Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 320-328.doi: 10.3864/j.issn.0578-1752.2022.02.007

• PLANT PROTECTION • Previous Articles     Next Articles

Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice

SHA YueXia(),HUANG ZeYang,MA Rui   

  1. Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750011
  • Received:2021-07-01 Accepted:2021-08-18 Online:2022-01-16 Published:2022-01-26
  • Contact: YueXia SHA E-mail:yuexiasha@126.com

Abstract:

【Objective】The objective of this study is to clarify the antagonist activity of Pseudomonas alcaliphila strain Ej2 against various phytopathogens (Fusarium spp., etc.) in vitro, focusing on the control efficacy of P. alcaliphila strain Ej2 against rice blast and influences of endogenous hormones in rice plant. The result will provide new biological control resources for the research and development of fungicides against rice blast. 【Method】P. alcaliphila strain Ej2 was isolated from rice leaf tissue. Antagonistic action of strain Ej2 against Magnaporthe oryzae and other pathogenic fungi such as Fusarium spp., Colletotrichum gloeospoioides, Alternaria alternata which can cause apple spot fallen leaf disease and strawberry black spot, etc, was determined by dual culture assay. In addition, antagonistic activity of volatile substance produced by P. alcaliphila strain Ej2 against M. oryzae and promoting efficacy of fermentation broth increasing the germinating rate of rice seeds were tested in the experiment. The control efficacy of strain Ej2 was determined for the control of rice leaf blast under greenhouse condition by pot-culture method. The plot experiments were conducted to verify the growth promoting effect on rice and control efficacy against leaf blast and neck blast of strain Ej2. Targeted metabonomics based on MRM method was used to detect the effect of strain Ej2 on endogenous hormones in rice plant such as stress hormone and cytokinin after spraying fermentation broth for three times. 【Result】The strain and volatile substance significantly suppressed the hypha growth rate of M. oryzae P131. The control efficacy against rice blast under greenhouse condition was 78.26% and it had no significant difference with 75% tricyclazole wettable powder. The control efficacy against rice leaf blast and neck blast in fields was 75.07%-83.67% and 62.79%-75.09%, respectively. It had a significant difference between the control efficacy of strain Ej2 and 20% fenoxanil suspending agent against rice leaf blast, but it had no significant difference between the control efficacy of strain Ej2 and 20% fenoxanil suspending agent against rice neck blast. P. alcaliphila strain Ej2 showed strong antagonist activity against other five pathogenic fungi, such as F. oxysporum f. sp. niveum, F. solani, F. moniliforme, C. gloeospoioides, A. alternata. The fermentation broth of P. alcaliphila strain Ej2 significantly increased the germinating rate of rice seeds, plant height, and panicle weight compared with water control. After spraying three times, the levels of the stress hormone in plant such as ethylene (ETH) and abscisic acid (ABA) were significantly increased, but the levels of cytokinin such as zeatin riboside (czR), trans-zeatin riboside (tZR) and N6-isopentenyladenine riboside (iPR) were significantly decreased. In addition, the levels of several endogenous hormones in rice plant including IAA, jasmonic acid (JA), cis-OPDA, jasmonoyl-L-isoleucine (JA-LIE), cis-zeatin (cZ), trans-zeatin (tZ), N6-isopentenyladenine (iP) and salicylic acid (SA) had no significant change. 【Conclusion】P. alkalophilis strain Ej2 possesses the application value to control disease, promote crop growth and enhance stress resistance of rice plant, and it is considered to be a biological control microorganism against rice blast and other fungi diseases.

Key words: Pseudomonas alcaliphila, rice blast, biological control, plant pathogenic fungi, endogenous hormones in rice

Fig. 1

The hypha growth rate of M. oryzae P131 inhibited by P. alcaliphila Ej2"

Table 1

The control efficacy of P. alcaliphila Ej2 against rice blast under greenhouse condition"

处理
Treatment
病情指数
Disease index
防治效果
Control efficacy (%)
嗜碱假单胞菌Ej2 P. alcaliphila Ej2 6.81±1.32b 78.26±1.22a
清水对照Water control 31.33±1.53a /
三环唑Tricyclazole 6.92±1.14b 77.91±1.43a

Table 2

The control efficacy of P. alcaliphila Ej2 against rice blast in the field (in Lingwu City)"

处理
Treatment
叶瘟Leaf blast 穗颈瘟Panicle blast
病情指数
Disease index
防治效果
Control efficacy (%)
病情指数
Disease index
防治效果
Control efficacy (%)
嗜碱假单胞菌Ej2 P. alcaliphila Ej2 6.17±1.32b 75.07±1.71a 8.03±0.64bc 75.09±1.62a
稻瘟酰胺Fenoxanil 7.22±1.19b 64.05±1.00b 8.72±0.51bc 74.60±2.08a
芽孢杆菌Bacillus 6.44±1.74b 78.04±0.98a 9.11±0.87b 72.76±1.02a
清水对照Water control 24.72±1.25a / 34.32±2.06a /

Table 3

The control efficacy of P. alcaliphila Ej2 against rice blast in the field (in Wuzhong City)"

处理
Treatment
叶瘟Leaf blast 穗颈瘟Panicle blast
病情指数
Disease index
防治效果
Control efficacy (%)
病情指数
Disease index
防治效果
Control efficacy (%)
嗜碱假单胞菌Ej2 P. alcaliphila Ej2 1.33±1.32b 83.67±0.71a 8.77±0.64b 62.79±1.22a
稻瘟酰胺Fenoxanil 1.78±1.19b 81.28±1.81a 9.69±0.51b 58.87±1.88ab
芽孢杆菌Bacillus 1.62±1.21b 82.88±1.03a 8.14±1.74b 65.46±1.58a
清水对照Water control 9.78±1.25a / 23.56±1.76a /

Table 4

The antagonist activity of P. alcaliphila Ej2 against various plant pathogens in vitro"

病原菌
Target pathogen
抑菌效果
Antagonist activity (%)
茄镰孢F. solani N18-1-2 43.42±1.51
串珠镰孢F. moniliforme N19-2-2 42.11±1.21
西瓜枯萎病菌F. oxysporum f. sp. niveum M8 55.74±2.10
草莓炭疽病菌C. gloeospoioides ZDP21 50.37±1.44
链格孢苹果专化型A. alternata f. sp. mali BJ-A5 54.18±1.72
草莓黑斑病菌A. alternata BJ-ST24 13.00±0.62

Table 5

Effect of P. alcaliphila Ej2 on promoting the growth of rice plant"

处理
Treatment
株高
Plant height (cm)
穗长
Panicle length (cm)
穗重
Panicle weight (g)
千粒重
Thousand kernel weight (g)
嗜碱假单胞菌Ej2 P. alcaliphila Ej2 90.88±2.03a 18.18±1.05a 3.32±1.01a 25.85±0.93ab
芽孢杆菌Bacillus 90.82±0.70a 18.82±1.95a 3.56±0.78a 26.56±0.46a
稻瘟酰胺Fenoxanil 86.72±1.72b 18.12±1.08a 2.77±1.34b 26.01±0.03ab
清水对照Water control 86.20±1.72b 18.10±2.57a 2.86±1.15b 24.63±1.31b

Table 6

Effect of P. alcaliphila Ej2 on the endogenous hormones in rice plant"

激素名称 Phytohormone name Ej2发酵液Ej2 fermentation broth (ng·g-1) 对照Control (ng·g-1)
脱落酸Abscisic acid (ABA) 80.21±7.58a 33.76±14.44b
乙烯Ethylene (ETH) 58.20±2.33a 41.29±4.91b
玉米素核苷Zeatin riboside (czR) 10.28±1.63b 17.33±1.19a
异戊烯基腺嘌呤核苷 N6-isopentenyladenine riboside (iPR) 0.30±0.66b 0.97±0.33a
反式玉米素核苷Trans-zeatin riboside (tZR) 0.73±0.01b 0.83±0.10a
顺式玉米素Cis-zeatin (cZ) 2.52±0.28a 3.16±0.57a
反式玉米素Trans-zeatin (tZ) 0.60±0.15a 0.64±0.18a
异戊烯基腺嘌呤N6-Isopentenyladenine (iP) 0.42±0.21a 0.45±0.25a
水杨酸Salicylic acid (SA) 2196.54±218.65a 2297.48±120.29a
植物生长素IAA 17.27±3.35a 18.92±3.28a
茉莉酸-异亮氨酸Jasmonoyl-L-isoleucine (JA-LIE) 156.65±11.09a 162.10±25.13a
茉莉酸Jasmonic acid (JA) 564.61±39.72a 580.54±59.12a
顺反茉莉酸类激素Cis-OPDA 1729.51±91.79a 2456.80±846.88a
[1] DAGDAS Y F, YOSHINO K, DAGDAS G, RYDER L S, BIELSKA E, STEINBERG G, TALBOT N J. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science, 2012, 336(6088):1590-1595.
doi: 10.1126/science.1222934
[2] HUANG J, SI W, DENG Q, LI P, YANG S. Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genetics, 2014, 15:45.
doi: 10.1186/1471-2156-15-45
[3] PELLICCIARO M, LIONE G, GIORDANO L, GONTHIER P. Biocontrol potential of Pseudomonas protegens against Heterobasidion species attacking conifers in Europe. Biological Control, 2021, 157:104583.
doi: 10.1016/j.biocontrol.2021.104583
[4] 张望月, 高健, 张超, 张友明, 胡胜标, 李岚岚, 孙运军, 丁学知, 夏立秋. 五种假单胞菌的分离鉴定及其生物活性. 微生物学报, 2013, 53(9):957-965.
ZHANG W Y, GAO J, ZHANG C, ZHANG Y M, HU S B, LI L L, SUN Y J, DING X Z, XIA L Q. Isolation, identification and characterization of five Pseudomonas strains. Acta Microbiologica Sinica, 2013, 53(9):957-965. (in Chinese)
[5] 沙月霞, 张昂, 伍顺华, 李明洋. 假单胞菌对水稻防御酶的诱导及定殖能力. 中国植保导刊, 2020, 40(7):10-16.
SHA Y X, ZHANG A, WU S H, LI M Y. Colonization ability of Pseudomonas S149 and induction of defense-related enzymes in rice. China Plant Protection, 2020, 40(7):10-16. (in Chinese)
[6] GOPI R, AVASTHE R K, KALITA H, KAPOOR C. Management of rice blast caused by Magnaporthe oryzae using botanicals, biocontrol agents and organically permitted fungicides. Indian Phytopathology, 2016, 69(1):10-15.
[7] 沙月霞, 张昂, 伍顺华, 沈瑞清. 防治稻瘟病假单胞菌的筛选及效果评价. 中国生物防治学报, 2020, 36(2):249-257.
SHA Y X, ZHANG A, WU S H, SHEN R Q. Screening and efficiency evaluation of Pseudomonas strain in the control of Magnaporthe oryzae. Chinese Journal of Biological Control, 2020, 36(2):249-257. (in Chinese)
[8] NG L C, SARIAH M, SARIAM O, RADZIAH O, ZAINAL ABIDIN M A. Bio-efficacy of microbial-fortified rice straw compost on rice blast disease severity, growth and yield of aerobic rice. Australasian Plant Pathology, 2012, 41:541-549.
doi: 10.1007/s13313-012-0145-3
[9] 张亚, 苏品, 刘双清, 廖晓兰, 黄璜. 拮抗假单胞菌SU8对几种植物病原真菌的抑制作用. 农药, 2013, 52(12):917-920.
ZHANG Y, SU P, LIU S Q, LIAO X L, HUANG H. Inhibition of antifungal Pseudomonas SU8 against several phytopathogenic fungi. Agrochemicals, 2013, 52(12):917-920. (in Chinese)
[10] ASHAJYOTHI M, KUMAR A, SHEORAN N, GANESAN P, GOGOI R, SUBBAIYAN G K, BHATTACHARYA R. Black pepper (Piper nigrum L.) associated endophytic Pseudomonas putida BP25 alters root phenotype and induces defense in rice (Oryza sativa L.) against blast disease incited by Magnaporthe oryzae. Biological Control, 2020, 143:104181.
doi: 10.1016/j.biocontrol.2019.104181
[11] JHA Y, SUBRAMANIAN R B. Endophytic Pseudomonas pseudoalcaligenes shows better response against the Magnaporthe oryzae than a rhizospheric Bacillus pumilus in Oryza sativa (rice). Archives of Phytopathology and Plant Protection, 2011, 44(6):592-604.
doi: 10.1080/03235400903145400
[12] SPENCE C A, RAMAN V, DONOFRIO N M, BAIS H P. Global gene expression in rice blast pathogen Magnaporthe oryzae treated with a natural rice soil isolate. Planta, 2014, 239:171-185.
doi: 10.1007/s00425-013-1974-1
[13] OWNLEY B H, GWINN K D, VEGA F E. Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl, 2010, 55(1):113-128.
doi: 10.1007/s10526-009-9241-x
[14] LIU Y, BAI F R, LI N, WANG W P, CHENG C. Identification of endophytic bacterial strain RSE1 from seeds of super hybrid rice Shenliangyou 5814 (Oryza sativa L.) and evaluation of its antagonistic activity. Plant Growth Regulation, 2017, 82(3):403-408.
doi: 10.1007/s10725-017-0265-4
[15] SHYLLA A, SHIVAPRAKASH M K, SHASHIDHAR H E, VISHWAKARMA P, SUDRADHAR M. Production of phytohormones by endophytic bacteria isolated from aerobic rice. Journal of Pure and Applied Microbiology, 2016, 10(3):2127-2133.
[16] SHAHZAD R, WAQAS M, KHAN A L, AL-HOSNI K, KANG S M, SEO W C, LEE I J. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biologica Hungarica, 2017, 68(2):175-186.
doi: 10.1556/018.68.2017.2.5
[17] PHAM V T K, REDIERS H, GHEQUIRE M G K, NGUYEN H H, DE MOT R, VANDERLEYDEN J, SPAEPEN S. The plant growth- promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Archives of Microbiology, 2017, 199(3):513-517.
doi: 10.1007/s00203-016-1332-3
[18] SHAHZAD R, KHAN A L, BILAL S, WAQAS M, KANG S M, LEE I J. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 2017, 136:68-77.
doi: 10.1016/j.envexpbot.2017.01.010
[19] 杨波, 陈晏, 李霞, 任承钢, 戴传超. 植物内生菌促进宿主氮吸收与代谢研究进展. 生态学报, 2013, 33(9):2656-2664.
doi: 10.5846/stxb
YANG B, CHEN Y, LI X, REN C G, DAI C C. Research progress on endophyte-promoted plant nitrogen assimilation and metabolism. Acta Ecologica Sinica, 2013, 33(9):2656-2664. (in Chinese)
doi: 10.5846/stxb
[20] RANGJAROEN C, RERKASEM B, TEAUMROONG N, SUNGTHONG R, LUMYONG S. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand. Archives of Microbiology, 2014, 196(1):35-49.
doi: 10.1007/s00203-013-0940-4
[21] KLAYRAUNG S, NIAMSUP P, POONNOY P, TOPOONYANONT N. Diversity and control of bacterial contamination of plants propagated in temporary immersion bioreactor system. Acta Horticulturae, 2017, 1155:439-446.
[22] DEFEZ R, ANDREOZZI A, BIANCO C. The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microbial Ecology, 2017, 74(2):441-452.
doi: 10.1007/s00248-017-0948-4
[23] XU T, LI Y, ZENG X D, YANG X L, YANG Y Z, YUAN S S, HU X C, ZENG J R, WANG Z Z, LIU Q, LIU Y Q, LIAO H D, TONG C Y, LIU X M, ZHU Y H. Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. Journal of the Science of Food and Agriculture, 2017, 97(4):1149-1157.
doi: 10.1002/jsfa.2017.97.issue-4
[24] VIDHYASEKARAN P, RABINDARAN R, MUTHAMILAN M, NAYAR K, RAJAPPAN K, SUBRAMANIAN N, VASUMATHI K. Development of a powder formulation of Pseaudomonas fluorescens for control of rice blast. Plant Pathology, 1994, 46:291-297.
doi: 10.1046/j.1365-3059.1997.d01-27.x
[25] TIWARI P K, THRIMURTY V S. Efficacy of Pseudomonas fluorescens isolates for plant growth promotion and disease management in rice. Annals of Plant Protection Science, 2009, 17(1):119-123.
[26] HUBBALLI M. Combined application of fungicide tolerant Pseudomonas fluorescens and reduced dosage of azoxystrobin for the management of rice blast. Journal of Mycology and Plant Pathology, 2017, 47(2):127-152.
[27] 秦秀娟, 祁静静, 窦万福, 陈善春, 何永睿, 李强. 柑橘Rboh家族鉴定及其对激素和柑橘溃疡病的响应. 中国农业科学, 2020, 53(20):4189-4203.
QIN X J, QI J J, DOU W F, CHEN S C, HE Y R, LI Q. Identification of Rboh family and the response to hormone and citrus bacterial canker in citrus. Scientia Agricultura Sinica, 2020, 53(20):4189-4203. (in Chinese)
[28] 辛承松, 唐薇, 王洪征, 翟志席. 鲁棉14幼苗生长对氯化钠胁迫的反应及微量元素、激素处理的效应. 棉花学报, 2002, 14(2):108-112.
XIN C S, TANG W, WANG H Z, ZHAI Z X. Responses of seedling growth of Lumian 14 to NaCl stress and effects of treatments with microelement and hormone. Cotton Science, 2002, 14(2):108-112. (in Chinese)
[29] RODRÍGUEZ H, FRAGA R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999, 17(4/5):319-339.
doi: 10.1016/S0734-9750(99)00014-2
[30] 李颖, 赵继浩, 李金融, 钱必长, 刘兆新, 高芳, 杨东清, 李向东. 外源6-BA对不同生育时期淹水花生根系生长和荚果产量的影响. 中国农业科学, 2020, 53(18):3665-3678.
LI Y, ZHAO J H, LI J R, QIAN B C, LIU Z X, GAO F, YANG D Q, LI X D. Effects of exogenous 6-BA on root growth and pod yield of flooded peanut at different growth stages. Scientia Agricultura Sinica, 2020, 53(18):3665-3678. (in Chinese)
[31] 刘桂丰, 刘关君, 杨传平, 王慧梅. 盐逆境条件下树种的激素变化及抗盐性分析. 东北林业大学学报, 1998, 26(2):1-4.
LIU G F, LIU G J, YANG C P, WANG H M. The analysis for hormonal change and salt-resistant ability of tree species under salt stress. Journal of Northeast Forestry University, 1998, 26(2):1-4. (in Chinese)
[32] 魏爱丽, 陈云昭. IAA对盐胁迫下大豆幼苗膜伤害及抗盐力的影响. 西北植物学报, 2000, 20(3):410-414.
WEI A L, CHEN Y Z. Effect of IAA on soybean seedling’s membrane injury and salt resistance. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(3):410-414. (in Chinese)
[33] PANDEY G. Mechanism of Plant Hormone Signaling Under Stress. Hoboken, New Jersey: John Wiley and Sons, 2017.
[34] DUNLAP J R, BINZEL M L. NaCl reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiology, 1996, 112(1):379-384.
doi: 10.1104/pp.112.1.379
[35] 柯玉琴, 潘廷国. NaCl胁迫对甘薯苗期生长、IAA代谢的影响及其与耐盐性的关系. 应用生态学报, 2002, 13(10):1303-1306.
KE Y Q, PAN T G. Effects of NaCl stress on seedling growth and IAA metabolism of sweet potato and its relation to salt-tolerance. Chinese Journal of Applied Ecology, 2002, 13(10):1303-1306. (in Chinese)
[36] TRAPET P, KULIK A, LAMOTTE O, JEANDROZ S, BOURQUE S, NICOLAS-FRANCÈS V, ROSNOBLET C, BESSON-BARD A, WENDEHENNE D. NNO signaling in plant immunity: A tale of messengers. Phytochemistry, 2015, 112:72-79.
doi: 10.1016/j.phytochem.2014.03.015
[37] DE ZELICOURT A, COLCOMBET J, HIRT H. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science, 2016, 21(8):677-685.
[1] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[2] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[3] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[4] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[5] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[6] LI YangFan,SHAO MeiQi,LIU CHANG,GUO QingGang,WANG PeiPei,CHEN XiuYe,SU ZhenHe,MA Ping. Identification of the Antifungal Active Compounds from Bacillus amyloliquefaciens Strain HMB33604 and Its Control Efficacy Against Potato Black Scurf [J]. Scientia Agricultura Sinica, 2021, 54(12): 2559-2569.
[7] LI Shu,WANG Jie,HUANG NingXing,JIN ZhenYu,WANG Su,ZHANG Fan. Research Progress and Prospect on Banker Plant Systems of Predators for Biological Control [J]. Scientia Agricultura Sinica, 2020, 53(19): 3975-3987.
[8] ZHANG Lei,JIA Qi,WU Wei,ZHAO LuPing,XUE Bing,LIU HuanHuan,SHANG Jing,YONG TaiWen,LI Qing,YANG WenYu. Species Identification and Virulence Determination of Beauveria bassiana Strain BEdy1 from Ergania doriae yunnanus [J]. Scientia Agricultura Sinica, 2020, 53(14): 2974-2982.
[9] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[10] SHA YueXia,SUI ShuTing,ZENG QingChao,SHEN RuiQing. Biocontrol Potential of Bacillus velezensis Strain E69 Against Rice Blast and Other Fungal Diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917.
[11] WANG WenJuan,SU Jing,YANG JianYuan,WEI XiaoYan,CHEN KaiLing,CHEN Zhen,CHEN Shen,ZHU XiaoYuan. Analysis of Magnaporthe oryzae Avirulent Genes in the Infected Hybrid Rice Combinations Derived from a Sterile Line of Guang 8 A [J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646.
[12] LI YuJia, LI Qian, ZHANG ZhiXiang, LI ShiFang. Screening and identification of peach endophytic bacteria with antagonism against Agrobacterium tumefaciens [J]. Scientia Agricultura Sinica, 2017, 50(20): 3918-3929.
[13] LIU LiNa, YANG Jing, XU LiuYan, LI ChengYun. Genetic Diversity Analysis of Pi-ta Gene 3′-UTR in Rice Landraces [J]. Scientia Agricultura Sinica, 2017, 50(15): 2851-2860.
[14] LU Hui-hui, LIN Zhi-qiang, TAN Wan-zhong, LUO Hua-dong, XIAN Fei, BI Chao-wei, YU Yang, YANG Yu-heng. Insecticidal Protein Genes of Bacillus thuringiensis Strain CPB012 and Its Effects in Controlling Different Insect Pests [J]. Scientia Agricultura Sinica, 2015, 48(6): 1112-1121.
[15] ZHANG Fan, LI Shu, XIAO Da, ZHAO Jing, WANG Ran, GUO Xiao-jun, WANG Su. Progress in Pest Management by Natural Enemies in Greenhouse Vegetables in China [J]. Scientia Agricultura Sinica, 2015, 48(17): 3463-3476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!