Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3664-3674.doi: 10.3864/j.issn.0578-1752.2022.18.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep

ChunTao ZHANG(),Tao MA,Yan TU,QiYu DIAO()   

  1. Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs/Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2021-08-02 Accepted:2022-06-01 Online:2022-09-16 Published:2022-09-22
  • Contact: DIAO QiYu E-mail:1033211658@qq.com;diaoqiyu@caas.cn

Abstract:

【Objective】The biological clock system generally exists at all levels of life, which is closely related to the digestive physiology and growth performance of animals. This experiment explored the relationship between circadian rhythm and rumen fermentation parameters, nutrient digestion and metabolism of Hu sheep, in order to explore the relationship between circadian rhythm and physiological digestion and metabolism of Hu sheep, so as to provide an important theoretical basis for improving the growth performance and nutrient utilization of fattening sheep.【Method】Forty-five healthy Hu sheep with body weight of 21.57 ± 0.77kg weight were randomly divided into 3 groups, with 15 sheep in each group. Each treatment group was used the same concentrate supplement and coarse feed. The three treatments were respectively set as follows: day treatment group(DH), that was, 70% of the total daily concentrate + 30% of the total daily coarse feed in the morning; in the evening treatment group(DL), 30% of the daily total concentrate + 70% of the daily total coarse feed were fed in the morning; the control group(CON), i.e. 50% of the daily total concentrate + 50% of the daily total crude feed in the morning and evening. After feeding for two months, the digestion and metabolism test was carried out. Total fecal collection and urine were used to determine nutrient apparent digestibility and metabolic rate. After the feeding experiment, the rumen fluid samples were collected from oral cavity 2 h before morning feeding and 2 h before evening feeding, respectively, for the determination of related indexes. 【Result】 ① The daily gain of DH was 215.00 g, the food intake was lower than that of DL and CON, and the feed conversion ratio was the best, with the value of 5.35, which was 11.19% and 16.04% better than the other two groups, respectively. ② Under different feeding modes, the digestibility of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of sheep in DH group were higher than those in CON and DL groups. Compared with DL group, The DM digestibility, CP, NDF, and ADF was increased by 21.42%, 22.29%, 9.85%, and 28.69%, respectively. ③ The biological value of nitrogen in DH group was 20.31% higher than that of CON and 67.41% higher than that of DL (P>0.05). There was no significant difference in the intake of digestible nitrogen among all groups, and the total nitrogen excretion in DL group was significantly higher than that in DH group (P<0.05). The nitrogen deposition, nitrogen utilization and biological value in DH group were significantly higher than those in DL group (P<0.05) and CON group (P>0.05). ④ There were no significant differences in rumen microbial protein (MCP), acetic acid and total volatile fatty acid (TVFA) among groups with different treatments (P>0.05), however, the rumen pH, the ratio of acetic to propionic acid and butyric acid in DH group were significantly lower than those in DL group (P<0.05). With the alternation of day and night, rumen pH, NH3-N, acetic acid, propionic acid, total volatile fatty acid and the ratio of acetic to propionic acid were significantly changed (P<0.05), and the related parameters were higher in day than in night.【Conclusion】Growth performance and nutrient digestibility of sheep could be improved by changing the ration of concentrate to forage in the early and late days under the same nutrient content in the diet, and the feeding high concentrate ratio in the morning and low concentrate ratio in the afternoon. Rumen fermentation was affected by day and night, and feeding high concentrate diet in day promoted the contents of TVFA, NH3-N and MCP in rumen. In a word, it is better to increase the proportion of concentrate in the morning, which is more in line with the rhythm of digestion and absorption of animal body, and has better effect on the utilization of feed.

Key words: mutton sheep, Hu sheep, circadian rhythm, nutrient digestion, rumen fermentation

Table 1

Experimental design of circadian rhythm"

组别
Group
饲粮 Diets(只/d)
上午 Sunrise 下午Sunset
对照组CON 50%日总精料 + 50%日总粗料
50% daily total concentrate + 50% daily total roughage
50%日总精料 + 50%日总粗料
50% daily total concentrate + 50% daily total roughage
白天组DH 70%日总精料 + 30%日总粗料
70% daily total concentrate + 30% daily total roughage
30%日总精料 + 70%日总粗料
30% daily total concentrate + 70% daily total roughage
晚上组DL 30%日总精料 + 70%日总粗料
30% daily total concentrate + 70% daily total roughage
70%日总精料 + 30%日总粗料
70% daily total concentrate + 30% daily total roughage

Table 2

Composition and nutrient levels of Diets (DM basis)"

项目
Item
原料组成Ingredient
精料Concentrate 羊草Wildrye 精料+羊草 Concentrate + Wildrye
干物质DM (%) 94.77 90.93 93.08
有机物OM (%) 88.93 93.26 90.84
代谢能ME (MJ·kg-1) 11.52 5.93 9.06
粗蛋白质CP (%) 19.27 7.60 14.14
粗脂肪EE (%) 3.43 2.45 3.00
中性洗涤纤维NDF (%) 18.46 65.90 39.33
酸性洗涤纤维ADF (%) 14.34 40.62 25.90
粗灰分Ash (%) 11.07 6.74 9.16
钙Ca (%) 0.81 0.50 0.71
磷P (%) 0.49 0.08 0.31

Table 3

Relationship between circadian rhythm and rumen nutrients in mutton sheep"

项目
Item
组别 Group SEM P
P value
CON DH DL
干物质采食量 DMI (kg·d-1) 1.20 1.15 1.21 0.019 0.07
平均日增重 ADG (kg·d-1) 201.33 214.73 194.61 0.089 0.16
饲料转化比 F/G 5.96 5.36 6.29 0.208 0.08
营养物质表观消化率 Nutrient apparent digestibility (%)
干物质 DM 57.04 62.80 51.72 3.117 0.42
有机物 OM 59.21 64.77 59.21 3.320 0.80
粗蛋白 CP 53.38 57.61 47.11 3.389 0.52
粗脂肪 EE 68.46 69.41 73.43 2.882 0.79
中性洗涤纤维 NDF 63.01 62.87 57.23 3.157 0.73
酸性洗涤纤维 ADF 54.43 56.83 44.16 3.675 0.41

Table 4

Relationship between circadian rhythm and rumen protein metabolism in mutton sheep"

项目
Item
组别 Group SEM P
P value
CON DH DL
摄入氮 N intake (g·d-1) 29.40 28.13 30.70 0.473 0.07
粪氮 Fecal N (g·d-1) 11.13 10.44 11.43 0.345 0.53
尿氮 Fecal N (g·d-1) 8.26ab 5.96b 11.30a 0.752 0.01
总排出氮 Total N excretion (g·d-1) 19.38ab 16.39b 23.29a 0.945 0.01
表观可消化氮 Absorbed N (g·d-1) 18.27 17.69 18.71 0.374 0.58
沉积氮 Retained N (g·d-1) 10.01ab 11.74a 7.41b 0.795 0.11
氮表观消化率 Apparent digestibility of N (%) 62.21 62.90 60.92 0.942 0.75
氮利用率 Utilization efficiency of N (%) 34.16ab 41.61a 23.95b 2.815 0.04
氮的生物学价值 Biological value of N (%) 54.66ab 65.76a 39.28b 4.143 0.03

Table 5

Relationship between circadian rhythm and rumen pH, NH3-N and MCP in mutton sheep"

项目
Item
昼夜
Time period
处理 Group 标准误
SEM
P P value
CON DH DL 处理
Groups
时间
Time
处理×时间
Group×Time
pH 白天 Day 6.84a 6.26b 7.02a 0.118 <0.01 <0.01 0.05
黑夜 Night 6.30a 6.12b 6.38a
氨态氮
NH3-N (mg·dL-1)
白天 Day 10.40b 17.91a 10.08b 0.745 <0.01 0.01 <0.01
黑夜 Night 11.18 10.56 11.46
微生物蛋白
MCP (mg·mL-1)
白天 Day 1.39 1.78 1.42 0.009 0.82 0.12 0.79
黑夜 Night 1.09 1.08 1.11

Table 6

Relationship between circadian rhythm and rumen VFA in mutton sheep"

项目
Item
时间段
Time period
处理组 Group 标准误
SEM
P P-value
CON DH DL 处理
Groups
时间段
Time
处理×时间段
Group×time
乙酸
Acetic acid (AA,mmol·L-1)
白天Day 34.46 48.41 39.47 0.008 0.84 0.07 <0.01
黑夜Night 39.81 28.80 34.08
丙酸
Propionic acid (PA,mmol·L-1)
白天Day 11.29b 21.76a 12.49b 0.232 0.03 <0.01 <0.01
黑夜Night 11.47 9.25 10.97
异丁酸
Isobutyric acid (mmol·L-1)
白天Day 7.40ab 10.12a 6.46b 0.128 0.05 0.63 0.46
黑夜Night 6.89 8.50 7.38
丁酸
Butyric acid(mmol·L-1)
白天Day 5.19a 1.51b 6.26a 0.470 <0.01 0.23 0.05
黑夜Night 5.58a 3.57b 5.45a
异戊酸
Isovaleric acid(mmol·L-1)
白天Day 0.49 0.66 0.51 0.026 0.06 0.01 0.11
黑夜Night 0.87 0.71 0.71
戊酸
Valeric acid(mmol·L-1)
白天Day 0.39b 0.86a 0.34b 0.154 0.025 0.061 <0.001
黑夜Night 0.48 0.32 0.37
总挥发酸
TVFA(mmol·L-1)
白天Day 59.22b 81.31a 65.53b 0.342 0.472 0.001 <0.001
黑夜Night 65.08 51.16 59.07
乙/丙
AA/PA
白天Day 3.12a 2.52b 3.22a 0.030 0.005 0.002 0.545
黑夜Night 3.48 3.17 3.53
[1] 张春桃, 马涛, 屠焰, 刁其玉. 生物节律对动物生理营养及物质消化利用调控的研究进展. 畜牧兽医学报, 2021, 52(4): 872-880.
ZHANG C T, MA T, TU Y, DIAO Q Y. The relationship between biorhythms and physiological nutrients and substance digestion and utilization in animals. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 872-880. (in Chinese)
[2] 吴信, 印遇龙. 单胃动物营养学的动态概念及其发展. 农业现代化研究, 2015, 36(3): 321-326. doi: 10.13872/j.1000-0275.2015.0035.
doi: 10.13872/j.1000-0275.2015.0035
WU X, YIN Y L. Research progress and development of concept of the dynamic nutrition in monogastric animals. Research of Agricultural Modernization, 2015, 36(3): 321-326. doi: 10.13872/j.1000-0275.2015.0035. (in Chinese)
doi: 10.13872/j.1000-0275.2015.0035
[3] BRUININX E M A M, HEETKAMP M J W, VAN DEN BOGAART D, VAN DER PEET-SCHWERING C M C, BEYNEN A C, EVERTS H, DEN HARTOG L A, SCHRAMA J W. A prolonged photoperiod improves feed intake and energy metabolism of weanling pigs. Journal of Animal Science, 2002, 80(7): 1736-1745. doi: 10.2527/2002.8071736x.
doi: 10.2527/2002.8071736x
[4] NIU M, YING Y, BARTELL P A, HARVATINE K J. The effects of feeding time on milk production, total-tract digestibility, and daily rhythms of feeding behavior and plasma metabolites and hormones in dairy cows. Journal of Dairy Science, 2014, 97(12): 7764-7776. doi: 10.3168/jds.2014-8261.
doi: 10.3168/jds.2014-8261
[5] WANG M, ZHOU Z, KHAN M J, GAO J, LOOR J J. Clock circadian regulator (CLOCK) gene network expression patterns in bovine adipose, liver, and mammary gland at 3 time points during the transition from pregnancy into lactation. Journal of Dairy Science, 2015, 98(7): 4601-4612. doi: 10.3168/jds.2015-9430.
doi: 10.3168/jds.2015-9430
[6] SALFER I J, HARVATINE K J. Night-restricted feeding of dairy cows modifies daily rhythms of feed intake, milk synthesis and plasma metabolites compared with day-restricted feeding. The British Journal of Nutrition, 2020, 123(8): 849-858. doi: 10.1017/S0007114520000057.
doi: 10.1017/S0007114520000057
[7] GORDON J G, MCALLISTER I K. The circadian rhythm of rumination. The Journal of Agricultural Science, 1970, 74(2): 291-297. doi: 10.1017/s0021859600022905.
doi: 10.1017/s0021859600022905
[8] 张丽英. 饲料分析及饲料质量检测技术(第5版). 北京: 中国农业大学出版社, 2021.
ZHANG L Y. Feed analysis and feed quality testing technology (5th edition). Beijing: China Agricultural University Press, 2021. (in Chinese)
[9] VAN SOEST P J. Development of a comprehensive system of feed analyses and its application to forages. Journal of Animal Science, 1967, 26(1): 119-128. doi: 10.2527/jas1967.261119x.
doi: 10.2527/jas1967.261119x
[10] BRODERICK G A, KANG J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. doi: 10.3168/jds.S0022-0302(80)82888-8.
doi: 10.3168/jds.S0022-0302(80)82888-8
[11] 赵国宏, 王世琴, 王芬, 王宏, 刁其玉, 韩向敏, 张乃锋. 湖羊育肥期饲粮添加酵母培养物对营养物质表观消化率及瘤胃发酵参数的影响. 畜牧兽医学报, 2019, 50(10): 2156-2165. doi: 10.11843/j.issn.0366-6964.2019.10.023.
doi: 10.11843/j.issn.0366-6964.2019.10.023
ZHAO G H, WANG S Q, WANG F, WANG H, DIAO Q Y, HAN X M, ZHANG N F. Effects of yeast culture supplementation in high- concentration diet on nutrient digestibility and rumen fermentation of fattening hu sheep. Acta Veterinaria et Zootechnica Sinica, 2019, 50(10): 2156-2165. doi: 10.11843/j.issn.0366-6964.2019.10.023. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2019.10.023
[12] REINKE H, ASHER G. Crosstalk between metabolism and circadian clocks. Nature Reviews Molecular Cell Biology, 2019, 20(4): 227-241.
doi: 10.1038/s41580-018-0096-9
doi: 10.1038/s41580-018-0096-9.
doi: 10.1038/s41580-018-0096-9
[13] Proteins - Dietary Proteins; Researchers at Institute of Subtropical Agriculture Report New Data on Dietary Proteins Researchers at Institute of Subtropical Agriculture Report New Data on Dietary Proteins (Effects of a daily 3-meal pattern with different dietary protein contents on pig growth performance, carcass and muscle quality traits). Food Weekly News, 2017.
[14] 徐巧云. PER2蛋白影响消化道上皮挥发性脂肪酸吸收机制的研究[D]. 扬州: 扬州大学, 2019.
XU Q Y. Study on the mechanism of PER2 affecting the absorption of volatile fatty acids in the digestive tract[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[15] GAO L M, XIE C Y, ZHANG T Y, WU X, YIN Y L. Maternal supplementation with calcium varying with feeding time daily during late pregnancy affects lipid metabolism and transport of placenta in pigs. Biochemical and Biophysical Research Communications, 2018, 505(2): 624-630. doi: 10.1016/j.bbrc.2018.09.143.
doi: 10.1016/j.bbrc.2018.09.143
[16] WU X, GUO X Y, XIE C Y, ZHANG T Y, GAO P F, GAO T Z, YIN Y L. Effects of a two-meal daily feeding pattern with varied crude protein levels on growth performance and antioxidant indexes in pigs. Animal Nutrition, 2016, 2(4): 267-270. doi: 10.1016/j.aninu.2016.08.002.
doi: 10.1016/j.aninu.2016.08.002
[17] 张崇志, 孙海洲, 桑丹, 李胜利, 张春华, 金鹿, 斯登丹巴, 谷英. 节律性日粮对鄂尔多斯细毛羊泌乳性能和血液指标的影响. 家畜生态学报, 2019, 40(7): 27-33. doi: 10.3969/j.issn.1673-1182.2019.07.006.
doi: 10.3969/j.issn.1673-1182.2019.07.006
ZHANG C Z, SUN H Z, SANGDAN, LI S L, ZHANG C H, JIN L, SIDENGDANBA, GU Y. Effects of rhythmic diet on lactating performance and blood indexes in Ordos fine wool sheep. Acta Ecologae Animalis Domastici, 2019, 40(7): 27-33. doi: 10.3969/j.issn.1673-1182.2019.07.006. (in Chinese)
doi: 10.3969/j.issn.1673-1182.2019.07.006
[18] ROMON M, EDME J L, BOULENGUEZ C, LESCROART J L, FRIMAT P. Circadian variation of diet-induced thermogenesis. The American Journal of Clinical Nutrition, 1993, 57(4): 476-480. doi: 10.1093/ajcn/57.4.476.
doi: 10.1093/ajcn/57.4.476
[19] 马满鹏. 日粮中性洗涤纤维来源对断奶犊牛生长性能和瘤胃发育的影响[D]. 兰州: 甘肃农业大学, 2020.
MA M P. Effects of diets with NDF source on the growth performance and rumen development in post weaning calves[D]. Lanzhou: Gansu Agricultural University, 2020. (in Chinese)
[20] 刘大森, 唐柯楠, 郑飞, 曹升旭. NDF对反刍动物的作用及影响其瘤胃降解率因素分析. 饲料工业, 2018, 39(10): 1-5. doi: 10.13302/j.cnki.fi.2018.10.001.
doi: 10.13302/j.cnki.fi.2018.10.001
LIU D S, TANG K N, ZHENG F, CAO S X. Effects of NDF on ruminants and factors influencing their ruminal degradability. Feed Industry, 2018, 39(10): 1-5. doi: 10.13302/j.cnki.fi.2018.10.001. (in Chinese)
doi: 10.13302/j.cnki.fi.2018.10.001
[21] 张卫兵, 刁其玉, 张乃锋, 屠焰, 王光文, 袁耀明. 日粮蛋白能量比对8-10月龄后备奶牛生长性能和养分消化的影响. 中国农业科学, 2010, 43(12): 2541-2547.
ZHANG W B, DIAO Q Y, ZHANG N F, TU Y, WANG G W, YUAN Y M. Effect of dietary protein to metabolizable energy ratio on growth performance and nutrients digestion of 8-10-month-old Chinese Holstein heifers. Scientia Agricultura Sinica, 2010, 43(12): 2541-2547. (in Chinese)
[22] GOO R H, MOORE J G, GREENBERG E, ALAZRAKI N P. Circadian variation in gastric emptying of meals in humans. Gastroenterology, 1987, 93(3): 515-518. doi: 10.1016/0016-5085(87)90913-9.
doi: 10.1016/0016-5085(87)90913-9
[23] MARCHEVA B, RAMSEY K M, BUHR E D, KOBAYASHI Y, SU H, KO C H, IVANOVA G, OMURA C, MO S, VITATERNA M H, LOPEZ J P, PHILIPSON L H, BRADFIELD C A, CROSBY S D, JEBAILEY L, WANG X Z, TAKAHASHI J S, BASS J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature, 2010, 466(7306): 627-631. doi: 10.1038/nature09253.
doi: 10.1038/nature09253
[24] SHAANI Y, ZEHAVI T, EYAL S, MIRON J, MIZRAHI I. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. The ISME Journal, 2018, 12(10): 2446-2457. doi: 10.1038/s41396-018-0203-0.
doi: 10.1038/s41396-018-0203-0
[25] 黄文琴, 吕小康, 王世琴, 杨承剑, 蒋小刚, 刁其玉, 张乃锋. 全株甘蔗对山羊生长性能、营养物质表观消化率、血清指标及瘤胃发酵参数的影响. 动物营养学报, 2018, 30(12): 5182-5191. doi: 10.3969/j.issn.1006-267x.2018.12.047.
doi: 10.3969/j.issn.1006-267x.2018.12.047
HUANG W Q, LÜ X K, WANG S Q, YANG C J, JIANG X G, DIAO Q Y, ZHANG N F. Effects of whole sugarcane on growth performance, nutrient apparent digestibility, serum indexes and rumen fermentation indexes of goats. Chinese Journal of Animal Nutrition, 2018, 30(12): 5182-5191. doi: 10.3969/j.issn.1006-267x.2018.12.047. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2018.12.047
[26] DASILVA L D, PEREIRA O G, DA SILVA T C, VALADARES FILHO S C, RIBEIRO K G. Effects of silage crop and dietary crude protein levels on digestibility, ruminal fermentation, nitrogen use efficiency, and performance of finishing beef cattle. Animal Feed Science and Technology, 2016, 220: 22-33. doi: 10.1016/j.anifeedsci.2016.07.008.
doi: 10.1016/j.anifeedsci.2016.07.008
[27] 刘洁, 刁其玉, 赵一广, 姜成钢, 李艳玲, 屠焰. 饲粮不同NFC/NDF对肉用绵羊瘤胃pH、氨态氮和挥发性脂肪酸的影响. 动物营养学报, 2012, 24(6): 1069-1077. doi: 10.3969/j.issn.1006-267x.2012.06.011.
doi: 10.3969/j.issn.1006-267x.2012.06.011
LIU J, DIAO Q Y, ZHAO Y G, JIANG C G, LI Y L, TU Y. Effects of dietary NFC/NDF ratios on rumen pH, NH3-N and VFA of meat sheep. Acta Zoonutrimenta Sinica, 2012, 24(6): 1069-1077. doi: 10.3969/j.issn.1006-267x.2012.06.011. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2012.06.011
[28] THAO N T, WANAPAT M, CHERDTHONG A, KANG S. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian- Australasian Journal of Animal Sciences, 2014, 27(1): 46-54. doi: 10.5713/ajas.2013.13301.
doi: 10.5713/ajas.2013.13301
[29] 张婷婷, 杨在宾, 刘建新, 孙华. 茶皂素对甲烷产量和瘤胃发酵影响的研究进展. 家畜生态学报, 2011, 32(2): 96-99.
ZHANG T T, YANG Z B, LIU J X, SUN H. Research progress of effects of tea saponin on fermentation and methane production in the rumen. Acta Ecologiae Animalis Domastici, 2011, 32(2): 96-99. (in Chinese)
[30] KHAFIPOUR E, KRAUSE D O, PLAIZIER J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009, 92(3): 1060-1070. doi: 10.3168/jds.2008-1389.
doi: 10.3168/jds.2008-1389
[31] KIRAN D, MUTSVANGWA T. Effects of partial ruminal defaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations. Journal of Animal Science, 2010, 88(3): 1034-1047. doi: 10.2527/jas.2009-2218.
doi: 10.2527/jas.2009-2218
[1] YANG GaiQing, WANG LinFeng, LI WenQing, ZHU HeShui, FU Tong, LIAN HongXia, ZHANG LiYang, TENG ZhanWei, ZHANG LiJie, REN Hong, XU XinYing, LIU XinHe, WEI YuXuan, GAO TengYun. Study on Milk Quality Based on Circadian Rhythm [J]. Scientia Agricultura Sinica, 2023, 56(2): 379-390.
[2] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[3] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[4] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[5] LI WenJuan,TAO Hui,ZHANG NaiFeng,MA Tao,DIAO QiYu. Effects of High-Fat Diet on Energy Metabolism and Slaughter Performance of Early-Weaning Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2206-2216.
[6] YANG YunYan,WANG QiYan,PENG DiWei,PAN YiFan,GAO XiaoMei,XUAN ZeYi,CHEN ShaoMei,ZOU CaiXia,CAO YanHong,LIN Bo. Effects of Cinnamaldehyde on Growth Performance,Health Status, Rumen Fermentation and Microflora of Dairy Calves [J]. Scientia Agricultura Sinica, 2021, 54(10): 2229-2238.
[7] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[8] Ke YU,Lei LIU,RuiFen ZHANG,JianWei CHI,XuChao JIA,MingWei ZHANG. Effect of Pre-Enzymatic-Drum Drying Process on the Quality of Whole Wheat Flakes [J]. Scientia Agricultura Sinica, 2020, 53(6): 1256-1268.
[9] ZHANG DeYin,ZHANG XiaoXue,LI FaDi,LI Chong,LI GuoZe,ZHANG YuKun,LI XiaoLong,SONG QiZhi,ZHAO Yuan,LIU XiaoQing,MA LiangQiang,WANG WeiMin. Association of Rumen Histomorphology of Sheep with Different Feed Efficiencies [J]. Scientia Agricultura Sinica, 2020, 53(24): 5115-5124.
[10] ZHENG WeiCai,HAO XiaoYan,ZHANG HongXiang,XIANG BinWei,ZHANG WenJia,ZHANG ChunXiang,ZHANG JianXin. Effects of Saccharomyces Cerevisiae and Bacillus Licheniformis on Growth Performance and Rumen Fermentation in Sheep [J]. Scientia Agricultura Sinica, 2020, 53(16): 3385-3393.
[11] FU LiXia,MA Tao,DIAO QiYu,CHENG ShuRu,SONG YaZhe,SUN ZhuoLin. Establishment of a Prediction Model of Metabolizable Protein of Concentrate for Mutton Sheep [J]. Scientia Agricultura Sinica, 2019, 52(3): 539-549.
[12] DING Lan,GU Bao,LI PeiYing,SHU Xin,ZHANG JianXia. Genome-Wide Identification and Expression Analysis of SAP Family in Grape [J]. Scientia Agricultura Sinica, 2019, 52(14): 2500-2514.
[13] CHAI JianMin, WANG Bo, QI MinLi, WANG ShiQin, TU Yan, TAO XiaoJing, DIAO QiYu, ZHANG NaiFeng. Effect of Weaning Liquid Diet at Different Level of Creep Feed Intake on Growth and Development of Lambs [J]. Scientia Agricultura Sinica, 2018, 51(2): 341-350.
[14] JIN ChengYan, Lü XiaoYang, GAO Wen, WANG Yue, CHEN WeiHao, SHENG ShuiXing, CHEN Ling, LIN Jie, SUN Wei. Study on the Relationship Between the Expression of Candidate miRNAs and the Developmental Characteristics in Different Patterns in Hu Sheep Lambskin [J]. Scientia Agricultura Sinica, 2018, 51(14): 2814-2824.
[15] BAO Jian-jun, SU Rui, WANG Qing-zeng, Lü Xiao-yang, GAO Wen, YU Jia-rui, WANG Li-hong, CHEN Ling, WU Wen-zhong, SHENG Shui-xing, ZHOU Hong, SUN Wei, DAI Guo-jun. Study on the Temporal and Spatial Expression and Correlation Analysis of Smads and YAP1 Gene in the Hippo Pathway in Sheep Muscle Tissue [J]. Scientia Agricultura Sinica, 2016, 49(11): 2203-2213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!