Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 4020-4035.doi: 10.3864/j.issn.0578-1752.2022.20.013

• HORTICULTURE • Previous Articles     Next Articles

Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape

LIU Xin1(),ZHANG YaHong2(),YUAN Miao1,DANG ShiZhuo1,ZHOU Juan1   

  1. 1College of Agriculture, Ningxia University, Yinchuan 750021
    2School of Food & Wine, Ningxia University, Yinchuan 750021
  • Received:2022-01-19 Accepted:2022-06-06 Online:2022-10-16 Published:2022-10-24
  • Contact: YaHong ZHANG E-mail:lxinanhao@163.com;zhyhcau@sina.com

Abstract:

【Objective】 Grape is an important fruit tree species of China, and the flower bud differentiation directly affects the quality and quantity of this grape. In this study, Red Globe grape developmental stages during flower bud differentiation under natural growth conditions were compared and analyzed, the mechanism of flower bud differentiation of this grape variant was evaluated, and the essential genes were mined, so as to provide a theoretical basis for understanding the flower bud differentiation of this grape species. 【Method】During flower bud differentiation of the Red Globe grape, the morphological observation, phytohormone determination, and transcriptome sequencing analysis were performed on the buds of four developmental stages, including S1 (undifferentiated), S2 (flower anlagen development), S3 (formation of the main cob of inflorescence), and S4 (formation of the second cob of inflorescence). 【Result】A total of 13 729 differentially expressed genes were determined during the flower bud differentiation process of the ‘Red Globe’ grape, which included 4 158, 2 050, 3 425, and 7 652 genes in S1-S2, S2-S3, S3-S4, and S1-S4, respectively. In the enrichment-regulation network of the S1-S4 differential genes, those differential genes were found to be enriched in the hormone-mediated signaling pathways, abscisic acid metabolism, acid chemical reactions, plant cell wall tissues, or biogenesis. Several genes related to auxin, gibberellin, and abscisic acid were detected in the hormone-mediated signaling pathway. The results revealed that the content of auxin was the highest in S2 and the lowest in S3 and S4. The gibberellin content decreased continuously during flower bud differentiation, 80% of that at S4 in S1; the abscisic acid content was higher in S1 and S4 and the lowest in S2. In addition, the S1-S4 differential genes belonged to the transcription factor families (MYB, ERF, bHLH, and MADS-box), indicating that these family genes were involved in the flower bud differentiation of the Red Globe grape. The further analysis of the 13 differentially expressed MADS-box genes revealed upregulated expressions of MADS8, AGL65, AGL15, AGL12, and MADS2 during flower bud differentiation. In contrast, the expressions of AGL30, LeMADS, FBP24, AGL14, and MADS3 were downregulated. These MADS-box genes were verified via quantitative reverse transcription polymerase chain reaction, and the expression trend was found to be consistent with the corresponding transcriptome. 【Conclusion】The flower bud differentiation of the Red Globe grape was a complex biological process. The plant hormone-mediated signaling pathways and the MADS-box family genes played essential roles in flower bud differentiation. These results provided information about transcription factors, genes, and hormones to help understand this complex developmental process and provided a theoretical basis for establishing a comprehensive model for flower bud differentiation in the Red Globe grape.

Key words: Red Globe grapes, flower bud differentiation, transcriptome sequencing, plant hormone, MADs-box

Table 1

Primers of qRT-PCR"

基因名称
Gene name
基因号
Gene ID
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
MADS8 VIT_14s0068g01800 AGCGACGAAGCGGAATGATGAAG GGCGGAGAAGATGATCAGAGCAAG
AGL65 VIT_17s0000g06340 GGGTAGGGTGAGGAGGAATGGATC ATGGACGGTGGGCTTTGTGAATG
AGL30 VIT_04s0008g01980 TTCTCAGCGGAAGCAAGGCATTC GGCGAGAACATGAGGAGCAAGAC
AGL21 VIT_00s0211g00180 AGAATCTAGAGCGAGCCGTGAGG GCCTTCTTCAACAGTCCCTTCCTTC
AGL21 VIT_18s0001g07900 CAACGGGATGGGTTTGGGATGAG ACGAGACAAGGGAGACGAGTATGG
AGL15 VIT_13s0158g00100 CCACTCATCCACCACTTCCATTCC GTGCCTTGATGCTGACCTACCTAC
LeMADS VIT_03s0017g00360 TCTCTGTGATGCTGATGTTGCTCTC GGTCCCCGGAATTTCACTGAGTATG
FBP24 VIT_02s0025g02350 CAGGCAACCACAACCAAATCAAACC ACTGAGGAGGGATGGGCACAAG
AGL14 VIT_15s0048g01240 CAACTGGGTTTCTGGAGATGGTGAG AAAGGTGACTTGCCGACTTGTGG
AGL12 VIT_18s0041g02140 GCGTATTGAGAACCCAGTACACAGG TCAGCATCACACAACACAGAGAGC
MADS3 VIT_16s0022g02330 AGAGAACAAGATCAACCGCCAAGTC TCAGCATCGCAGAGCACAGAAAG
MADS2 VIT_14s0083g01050 TTCCACACTGCCTATGTTGAACCTG GGACGGTGCGATTAGAGCCAAC
MADS2 VIT_17s0000g05000 TTCCACACTGCCTATGTTGAACCTG GGACGGTGCGATTAGAGCCAAC
Actin1 XP_008654957.1 TCCTTGCCTTGCGTCATCTAT CACCAATCACTCTCCTGCTACAA

Fig. 1

Flower bud differentiation during different stages A: Apex; LP: Leaf primordium; IP: Inflorescence primordium; BR: Bracts; BP: Branching primordium"

Fig. 2

Differentially expressed genes"

Fig. 3

Differential gene comparison"

Fig. 4

GO functional classification of the differentially expressed genes"

Fig. 5

Gene regulatory network and enrichment analysis of biological processes of DEGs during flower bud differentiation (S1-S4)"

Fig. 6

Changes of hormone during flower bud differentiation The vertical line is mean ± SD (n=3), and different lowercase letters show significant differences (P<0.05)"

Table 3

Differential MADS-box genes in flower bud differentiation"

基因名称 Gene name 基因号 Gene ID 转录因子 TF id 蛋白质长度 Protein length (aa) 家族 Family
MADS8 VIT_14s0068g01800 GSVIVT01001437001 249 MIKC
AGL65 VIT_17s0000g06340 GSVIVT01003864001 225 MIKC
AGL30 VIT_04s0008g01980 GSVIVT01008139001 247 MIKC
AGL21 VIT_00s0211g00180 GSVIVT01009219001 241 MIKC
AGL21 VIT_18s0001g07900 GSVIVT01015641001 218 MIKC
AGL15 VIT_13s0158g00100 GSVIVT01018450001 250 MIKC
LeMADS VIT_03s0017g00360 GSVIVT01019630001 597 MIKC
FBP24 VIT_02s0025g02350 GSVIVT01025916001 199 MIKC
AGL14 VIT_15s0048g01240 GSVIVT01027579001 219 MIKC
AGL12 VIT_18s0041g02140 GSVIVT01036551001 244 MIKC
MADS3 VIT_16s0022g02330 GSVIVT01007989001 87
MADS2 VIT_14s0083g01050 GSVIVT01033067001 376
MADS2 VIT_17s0000g05000 GSVIVT01035477001 184

Fig. 7

Phylogenetic relationships among Red Globe grape type I MADS-box proteins"

Fig. 8

Phylogenetic relationships among Red Globe grape type II MADS-box proteins"

Fig. 9

Expression analysis of ‘Red Globe’ grape MADS-box genes in floral buds by qRT-PCR Column and line represent qRT-PCR and RNA-seq, respectively; r: Pearson correlation coefficient; *: P<0.05"

Table 2

Statistical table of clean data"

样本
Sample
纯净数据
Clean reads
Q30含量
Q30 (%)
GC含量
GC content (%)
总读取数
Total reads
映射总数
Total mapped
S1-1 56701744 93.50 46.08 56701744 51584717 (90.98%)
S1-2 57000078 93.57 46.30 57000078 52047737 (91.31%)
S1-3 53106034 93.75 46.23 53106034 48593610 (91.5%)
S2-1 57074664 93.28 45.85 57074664 52283600 (91.61%)
S2-2 48571060 93.29 45.78 48571060 44806530 (92.25%)
S2-3 52541122 93.72 45.81 52541122 48822966 (92.92%)
S3-1 44482618 93.74 45.55 44482618 41222350 (92.67%)
S3-2 44016334 93.83 45.42 44016334 40718241 (92.51%)
S3-3 43775084 93.97 45.94 43775084 40797167 (93.2%)
S4-1 43004638 93.77 46.42 43004638 33306442 (77.45%)
S4-2 48834670 93.72 45.92 48834670 45022453 (92.19%)
S4-3 51647760 93.52 46.39 51647760 46614037 (90.25%)
[51] VINING K J, ROMANEL E, JONES R C, KLOCKO A, ALVES- FERREIRA M, HEFER C A, AMARASINGHE V, DHARMAWARDHANA P, NAITHANI S, RANIK M, WESLEY- SMITH J, SOLOMON L, JAISWAL P, MYBURG A A, STRAUSS S H. The floral transcriptome of Eucalyptus grandis. The New Phytologist, 2015, 206(4): 1406-1422. doi: 10.1111/nph.13077.
doi: 10.1111/nph.13077
[52] SHU J, CHEN C, KOHALMI S E, CUI Y H. Evidence that AGL17 is a significant downstream target of CLF in floral transition control. Plant Signaling & Behavior, 2020, 15(7): 1766851. doi: 10.1080/15592324.2020.1766851.
doi: 10.1080/ 15592324.2020.1766851
[53] YI X G, YU X Q, CHEN J, ZHANG M, LIU S W, ZHU H, LI M, DUAN Y F, CHEN L, WU L, ZHU S, SUN Z S, LIU X H, WANG X R. The genome of Chinese flowering cherry (Cerasus serrulata) provides new insights into Cerasus species. Horticulture Research, 2020, 7(1): 165. doi: 10.1038/s41438-020-00382-1.
doi: 10.1038/s41438-020-00382-1
[54] ZHANG G Q, LIU K W, LI Z, LOHAUS R, HSIAO Y Y, NIU S C, WANG J Y, LIN Y C, XU Q, CHEN L J, YOSHIDA K, FUJIWARA S, WANG Z W, ZHANG Y Q, MITSUDA N, WANG M, LIU G H, PECORARO L, HUANG H X, XIAO X J, et al. The Apostasia genome and the evolution of orchids. Nature, 2017, 549(7672): 379-383. doi: 10.1038/nature23897.
doi: 10.1038/nature23897
[1] 郑婷, 张克坤, 张培安, 贾海锋, 房经贵. 葡萄营养生长与生殖生长间的转变研究进展. 植物生理学报, 2020, 56(7): 1361-1372.
ZHENG T, ZHANG K K, ZHANG P A, JIA H F, FANG J G. Recent progress in the study of transition between vegetative and reproductive growth in grapevine. Plant Physiology Journal, 2020, 56(7): 1361-1372. (in Chinese)
[2] CRANE O, HALALY T, PANG X Q, LAVEE S, PERL A, VANKOVA R, OR E. Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. Planta, 2012, 235(1): 181-192. doi: 10.1007/s00425-011-1497-6.
doi: 10.1007/s00425-011-1497-6 pmid: 21863250
[3] BLÜMEL M, DALLY N, JUNG C. Flowering time regulation in crops—what did we learn from Arabidopsis? Current Opinion in Biotechnology, 2015, 32: 121-129. doi: 10.1016/j.copbio.2014.11.023.
doi: S0958-1669(14)00211-0 pmid: 25553537
[4] 刘丹, 孙欣, 慕茜, 吴伟民, 章镇, 房经贵. 葡萄花芽发育相关基因在不同节位芽中的表达分析. 中国农业科学, 2015, 48(10): 2007-2016.
LIU D, SUN X, MU Q, WU W M, ZHANG Z, FANG J G. Analysis of expression levels of floral genes in the buds on different branch nodes of grapevine. Scientia Agricultura Sinica, 2015, 48(10): 2007-2016. (in Chinese)
[5] ANDRÉS F, COUPLAND G. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 2012, 13(9): 627-639. doi: 10.1038/nrg3291.
doi: 10.1038/nrg3291 pmid: 22898651
[6] FERRÁNDIZ C, GU Q, MARTIENSSEN R, YANOFSKY M F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Neuropathology, 2000, 127(4): 725-734. doi: 10.1242/dev.127.4.725.
doi: 10.1242/dev.127.4.725
[7] FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: Control of flowering in Arabidopsis. Cell, 2010, 141(3): 550, 550. e1-550, 550.e2. doi: 10.1016/j.cell.2010.04.024.
doi: 10.1016/j.cell.2010.04.024
[8] THEIßEN G, MELZER R, RÜMPLER F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development, 2016, 143(18): 3259-3271. doi: 10.1242/dev.134080.
doi: 10.1242/dev.134080 pmid: 27624831
[9] 邹礼平, 潘铖, 王梦馨, 崔林, 韩宝瑜. 激素调控植物成花机理研究进展. 遗传, 2020, 42(8): 739-751. doi: 10.16288/j.yczz.20-014.
doi: 10.16288/j.yczz.20-014
ZOU L P, PAN C, WANG M X, CUI L, HAN B Y. Progress on the mechanism of hormones regulating plant flower formation. Journal of Distance Education, 2020, 42(8): 739-751. doi: 10.16288/j.yczz.20-014. (in Chinese)
doi: 10.16288/j.yczz.20-014
[10] YAMAGUCHI N, WU M F, WINTER C M, WAGNER D. LEAFY and polar auxin transport coordinately regulate Arabidopsis flower development. Plants, 2014, 3(2): 251-265. doi: 10.3390/plants3020251.
doi: 10.3390/plants3020251
[11] 林玲, 黄羽, 谢太理, 张瑛, 周咏梅, 文仁德. 3个葡萄品种花芽分化过程中内源激素含量变化初报. 南方农业学报, 2012, 43(6): 806-809.
LIN L, HUANG Y, XIE T L, ZHANG Y, ZHOU Y M, WEN R D. Changes of endogenous hormone content during flower bud differentiation in three grape varieties. Journal of Southern Agriculture, 2012, 43(6): 806-809. (in Chinese)
[12] 王海波, 赵君全, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. 新梢内源激素变化对设施葡萄花芽孕育的影响. 中国农业科学, 2014, 47(23): 4695-4705.
WANG H B, ZHAO J Q, WANG X D, SHI X B, WANG B L, ZHENG X C, LIU F Z. The influence of changes of endogenous hormones in shoot on the grapes flower bud differentiation in greenhouse. Scientia Agricultura Sinica, 2014, 47(23): 4695-4705. (in Chinese)
[13] BINENBAUM J, WEINSTAIN R, SHANI E. Gibberellin localization and transport in plants. Trends in Plant Science, 2018, 23(5): 410-421. doi: 10.1016/j.tplants.2018.02.005.
doi: S1360-1385(18)30024-4 pmid: 29530380
[14] JING D, CHEN W, HU R, ZHANG Y, XIA Y, WANG S, HE Q, GUO Q, LIANG G. An integrative analysis of transcriptome, proteome and hormones reveals key differentially expressed genes and metabolic pathways involved in flower development in loquat. International Journal of Molecular Sciences, 2020, 21(14): E5107. doi: 10.3390/ijms21145107.
doi: 10.3390/ijms21145107
[15] DÍAZ-RIQUELME J, MARTÍNEZ-ZAPATER J M, CARMONA M J. Transcriptional analysis of tendril and inflorescence development in grapevine (Vitis vinifera L.). PLoS ONE, 2014, 9(3): e92339. doi: 10.1371/journal.pone.0092339.
doi: 10.1371/journal.pone.0092339
[16] CHEN X L, QI S Y, ZHANG D, LI Y M, AN N, ZHAO C P, ZHAO J, SHAH K, HAN M Y, XING L B. Comparative RNA-sequencing- based transcriptome profiling of buds from profusely flowering ‘Qinguan’ and weakly flowering ‘Nagafu no. 2’ apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biology, 2018, 18(1): 370. doi: 10.1186/s12870-018-1555-3.
doi: 10.1186/ s12870-018-1555-3
[17] CONTI L. Hormonal control of the floral transition: can one catch them all? Developmental Biology, 2017, 430(2): 288-301. doi: 10.1016/j.ydbio.2017.03.024.
doi: S0012-1606(16)30870-3 pmid: 28351648
[18] 吴雅琴, 常瑞丰, 李春敏, 赵胜建, 郭紫娟, 张新忠. 葡萄实生树开花节位与内源激素变化的关系. 园艺学报, 2006, 33(6): 1313-1316.
WU Y Q, CHANG R F, LI C M, ZHAO S J, GUO Z J, ZHANG X Z. Relationship between the flower nodes and changes of endogenous hormones in grape seedlings. Acta Horticulturae Sinica, 2006, 33(6): 1313-1316. (in Chinese)
[19] CUI Z, ZHOU B, ZHANG Z, HU Z. Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis Sonn. South African Journal of Botany, 2013, 88: 76-79.
doi: 10.1016/j.sajb.2013.05.008
[20] 赵君全, 王海波, 王孝娣, 王宝亮, 郑晓翠, 史祥宾, 刘凤之. 设施栽培条件下‘夏黑’葡萄花芽分化规律及环境影响因子研究. 果树学报, 2014, 31(5): 842-847, 7.
ZHAO J Q, WANG H B, WANG X D, WANG B L, ZHENG X C, SHI X B, LIU F Z. Flower bud differentiation of ‘Summer Black’ grape in greenhouse and related environmental influence factors. Journal of Fruit Science, 2014, 31(05): 842-847, 7. (in Chinese)
[21] 吴文浩, 曹凡, 刘壮壮, 彭方仁, 梁有旺, 谭鹏鹏. NAA对薄壳山核桃扦插生根过程中内源激素含量变化的影响. 南京林业大学学报(自然科学版), 2016, 40(5): 191-196.
WU W H, CAO F, LIU Z Z, PENG F R, LIANG Y W, TAN P P. Effects of NAA treatment on the endogenous hormone changes in cuttings of Carya illinoinensis during rooting. Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(5): 191-196. (in Chinese)
[22] 刘帅, 徐伟荣, 张亚红, 刘鑫, 郭松涛, 胡莉. 基于转录组研究补光对设施‘红地球’葡萄萌芽的影响. 果树学报, 2021, 38(3): 305-317.
LIU S, XU W R, ZHANG Y H, LIU X, GUO S T, HU L. Effects of supplementary light on the bud burst of ‘Red Globe’ grape under protected cultivation based on transcriptome sequencing. Journal of Fruit Science, 2021, 38(3): 305-317. (in Chinese)
[23] 王海波, 王孝娣, 赵君全, 史祥宾, 王宝亮, 郑晓翠, 刘凤之. 设施促早栽培下耐弱光能力不同的葡萄品种冬芽的花芽分化. 园艺学报, 2016, 43(4): 633-642.
WANG H B, WANG X D, ZHAO J Q, SHI X B, WANG B L, ZHENG X C, LIU F Z. Studies on the flower bud differentiation of grape cultivars with different tolerant ability of low light in greenhouse. Acta Horticulturae Sinica, 2016, 43(4): 633-642. (in Chinese)
[24] 武春昊, 王强, 卢明艳, 闫兴凯, 胡明玥, 张茂君. 梨花序形成机制研究进展. 植物遗传资源学报, 2021, 22(5): 1200-1208. doi: 10.13430/j.cnki.jpgr.20210324001.
doi: 10.13430/j.cnki.jpgr.20210324001
WU C H, WANG Q, LU M Y, YAN X K, HU M Y, ZHANG M J. A review of inflorescence formation mechanism of pear. Journal of Plant Genetic Resources, 2021, 22(5): 1200-1208. doi: 10.13430/j.cnki.jpgr.20210324001. (in Chinese)
doi: 10.13430/j.cnki.jpgr.20210324001
[25] 程少禹, 宣铃娟, 董彬, 顾翠花, 申亚梅, 张明如, 戴梦怡, 王卓为, 章颖佳, 陆丹迎. ‘红元宝’紫玉兰两次花芽分化差异代谢通路及关键调控基因筛选. 园艺学报, 2020, 47(8): 1490-1504.
CHENG S Y, XUAN L J, DONG B, GU C H, SHEN Y M, ZHANG M R, DAI M Y, WANG Z W, ZHANG Y J, LU D Y. Identification of differential metabolic pathways and key regulatory genes in the two flower bud differentiation processes of Magnolia liliiflora. Acta Horticulturae Sinica, 2020, 47(8): 1490-1504. (in Chinese)
[26] 李建军, 连笑雅, 王兰. 忍冬花蕾延迟开花与内源激素调控研究. 园艺学报, 2019, 46(7): 1399-1408.
LI J J, LIAN X Y, WANG L. Study on the regulation mechanism of endogenous hormones in delayed flowering of Lonicera japonica. Acta Horticulturae Sinica, 2019, 46(7): 1399-1408. (in Chinese)
[27] 李晶晶, 潘学军, 张文娥. 铁核桃叶片矿质元素和内源激素含量与雌花芽分化的关系. 西北植物学报, 2016, 36(5): 971-978. doi: 10.7606/j.issn.1000-4025.2016.05.0971.
doi: 10.7606/j.issn.1000-4025.2016.05.0971
LI J J, PAN X J, ZHANG W E. Relationship between mineral nutritions, hormone content and flower bud differentiation of Juglans sigillata. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(5): 971-978. doi: 10.7606/j.issn.1000-4025.2016.05.0971. (in Chinese)
doi: 10.7606/j.issn.1000-4025.2016.05.0971
[28] 阿布都卡尤木·阿依麦提, 樊丁宇, 岳婉婉, 赵婧彤, 郝庆. 枣花芽分化过程中营养物质和内源激素含量及抗氧化酶活性变化研究. 西北植物学报, 2021, 41(1): 142-150. doi: 10.7606/j.issn.1000-4025.2021.01.0142.
doi: 10.7606/j.issn.1000-4025. 2021.01.0142
ABUDOUKAYOUMU A, FAN D Y, YUE W W, ZHAO J T, HAO Q. Changes of nutrients, endogenous hormones and antioxidant enzymes activities during flower bud differentiation process of Ziziphus jujuba. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 142-150. doi: 10.7606/j.issn.1000-4025.2021.01.0142. (in Chinese)
doi: 10.7606/j.issn.1000-4025. 2021.01.0142
[29] XING L B, LI Y M, QI S Y, ZHANG C G, MA W C, ZUO X Y, LIANG J Y, GAO C, JIA P, SHAH K, ZHANG D, AN N, ZHAO C P, HAN M Y, ZHAO J. Comparative RNA-sequencing and DNA methylation analyses of apple (Malus domestica borkh.) buds with diverse flowering capabilities reveal novel insights into the regulatory mechanisms of flower bud formation. Plant & Cell Physiology, 2019, 60(8): 1702-1721. doi: 10.1093/pcp/pcz080.
doi: 10.1093/pcp/pcz080
[30] LIU Z N, MIAO L M, HUO R X, SONG X Y, JOHNSON C, KONG L J, SUNDARESAN V, YU X L. ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant and Cell Physiology, 2017, 59(1): 179-189. doi: 10.1093/pcp/pcx174.
doi: 10.1093/pcp/pcx174
[31] RICHTER R, BEHRINGER C, ZOURELIDOU M, SCHWECHHEIMER C. Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(32): 13192-13197. doi: 10.1073/pnas.1304250110.
doi: 10.1073/pnas.1304250110
[32] 郭彩华, 牛建新, 全绍文, 刘金明, 亢超, 张中荣. 核桃ARF基因家族的鉴定及生物信息学分析. 分子植物育种, 2021: 1-19.
GUO C H, NIU J X, QUAN S W, LIU J M, KANG C, ZHANG Z R. Identification and bioinformatics analysis of ARF gene family in walnut (Juglans regia L.). Molecular Plant Breeding, 2021: 1-19. (in Chinese)
[33] WU M F, YAMAGUCHI N, XIAO J, BARGMANN B, ESTELLE M, SANG Y, WAGNER D. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. MicrobiologyOpen, 2015, 4: e09269. doi: 10.7554/elife.09269.
doi: 10.7554/elife.09269
[34] WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees. Journal of Experimental Botany, 2008, 59(12): 3215-3228. doi: 10.1093/jxb/ern188.
doi: 10.1093/jxb/ern188 pmid: 18653697
[35] ZHAO T, CHENG L, CHEN C L, WU Y X, WANG H, ZHANG J Q, ZHU Y F, WANG Y X. Microstructural observation on pistil abortion of ‘Li Guang’ apricot and transcriptome reveal the mechanism of endogenous hormones involved in pistil abortion. Scientia Horticulturae, 2022: 293.
[36] 安爽, 高玉迪, 麦迪努尔·玉苏普, 潘益娜, 邵婉, 宗宇, 陈文荣, 杨莉, 郭卫东, 李永强. 外源脱落酸抑制蓝莓早花及相关基因表达特性研究. 果树学报, 2021, 38(3): 325-334.
AN S, GAO Y D, MAIDIERNU·Y, PAN Y N, SHAO W, ZONG Y, CHEN W R, YANG L, GUO W D, LI Y Q. Research on application exogenous abscisic acid in inhibiting early flowering and associated genes expression characteristics in blueberry. Journal of Fruit Science, 2021, 38(3): 325-334. (in Chinese)
[37] FUJITA Y, NAKASHIMA K, YOSHIDA T, KATAGIRI T, KIDOKORO S, KANAMORI N, UMEZAWA T, FUJITA M, MARUYAMA K, ISHIYAMA K, KOBAYASHI M, NAKASONE S, YAMADA K, ITO T, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology, 2009, 50(12): 2123-2132. doi: 10.1093/pcp/pcp147.
doi: 10.1093/ pcp/pcp147
[38] BAO S J, HUA C M, SHEN L S, YU H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 2020, 62(1): 118-131. doi: 10.1111/jipb.12892.
doi: 10.1111/jipb. 12892
[39] SHU K, CHEN Q, WU Y R, LIU R J, ZHANG H W, WANG S F, TANG S Y, YANG W Y, XIE Q. Abscisic acid-insensitive 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. Journal of Experimental Botany, 2015, 67(1): 195-205. doi: 10.1093/jxb/erv459.
doi: 10.1093/jxb/erv459
[40] ACHARD P, HERR A, BAULCOMBE D C, HARBERD N P. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004, 131(14): 3357-3365. doi: 10.1242/dev.01206.
doi: 10.1242/dev.01206 pmid: 15226253
[41] SCHILLING S, PAN S R, KENNEDY A, MELZER R. MADS-box genes and crop domestication: the jack of all traits. Journal of Experimental Botany, 2018, 69(7): 1447-1469. doi: 10.1093/jxb/erx479.
doi: 10.1093/jxb/erx479 pmid: 29474735
[42] DENAY G, CHAHTANE H, TICHTINSKY G, PARCY F. A flower is born: An update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 2017, 35: 15-22. doi: 10.1016/j.pbi.2016.09.003.
doi: 10.1016/j.pbi.2016. 09.003
[43] 戚晓利, 卢孟柱. 拟南芥APETALA1基因在花发育中的网络调控及其生物学功能. 中国农学通报, 2011, 27(8): 103-107.
QI X L, LU M Z. Regulation network and biological roles of APETALA1 of Arabidopsis thaliana in flower development. Chinese Agricultural Science Bulletin, 2011, 27(8): 103-107. (in Chinese)
[44] LIU C, CHEN H, ER H L, SOO H M, KUMAR P P, HAN J H, LIOU Y C, YU H. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 2008, 135(8): 1481-1491. doi: 10.1242/dev.020255.
doi: 10.1242/dev.020255
[45] GREGIS V, SESSA A, COLOMBO L, KATER M M. agl24, short vegetative phase, and apetala1 redundantly control agamous during early stages of flower development in Arabidopsis. The Plant Cell, 2006, 18(6): 1373-1382. doi: 10.1105/tpc.106.041798.
doi: 10.1105/tpc.106.041798
[46] ADAMCZYK B J, FERNANDEZ D E. MIKC MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiology, 2009, 149(4): 1713-1723. doi: 10.1104/pp.109.135806.
doi: 10. 1104/pp.109.135806
[47] 张新昊, 沈红艳, 文滨滨, 李森, 许琛, 盖瑜, 姜珊, 李冬梅, 陈修德, 肖伟, 李玲, 付喜玲. 桃MADS-box家族PpCMB1基因调控花发育分子机制. 植物生理学报, 2021, 57(6): 1211-1217.
ZHANG X H, SHEN H Y, WEN B B, LI S, XU C, GAI Y, JIANG S, LI D M, CHEN X D, XIAO W, LI L, FU X L. Molecular mechanism of PpCMB1 gene in peach MADS-box family regulating flower development. Plant Physiology Journal, 2021, 57(6): 1211-1217. (in Chinese)
[48] FERNANDEZ D E, WANG C T, ZHENG Y M, ADAMCZYK B J, SINGHAL R, HALL P K, PERRY S E. The mads-domain factors agamous-like15 and agamous-like18, along with short vegetative phase and agamous-like24, are necessary to block floral gene expression during the vegetative phase. Plant Physiology, 2014, 165(4): 1591-1603. doi: 10.1104/pp.114.242990.
doi: 10.1104/pp.114.242990 pmid: 24948837
[49] SMACZNIAK C, IMMINK R G, ANGENENT G C, KAUFMANN K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 2012, 139(17): 3081-3098. doi: 10.1242/dev.074674.
doi: 10.1242/dev.074674 pmid: 22872082
[50] VILLAR L, LIENQUEO I, LLANES A, ROJAS P, PEREZ J, CORREA F, SAGREDO B, MASCIARELLI O, LUNA V, ALMADA R. Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing). PLoS ONE, 2020, 15(3): e0230110. doi: 10.1371/journal.pone.0230110.
doi: 10.1371/journal.pone. 0230110
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758.
[3] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[4] CHEN Hao,ZHANG RunGuang,FU LuYing,ZHANG YouLin. Effects of 1-MCP and Na2S2O5 Composite Preservative on Postharvest Physiology and Storage Quality of Red Globe Grapes [J]. Scientia Agricultura Sinica, 2019, 52(7): 1192-1204.
[5] LI Hui-feng, JIA Hou-zhen, DONG Qing-long, RAN Kun, WANG Hong-wei. Cloning and Expression Analysis of Ten MADS-box Genes in Peach (Prunus persica var. nectarina ‘Luxing’) [J]. Scientia Agricultura Sinica, 2016, 49(23): 4593-4605.
[6] DONG Qing-Long, JI Zhi-Rui, CHI Fu-Mei, TIAN Yi, AN Xiu-Hong, XU Cheng-Nan, ZHOU Zong-Shan. Bioinformatics of the MADS-Box Transcription Factor and Their Expression in Different Apple Tissues [J]. Scientia Agricultura Sinica, 2014, 47(6): 1151-1161.
[7] WANG Hai-bo, ZHAO Jun-quan, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, LIU Feng-zhi. The Influence of Changes of Endogenous Hormones in Shoot on the Grapes Flower Bud Differentiation in Greenhouse [J]. Scientia Agricultura Sinica, 2014, 47(23): 4695-4705.
[8] LI Hong-You, WANG Chan, LI Li-Lin, WANG Yong-Qin, ZHAO Rui. Cloning and Expression Analysis of A Putative B Class MADS-box Gene of AcPI in Onion [J]. Scientia Agricultura Sinica, 2012, 45(23): 4759-4769.
[9] SUN Xia, WANG Xiu-Feng, ZHENG Cheng-Shu, XING Shi-Yan, SHU Huai-Rui. The cDNA Cloning and Analysis of Sequence Information and Quantitative Express of Chrysanthemum Rhythms Clock Output Gene CmGI (GIGANTEA) [J]. Scientia Agricultura Sinica, 2012, 45(13): 2690-2703.
[10] . Effects of Growth Age on Flower Bud Differentiation and Quality of Cut Chrysanthemum ‘Jinba’ [J]. Scientia Agricultura Sinica, 2008, 41(6): 1755-1760 .
[11] . Effects of Nitrogen Forms on Endogenous plant Hormones Content in Grains of Two Wheat Genotypes [J]. Scientia Agricultura Sinica, 2008, 41(1): 63-69 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!