Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4473-4486.doi: 10.3864/j.issn.0578-1752.2022.22.012

• HORTICULTURE • Previous Articles     Next Articles

Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation

WANG Bo1(),QIN FuQiang1,DENG FengYing1,LUO HuiGe1,CHEN XiangFei1,CHENG Guo2,BAI Yang3,HUANG XiaoYun3,HAN JiaYu2,CAO XiongJun2,BAI XianJin4()   

  1. 1College of Agriculture, Guangxi University, Nanning 530004
    2Grape and Wine Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007
    3Guangxi Zhencheng Agricultural Co., Ltd., Nanning 530007
    4Guangxi Academy of Agriculture Science, Nanning 530007
  • Received:2022-02-21 Accepted:2022-07-08 Online:2022-11-16 Published:2022-12-14
  • Contact: XianJin BAI E-mail:wangbo0127@163.com;b5629@126.com

Abstract:

【Objective】 3-year-old Shine Muscat grape under two-crop-a-year cultivation was used as the material to investigate the differences of physical and chemical indexes of basic quality, flavonoid components and contents between summer grape and winter grape, which would provide the theoretical basis for the quality control of Shine Muscat grape under two-crop-a-year cultivation.【Method】The climatic data, such as the sunshine duration, light intensity, temperature and rainfall during the whole growth period of Shine Muscat grape, were recorded. The physical and chemical indexes of basic quality in berries of summer and winter grapes of Shine Muscat were determined at the young fruit stage, expansion stage, softening stage, beginning maturity stage, and maturity stage, respectively. Meanwhile, the components and contents of flavonols and flavanols in the peel of summer and winter grapes of Shine Muscat grape were detected by LC-MS/MS.【Result】In terms of the climate factors, the summer grape of Shine Muscat displayed weak illumination and low temperature at early growth stage but strong illumination and high temperature at late growth stage of the whole developing period, while the winter grape was opposite. The average sunshine duration, average temperature and effective accumulated temperature in the growth period of summer grape were higher than those of winter grape, but the rainfall was lower than that of winter grape. The hydrothermal coefficient of summer grape was higher than that of winter grape from the beginning of maturity stage to maturity stage. In terms of the basic quality, the content of soluble solid of summer grape was significantly higher than that of winter grape at maturity stage, and the peel thickness of summer grape was significantly lower than that of winter grape. There was no significant difference in the single berry weight, fruit equatorial and longitudinal diameter and titratable acid content between summer and winter grape. In terms of the components and contents of flavonols, the content of total flavonols in peels of summer and winter grape showed a downward trend during the fruit developing stage. The content of total flavonols in different periods of summer grape was significantly higher than that of winter grape. The main flavonol in summer grape was quercetin-3-O-glucoside, while the main flavonol in winter grape was kaempferol-3-O-galactoside. In terms of the components and contents of flavanols, the content of total flavanols in summer and winter grape also showed a downward trend. The eight identical flavanols were detected in the peels of both summer and winter grape, and the main flavanols were catechin, epicatechin and procyanidin B1. The contents of total flavanols, catechin, epicatechin and procyanidin B1 in summer grape were significantly lower than those in winter grape during fruit development. The contents of gallic catechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, and procyanidin B2 at fruit maturation stage of summer grape were significantly higher than those of winter grape. The principal component analysis showed that there were differences in flavonols between summer and winter fruits. The regression analysis showed that catechin, quercetin-3-O-Glucoside and procyanidin B1 were the main components for distinguishing the flavonoids from summer and winter grapes.【Conclusion】 In the study conducting year, the quality of summer grape of Shine Muscat was better than that of winter grape. During the whole grape developing stage, the content of total flavonols in summer grape was significantly higher than that in winter grape, while the content of total flavanols in summer grape was significantly lower than that in winter grape. The main components of flavonols were different between summer and winter grape of Shine Muscat, while the main components of flavanols were the same, namely catechin, epicatechin and procyanidin B1. The content of the main components of flavanols in winter grapes was significantly higher than that in summer grape, which might probably explained why the astringency taste of winter grape was stronger than that of summer grape. The differences in light and temperature during the growth period may be an important factor that caused the difference in the components and contents of summer and winter grapes of Shine Muscat.

Key words: Shine Muscat grape, two-crop-a-year, climate, skin, flavonols, flavanols

Table 1

Phenological period of Shine Muscat grape"

Ⅰ:芽顶尖绿色至花帽褪绿期;Ⅱ:开始开花至花帽完全脱落期;Ⅲ:幼果直径>2 mm至直径约7 mm期;Ⅳ:浆果开始封穗至封穗期;Ⅴ:浆果开始变软至变色期;Ⅵ:浆果Brix°中等值至未完全成熟期;Ⅶ:浆果成熟至过熟期。下同

Ⅰ: Green tip-flower cap colour fading from green; Ⅱ: Beginning of flowering-cap-fall complete; Ⅲ: Setting-berries pea-size (7 mm diam.); Ⅳ: Beginning of bunch closure-closured; Ⅴ: Berries begin to soften-berries softening; Ⅵ: Berries with intermediate Brix° values to berries not quite ripe; Ⅶ: Berries harvest-ripe to berries over-ripe. The same as below

物候期
Phenological period
夏果Summer grape 冬果Winter grape
日期(月/日)
Date (M/D)
天数
Number of days (d)
日期(月/日)
Date (M/D)
天数
Number of days (d)
芽顶尖绿色至花帽褪绿期 Ⅰ (E-L4—E-L18) 3/5-4/6 33 8/23-9/13 22
开始开花至花帽完全脱落期 Ⅱ (E-L19—E-L26) 4/7-4/13 7 9/14-9/18 5
幼果直径>2 mm至直径约7 mm期 Ⅲ (E-L27—E-L31) 4/14-5/10 27 9/19-10/10 22
浆果开始封穗至封穗期 Ⅳ (E-L32—E-L33) 5/11-5/25 15 10/11-10/30 20
浆果开始变软至变色期 Ⅴ (E-L34—E-L35) 5/26-6/27 33 10/31-12/10 41
浆果Brix°中等值至未完全成熟期 Ⅵ (E-L36—E-L37) 6/28-7/12 15 12/11-1/7 28
浆果成熟至过熟期 Ⅶ (E-L38—E-L39) 7/13-7/21 9 1/8-1/18 11
全生育期 Total (E-L4—E-L39) 3/5-7/21 139 8/23-1/18 149

Table 2

Linear equation of flavonol standard and flavanol standard"

x:峰面积;y:浓度(mg·kg-1 FW) x: Peak area; y: Concentration (mg·kg-1 FW)

代谢物Metabolite 回归方程Regression equation 相关系数Correlation coefficient (R2)
槲皮素-3-O-葡萄糖苷Quercetin-3-O-glucoside y=0.0119x+0.3877 0.9999
儿茶素Catechin y=0.0006x-2.3247 0.9966
表儿茶素Epicatechin y=1.00E-09x2+0.0003x+0.305 0.9998
没食子儿茶素Gallocatechin y=0.0001x+0.2875 0.9997
表没食子儿茶素Epigallocatechin y=0.0001x+0.2875 0.9997
表儿茶素没食子酸酯Epicatechin-3-O-gallate y=1E-10x2+0.0001x+1.4108 0.9979
表没食子儿茶素没食子酸酯Epigallocatechin gallate y=1E-11x2+6.00E-05x+1.9494 0.9981
原花青素B1 Procyanidin B1 y=0.0004x-1.9582 0.9969
原花青素B2 Procyanidin B2 y=0.0005x-1.3177 0.9992

Table 3

Meteorological factors at different phenological stages in summer and winter grape of Shine Muscat grape"

平均日照时数指每个物候期大于2 000 lx的光照时间;平均温度指每个物候期的日平均温度;有效积温=∑Ti(Ti≥10℃),Ti指的是日平均温度;水热系数=∑P/(∑Ti*0.1),∑P:降雨量,∑Ti:有效积温

Average sunshine duration is the sunshine duration greater than 2 000 lx per phenophase; Average temperature means the average temperature of each phenophase; Effective accumulated temperature calculated as T =∑Ti(Ti≥10℃), and Ti was average daily temperature; Hydrothermic coefficient calculated as K=∑P/(∑Ti×0.1), ∑P was total rainfall and ∑Ti was active accumulated temperature

物候期
Phenological period
季节
Season
平均日照时数Average sunshine hours (h) 平均温度
Average temperature (℃)
降雨量
Rainfall (mm)
有效积温
Accumulated temperature (℃)
水热系数K
Hydrothermal coefficient
Ⅰ (E-L4—E-L18 ) 夏果 Summer grape 10.73 23.15 71.00 757.20 0.94
冬果 Winter grape 11.58 28.34 102.20 637.03 1.60
Ⅱ (E-L19—E-L26) 夏果 Summer grape 11.13 24.16 3.50 168.40 0.21
冬果 Winter grape 11.22 25.94 52.20 145.57 3.59
Ⅲ (E-L27—E-L31) 夏果 Summer grape 11.64 27.27 93.80 697.60 1.34
冬果 Winter grape 11.21 23.55 7.00 593.91 0.12
Ⅳ (E-L32—E-L33) 夏果 Summer grape 12.15 30.31 40.80 453.80 0.90
冬果 Winter grape 10.14 23.32 141.20 457.97 3.08
Ⅴ (E-L34—E-L35) 夏果 Summer grape 12.13 30.34 154.80 981.70 1.58
冬果 Winter grape 9.51 17.13 84.60 869.57 0.97
Ⅵ (E-L36—E-L37) 夏果 Summer grape 12.65 30.51 35.00 473.80 0.74
冬果 Winter grape 9.02 15.46 34.60 379.06 0.91
Ⅶ (E-L38—E-L39) 夏果 Summer grape 11.96 29.28 39.40 275.60 1.43
冬果 Winter grape 8.65 14.22 4.60 144.87 0.32
Total (E-L4—E-L39) 夏果 Summer grape 11.70 27.67 438.30 3808.10 1.99
冬果 Winter grape 10.05 21.07 457.20 3227.99 1.45

Fig. 1

The maximum and minimum illuminances during the development of summer (A) and winter (B) grape of Shine Muscat grape"

Fig. 2

Changes in some physical and chemical characteristics during the berries development of summer and winter grape of Shine Muscat grape Different small letters indicate significant differences at P< 0.05 between different development stages of fruits in the same season; * indicates significant differences at P<0.05 between summer and winter grape in the same development stage. E-L31: Berries pea-size (7 mm diam.), E-L33: Berries still hard and green, E-L35: Berries Softening, E-L36: Berries with intermediate Brix° values, E-L38: Berries harvest-ripe. The same as below"

Table 1

Changes of flavonol components and content during the berries development of summer and winter grape of Shine Muscat grape (mg·kg-1)"

不同小写字母表示同一季果的不同发育期差异显著(P<0.05);*表示同一个发育期夏、冬果差异显著(P<0.05)。下同

Different small letters indicate significant differences at P<0.05 between different development stages of fruits in the same season; * indicates significant differences at P<0.05 between summer and winter fruits in the same development stage. The same as below

代谢物Metabolite 季节 Season E-L31 E-L33 E-L35 E-L36 E-L38
槲皮素-3-O-半乳糖苷
Quercetin-3-O-galactoside
夏果Summer grape
冬果Winter grape 0.37±0.01a* 0.2±0.01b*
槲皮素-3-O-葡萄糖苷
Quercetin-3-O-glucoside
夏果Summer grape 18.23±1.34a* 6.27±0.30b* 4.25±0.19c* 3.27±0.10c* 3.37±0.07c*
冬果Winter grape
山奈酚-3-O-半乳糖苷
Kaempferol-3-O-galactoside
夏果Summer grape 0.25±0.01a
冬果Winter grape 2.64±0.16a* 1.46±0.08b* 0.69±0.01c* 0.84±0.08c* 0.71±0.03c*
总量
Total content
夏果Summer grape 18.48±1.34a* 6.27±0.30b* 4.25±0.19c* 3.27±0.10c* 3.37±0.07c*
冬果Winter grape 3.01±0.18a 1.66±0.09b 0.69±0.01c 0.84±0.08c 0.71±0.03c

Table 5

Changes of flavanol components and content during the berries development of summer and winter grape of Shine Muscat grape (mg·kg-1)"

代谢物 Metabolite 季节 Season E-L31 E-L33 E-L35 E-L36 E-L38
儿茶素
Catechin
夏果 Summer grape 11.98±0.28a 11.79±0.28a 3.61±0.27b 2.02±0.17c 1.36±0.10d
冬果 Winter grape 29.13±0.83a* 19.15±0.23b* 11.99±0.17c* 5.99±0.80d* 5.02±0.25e*
表儿茶素
Epicatechin
夏果 Summer grape 0.38±0.02c 0.64±0.01b 0.73±0.02a 0.77±0.05a 0.74±0.02a
冬果 Winter grape 0.89±0.02b* 0.80±0.02b* 1.25±0.06a* 1.20±0.19a* 1.12±0.07a*
没食子儿茶素
Gallocatechin
夏果 Summer grape 0.28±0.01b 0.49±0.01a* 0.29±0.01b 0.22±0.01c 0.22±0.01c*
冬果 Winter grape 0.50±0.03a* 0.42±0.01b 0.29±0.01c 0.24±0.01d 0.19±0.01e
表没食子儿茶素
Epigallocatechin
夏果 Summer grape 0.18±0.01c 0.29±0.01a* 0.20±0.01b 0.18±0.01c 0.18±0.01c*
冬果 Winter grape 0.17±0.01b 0.17±0.01b 0.19±0.01a 0.17±0.01b 0.15±0.01c
表儿茶素没食子酸酯
Epicatechin-3-O-gallate
夏果 Summer grape 0.84±0.03a 0.66±0.01b 0.59±0.01c 0.60±0.01c 0.58±0.001c*
冬果 Winter grape 1.13±0.04a* 0.67±0.01b 0.65±0.01b* 0.66±0.01b* 0.57±0.001c
表没食子儿茶素没食子酸酯
Epigallocatechin gallate
夏果 Summer grape 0.93±0.02a 0.83±0.01b* 0.79±0.01d 0.81±0.01c 0.79±0.01d*
冬果 Winter grape 1.09±0.03a* 0.77±0.01d 0.83±0.02c* 0.87±0.01b* 0.76±0.01d
原花青素B1
Procyanidin B1
夏果 Summer grape 4.75±0.54a 4.16±0.12a 3.18±0.23b 2.64±0.25bc 2.26±0.17c
冬果 Winter grape 12.43±0.71a* 7.92±0.28b* 6.57±0.06c* 3.95±0.30d* 3.44±0.05d*
原花青素B2
Procyanidin B2
夏果 Summer grape 0.19±0.03c 0.36±0.03a 0.27±0.02b 0.28±0.01b* 0.27±0.03b*
冬果 Winter grape 0.28±0.04b* 0.39±0.03a 0.19±0.05c 0.01±0.02d 0.01±0.002d
总量
Total content
夏果 Summer grape 19.51±0.73a 19.23±0.38a 9.63±0.54b 7.52±0.48c 6.40±0.28d
冬果 Winter grape 45.6±1.54a* 30.29±0.35b* 21.96±0.30c* 13.09±1.82d 11.26±0.37e*

Fig. 3

Proportion of main components of flavanols during the berries development of summer and winter grape of Shine Muscat grape S: Summer grape, W: Winter grape. The same as below"

Fig. 4

Principal component analysis (PCA) score plot of flavonols (A) and flavanols (B) compounds in summer and winter grape of Shine Muscat grape 1, 2, 3 represent three biological replicates of each stage"

Table 6

The key different Flavonols and Flavanols compounds in summer and winter grape of Shine Muscat grape"

化合物
Compound
VIP值
VIP value
槲皮素-3-O-葡萄糖苷
Quercetin-3-O-glucoside
1.33
儿茶素 Catechin 1.83
原花青素B1
Procyanidin B1
1.32
[1] 刘美迎, 迟明, 张振文. 不同整形方式对‘赤霞珠’葡萄果皮非花色苷酚的影响. 食品科学, 2021, 42(3): 30-37.
LIU M Y, CHI M, ZHANG Z W. Analysis of non-anthocyanin phenolics in‘cabernet sauvignon’ (Vitis vinifera L.) under different training systems. Food Science, 2021, 42(3): 30-37. (in Chinese)
[2] BAYAT P, FARSHCHI M, YOUSEFIAN M, MAHMOUDI M, YAZDIAN-ROBATI R. Flavonoids, the compounds with anti- inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. International Immunopharmacology, 2021, 95: 107562. doi: 10.1016/j.intimp.2021.107562.
doi: 10.1016/j.intimp.2021.107562.
[3] 赵一凡, 彭文婷, 李惠清, 郭玉婷, 王军. 五个欧亚种酿酒葡萄果实类黄酮及香气物质差异分析. 中外葡萄与葡萄酒, 2021(6): 1-12.
ZHAO Y F, PENG W T, LI H Q, GUO Y T, WANG J. Difference analysis of flavonoids and aroma compounds of five Vitis vinifera wine grape varieties. Sino-Overseas Grapevine & Wine, 2021(6): 1-12. (in Chinese)
[4] 刘笑宏, 宋一超, 刘兆宇, 杜远鹏, 翟衡. 直立/水平两种叶幕对‘摩尔多瓦’葡萄次生代谢产物含量的影响. 果树学报, 2019, 36(3): 308-317.
LIU X H, SONG Y C, LIU Z Y, DU Y P, ZHAI H. Effect of vertical and horizontal canopy on the secondary metabolites in ‘Moldova’ grape. Journal of Fruit Science, 2019, 36(3): 308-317. (in Chinese)
[5] 李华. 葡萄栽培学. 北京: 中国农业出版社, 2008.
LI H. Viticulture. Beijing: Chinese Agriculture Press, 2008. (in Chinese)
[6] 潘照. 鲜食型葡萄品质评价体系及关键数据库建立[D]. 长沙: 中南林业科技大学, 2019.
PAN Z. Establishment of quality evaluation system and key database of table grape[D]. Changsha: Central South University of Forestry and Technology, 2019. (in Chinese)
[7] 胡粉青, 李翠柏, 党菱婧, 邹澄, 赵庆, 邵曰凤. 槲皮素体外抗肺癌作用研究进展. 食品工业科技, 2022, 43(18): 416-424.
HU F Q, LI C B, DANG L J, ZOU C, ZHAO Q, SHAO Y F. Research progress of anti-lung cancer effect of quercetin in vitro. Science and Technology of Food Industry, 2022, 43(18): 416-424. (in Chinese)
[8] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展. 中国农业科学, 2009, 42(8): 2899-2908.
XIA T, GAO L P. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908. (in Chinese)
[9] 刘鑫铭, 陈婷, 雷龑, 王建超, 蔡盛华. 葡萄一年两收栽培技术研究进展. 中外葡萄与葡萄酒, 2016(5): 131-134.
LIU X M, CHEN T, LEI Y, WANG J C, CAI S H. Research progress on one-year-double-harvest cultivation technology of grape. Sino-Overseas Grapevine & Wine, 2016(5): 131-134. (in Chinese)
[10] 王博, 白扬, 白先进, 张瑛, 谢太理, 刘金标, 陈爱军, 娄兵海, 何建军, 林玲, 周咏梅, 曹雄军. 阳光玫瑰葡萄在广西南宁的引种表现及其一年两收栽培技术. 南方农业学报, 2016, 47(6): 975-979.
WANG B, BAI Y, BAI X J, ZHANG Y, XIE T L, LIU J B, CHEN A J, LOU B H, HE J J, LIN L, ZHOU Y M, CAO X J. Introduction performance and double-harvest-a-year cultivation technique of‘Shine Muscat'grape in Nanning, Guangxi. Journal of Southern Agriculture, 2016, 47(6): 975-979. (in Chinese)
[11] AZUMA A, YAKUSHIJI H, KOSHITA Y, KOBAYASHI S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 2012, 236(4): 1067-1080. doi: 10.1007/s00425-012-1650-x.
doi: 10.1007/s00425-012-1650-x pmid: 22569920
[12] KOYAMA K, IKEDA H, POUDEL P R, GOTO-YAMAMOTO N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry, 2012, 78: 54-64. doi: 10.1016/j.phytochem.2012.02.026.
doi: 10.1016/j.phytochem.2012.02.026 pmid: 22455871
[13] SEBELA D, TUROCZY Z, OLEJNICKOVA J, KUMSTA M, SOTOLAR R. Effect of ambient sunlight intensity on the temporal phenolic profiles of Vitis vinifera L. Chardonnay during the ripening season-A field study. South African Journal of Enology and Viticulture, 2017, 38(1): 94-102.
[14] 方芳, 王凤忠. 植物黄酮醇生物合成关键基因研究进展. 食品工业科技, 2018, 39(14): 335-340.
FANG F, WANG F Z. Research progress on key genes of flavonol biosynthesis in plants. Science and Technology of Food Industry, 2018, 39(14): 335-340. (in Chinese)
[15] 成果, 张劲, 黄小云, 张瑛, 谢太理, 谢林君, 余欢, 周咏梅, 周思泓. 广西2个特色酿酒葡萄品种黄烷-3-醇组分解析. 西南农业学报, 2018, 31(9): 1891-1897.
CHENG G, ZHANG J, HUANG X Y, ZHANG Y, XIE T L, XIE L J, YU H, ZHOU Y M, ZHOU S H. Analysis of flavan-3-ol compositional characteristics of two wine grapes in Guangxi. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1891-1897. (in Chinese)
[16] FANG F, TANG K, HUANG W D. Changes of flavonol synthase and flavonol contents during grape berry development. European Food Research and Technology, 2013, 237(4): 529-540. doi: 10.1007/s00217-013-2020-z.
doi: 10.1007/s00217-013-2020-z.
[17] 白先进, 李杨瑞, 谢太理, 黄江流, 曹慕明, 梁声记. 广西一年两熟葡萄栽培的气候基础. 广西农学报, 2008(1): 1-4.
BAI X J, LI Y R, XIE T L, HUANG J L, CAO M M, LIANG S J. The climate elements for two-harvest-yearly grape cultivation in Guangxi. Journal of Guangxi Agriculture, 2008(1): 1-4. (in Chinese)
[18] 陆媚. 根域限制对一年两收栽培‘夏黑’葡萄果实发育过程中酚类和香气物质的影响研究[D]. 南宁: 广西大学, 2019.
LU M. Effects of root restriction on the composition of phenolic and aroma substances in Summer Black grape during berry development under two-crop-a-year cultivation[D]. Nanning: Guangxi University, 2019. (in Chinese)
[19] 陈为凯. 一年两收栽培模式下葡萄果实靶向代谢组和转录组研究[D]. 北京: 中国农业大学, 2018.
CHEN W K. Study of targeted metabolome and transcriptome in grape berries grown under double cropping viticulture system[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[20] COOMBE B G. Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1995, 1(2): 100-110.
doi: 10.1111/j.1755-0238.1995.tb00085.x
[21] 邓凤莹. 一年两收栽培‘阳光玫瑰’葡萄夏、冬果品质组分差异研究[D]. 南宁: 广西大学, 2020.
DENG F Y. Study on the difference of quality components in summer and winter fruits of ‘Shine Muscat’ in two-crop-a-year cultivation[D]. Nanning: Guangxi University, 2020. (in Chinese)
[22] 白先进, 王举兵, 陈爱军. 广西葡萄产业发展的思考. 广西农学报, 2010, 25(1): 29-32.
BAI X J, WANG J B, CHEN A J. Considerations on the grape industry development in Guangxi. Journal of Guangxi Agriculture, 2010, 25(1): 29-32. (in Chinese)
[23] CHOU M Y, LI K T. Rootstock and seasonal variations affect anthocyanin accumulation and quality traits of ‘Kyoho’ grape berries in subtropical double cropping system. Vitis, 2014, 53: 193-199.
[24] 成果, 张劲, 周思泓, 谢林君, 张瑛, 杨莹, 管敬喜, 谢太理. 一年两收栽培‘赤霞珠’葡萄冬果与夏果花色苷组分差异解析. 果树学报, 2017, 34(9): 1125-1133.
CHENG G, ZHANG J, ZHOU S H, XIE L J, ZHANG Y, YANG Y, GUAN J X, XIE T L. Difference in anthocyanin composition between winter and summer grape berries of ‘Cabernet Sauvignon’ under two-crop-a-year cultivation. Journal of Fruit Science, 2017, 34(9): 1125-1133. (in Chinese)
[25] 郭泽西, 尹玲, 卢江, 韦荣福, 曲俊杰, 盘丰平, 黄羽. 6个葡萄品种一年两收技术的研究. 中国南方果树, 2018, 47(1): 128-131, 135.
GUO Z X, YIN L, LU J, WEI R F, QU J J, PAN F P, HUANG Y. Study on the technology of two harvests a year for six grape varieties. South China Fruits, 2018, 47(1): 128-131, 135. (in Chinese)
[26] 陈彦蓓, 罗惠格, 陆媚, 农慧兰, 白扬, 林玲, 白先进, 曹雄军, 陈爱军, 王博. 一年两收栽培夏黑葡萄香气成分分析. 南方农业学报, 2021, 52(5): 1343-1352.
CHEN Y B, LUO H G, LU M, NONG H L, BAI Y, LIN L, BAI X J, CAO X J, CHEN A J, WANG B. Aroma components analysis of Summer Black grape under two-crops-a-year cultivation. Journal of Southern Agriculture, 2021, 52(5): 1343-1352. (in Chinese)
[27] NEUGART S, KLARING H P, ZIETZ M, SCHREINER M, ROHN S, KROH L W, KRUMBEIN A. The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (Brassica oleracea var. sabellica). Food Chemistry, 2012, 133(4): 1456-1465.
doi: 10.1016/j.foodchem.2012.02.034
[28] LIU L L, GREGAN S, WINEFIELD C, JORDAN B. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon Blanc grape berry. Plant, Cell & Environment, 2015, 38(5): 905-919. doi: 10.1111/pce.12349.
doi: 10.1111/pce.12349.
[29] DOWNEY M O, DOKOOZLIAN N K, KRSTIC M P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. American Journal of Enology and Viticulture, 2006, 57(3): 257-268.
doi: 10.5344/ajev.2006.57.3.257
[30] 方芳, 王凤忠. 葡萄果实黄酮醇生物合成影响因素研究进展. 核农学报, 2016, 30(9): 1798-1804.
doi: 10.11869/j.issn.100-8551.2016.09.1798
FANG F, WANG F Z. Research progress on factors affecting the biosynthesis of flavonols in grape fruit. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1798-1804. (in Chinese)
doi: 10.11869/j.issn.100-8551.2016.09.1798
[31] 曹运琳, 邢梦云, 徐昌杰, 李鲜. 植物黄酮醇生物合成及其调控研究进展. 园艺学报, 2018, 45(1): 177-192.
CAO Y L, XING M Y, XU C J, LI X. Biosynthesis of flavonol and its regulation in plants. Acta Horticulturae Sinica, 2018, 45(1): 177-192. (in Chinese)
[32] FLAMINI R, MATTIVI F, DE ROSSO M, ARAPITSAS P, BAVARESCO L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. International Journal of Molecular Sciences, 2013, 14(10): 19651-19669. doi: 10.3390/ijms141019651.
doi: 10.3390/ijms141019651 pmid: 24084717
[33] CORTELL J M, KENNEDY J A. Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) pinot noir fruit and extraction in a model system. Journal of Agricultural and Food Chemistry, 2006, 54 (22): 8510-8520.
doi: 10.1021/jf0616560
[34] SPAYD S E, TARARA J M, MEE D L, FERGUSON J C. Seperation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 2002, 53(3): 171182.
[35] DOWNEY M O, HARVRY J S, ROBINSON S P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Australian Journal of Grape and Wine Research, 2004, 10(1): 55-73.
doi: 10.1111/j.1755-0238.2004.tb00008.x
[36] BORDIGA M, TRAVAGLIA F, LOCATELLI M, COISSON J D, ARLORIO M. Characterisation of polymeric skin and seed proanthocyanidins during ripening in six Vitis vinifera L. Food Chemistry, 2011, 127(1): 180-187.
doi: 10.1016/j.foodchem.2010.12.141
[37] 李强. 中国东、 西部产区‘赤霞珠’葡萄类黄酮代谢差异以及叶幕调控对黄烷醇代谢的影响[D]. 北京: 中国农业大学, 2015.
LI Q. The differences of flavonoids metabolism in Cabernet ‘Sauvignon’ grapes from east and west China and the effect of canopy management on flavan-3-ol metabolism[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[38] 严静, 江雨, 樊秀彩, 姜建福, 张颖, 孙海生, 刘崇怀. 中国11种野生葡萄果皮中黄烷-3-醇类物质的组成及含量. 中国农业科学, 2017, 50(5): 890-905.
YAN J, JIANG Y, FAN X C, JIANG J F, ZHANG Y, SUN H S, LIU C H. Composition and concentration of flavan-3-ols in berry peel of 11 Chinese wild grape species. Scientia Agricultura Sinica, 2017, 50(5): 890-905. (in Chinese)
[39] BOGS J, DOWNEY M O, HARVEY J S, ASHTON A R, TANNER G J, ROBINSON S P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology, 2005, 139(2): 652-663. doi: 10.1104/pp.105.064238.
doi: 10.1104/pp.105.064238. pmid: 16169968
[40] POUDEL P R, KOYAMA K, GOTO-YAMAMOTO N. Evaluating the influence of temperature on proanthocyanidin biosynthesis in developing grape berries (Vitis vinifera L.). Molecular Biology Reports, 2020, 47(5): 3501-3510. doi: 10.1007/s11033-020-05440-4.
doi: 10.1007/s11033-020-05440-4.
[41] LIU M Y, SONG C Z, CHI M, WANG T M, ZUO L L, LI X L, ZHANG Z W, XI Z M. The effects of light and ethylene and their interaction on the regulation of proanthocyanidin and anthocyanin synthesis in the skins of Vitis vinifera berries. Plant Growth Regulation, 2016, 79(3): 377-390. doi: 10.1007/s10725-015-0141-z.
doi: 10.1007/s10725-015-0141-z.
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[5] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[6] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
[7] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[8] TAO YouFeng,PU ShiLin,ZHOU Wei,DENG Fei,ZHONG XiaoYuan,QIN Qin,REN WanJun. Canopy Population Quality Characteristics of Mechanical Transplanting Hybrid Indica Rice with “Reducing Hills and Stabilizing Basic-Seedlings” in Low-Light Region of Southwest China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4969-4983.
[9] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[10] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[11] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[12] DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758.
[13] KaiYuan GONG,Liang HE,DingRong WU,ChangHe LÜ,Jun LI,WenBin ZHOU,Jun DU,Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[14] HUANG QiuWan,LIU ZhiJuan,YANG XiaoGuang,BAI Fan,LIU Tao,ZHANG ZhenTao,SUN Shuang,ZHAO Jin. Analysis of Suitable Irrigation Schemes with High-Production and High-Efficiency for Spring Maize to Adapt to Climate Change in the West of Northeast China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4470-4484.
[15] GAO Song,LIU XueNa,LIU Ying,CAO BiLi,CHEN ZiJing,XU Kun. Response Characteristics of Green Onion (Allium fistulosum L.) to LED Light Quality Under Artificial Climate Chamber [J]. Scientia Agricultura Sinica, 2020, 53(14): 2919-2928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!