of Two Table Grape Varieties [J]. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!