Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 1961-1969.doi: 10.3864/j.issn.0578-1752.2019.11.010

• HORTICULTURE • Previous Articles     Next Articles

The Relationship Between Anthocyanins and Flower Colors of Bud Mutation in Camellia japonica

LI XinLei,YIN HengFu,FAN ZhengQi,LI JiYuan   

  1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400
  • Received:2018-12-29 Accepted:2019-03-05 Online:2019-06-01 Published:2019-06-11

Abstract:

【Objective】 The object of this study was to determine the relationship between anthocyanins and flower colors of bud mutation in Camellia japonica, so as to provide the scientific basis for the bud mutation breeding of flower colors in C. japonica. 【Method】 Flower colors in C. japonica cultivars and their bud mutation cultivars were measured by CIE L*a*b* scale, and anthocyanin components and contents were measured by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) and ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-T OF-MS). The relationship between flower colors and anthocyanins was explored by multiple liner regression analyses. 【Result】 Seven anthocyanins were detected in C. japonica cultivars and their bud mutation cultivars, which were cyanidin-3-O-β-galactoside (Cy3Ga),cyanidin-3-O-β-glucoside (Cy3G),cyanidin-3-O-(6-O-(E)-caffeoyl)-β-galactoside (Cy3GaECaf), cyanidin-3-O-(6-O-(E)- caffeoyl)-β-glucoside (Cy3GECaf), cyanidin-3-O-(6-O-(Z)-p-coumaroyl)-β-glucoside (Cy3GZpC), cyanidin-3-O-(6-O-(E)-p- coumaroyl)-β-galactoside (Cy3GaEpC) and cyanidin-3-O-(6-O-(E)-p-coumaroyl)-β-glucoside (Cy3GEpC). Among the bud mutation cultivars of C. japonica, anthocyanins were not detected in white petals, and anthocyanins in red petals were identical with that in pink petals, but the contents of anthocyanin components and total anthocyanin in red petals were far higher than that in pink petals. The main anthocyanin components were Cy3G and Cy3GEpC in red and pink petals. The proportion of Cy3G and Cy3Ga in red petals were larger than that in pink petals, while the proportion of else anthocyanins, such as Cy3GEpC, were smaller than that in pink petals.【Conclusion】 Among the bud mutation cultivars of C. japonica, the greater the contents of various anthocyanin components and total anthocyanin were, the deeper the red of petal were. Cy3G, Cy3Ga and Cy3GEpC were the main anthocyanins which determined the flower colors of bud mutation in C. japonica, and the accumulation of their contents enhanced the red color of petals.

Key words: Camellia japonica, bud mutation, flower color, anthocyanin, content, proportion

Table 1

The data of flower colors in C. japonica cultivars"

品种
Cultivars
CIE L*a*b*表色系统 CIE L*a*b*coordinate
花色 Flower color L* a* b* C* h
白宝珠Baibaozhu 白色 White 93.09±1.23 -0.70±0.02 1.65±0.38 1.80 ±0.25 92.72±2.01
白芙蓉Baifurong 白色 White 89.10±2.01 -0.51±0.01 3.21±0.83 3.27±0.35 101.21±1.09
白嫦娥彩Baichangecai 白色 White 88.21±1.57 -0.93±0.12 4.77±0.47 4.86±1.21 101.19±1.37
白五宝Baiwubao 白色 White 90.13±1.46 -0.71±0.05 3.21±0.53 3.31±0.23 105.04±3.11
白碧玉Baibiyu 白色 White 87.57±1.82 -0.59±0.05 6.53±1.18 6.57±0.51 95.22± 2.25
白七仙女Baiqixiannv 白色 White 88.65± 3.12 -0.68±0.06 4.46±0.45 4.64±0.29 98.19±1.85
平均 Average 89.46 -0.69 3.97 4.07 98.93
粉宝珠Fenbaozhu 粉色Pink 65.90±1.23 39.90±0.86 2.93±0.25 40.03±1.38 4.11±1.22
粉芙蓉Fenfurong 粉色Pink 69.75±0.95 36.95±1.56 9.87±1.08 37.00± 1.26 6.82±2.05
粉嫦娥彩Fenchangecai 粉色Pink 67.62±1.26 41.71±1.87 9.94±0.74 33.81±2.18 3.72± 0.96
粉五宝Fenwubao 粉色Pink 83.87±1.85 31.73±1.35 8.62±0.69 37.23± 1.56 7.68±1.63
粉碧玉Fenbiyu 粉色Pink 71.06±1.63 35.57±1.65 2.43±0.15 35.56± 1.29 3.90±0.28
粉七仙女Fenqixiannv 粉色Pink 76.77±2.14 32.19±1.34 7.17±0.42 26.89± 1.18 6.37±1.45
平均 Average 72.49 36.34 6.83 35.09 5.43
红宝珠Hongbaozhu 红色 Red 54.08±2.15 55.91±2.24 20.22±1.65 57.07±2.31 21.24±1.92
红芙蓉Hongfurong 红色 Red 54.99±1.43 52.70±1.78 18.48±2.46 53.39±1.54 19.14±2.26
红嫦娥彩Hongchangecai 红色 Red 50.62±1.28 48.71±1.53 21.94±1.09 53.81±1.66 23.72±1.88
红五宝Hongwubao 红色 Red 56.00±3.26 50.54±1.64 15.50± 1.16 50.85±1.25 16.16±1.25
红碧玉Hongbiyu 红色 Red 62.18±1.27 55.44±2.13 13.85±0.87 45.61±1.29 14.80±1.36
红七仙女Hongqixiannv 红色 Red 62.33±1.88 49.35±1.39 18.66±1.91 49.42±1.16 16.76±1.11
平均 Average 56.70 52.11 18.11 51.69 18.64

Fig. 1

HPLC chromatogram of anthocyanin components in C. japonica cultivars"

Table 2

Chromatographic and spectral data of anthocyanin components in C. japonica cultivars"

色谱峰
No.Peaks
保留时间
Retention time (min)
吸收波长
λmax (nm)
A440/Avis-max
(%)
分子离子
Molecular ions (m/z)
碎片离子
Fragment ions (m/z)
推定结果
Tentative identification
P1 8.33 281, 516 31 449 287 Cy3Ga
P2 9.43 282, 517 32 449 287 Cy3G
P3 21.22 283, 315, 516 33 611 449, 287 Cy3GaECaf
P4 24.75 283, 316, 515 33 611 449, 287 Cy3GECaf
P5 25.54 282, 311, 514 32 595 449, 287 Gy3GZpC
P6 25.95 284, 312, 516 32 595 449, 287 Cy3GaEpC
P7 29.74 285, 312, 513 32 595 449, 287 Cy3GEpC

Table 3

Contents of anthocyanin components in C. japonica cultivars"

品种
Cultivars
花青苷 Anthocyanin (μg·100 mg-1)
Cy3Ga Cy3G Cy3GaECaf Cy3GECaf Gy3GZpC Cy3GaEpC Cy3GEpC 合计 Total
白宝珠Baibaozhu - - - - - - - -
粉宝珠Fenbaozhu 1.23±0.13 8.91±0.47 0.25±0.12 0.16±0.00 0.59±0.04 0.98±0.42 5.12±0.23 17.24
红宝珠Hongbaozhu 7.42±0.35 62.32±0.83 1.12±0.03 0.65±0.01 1.44±0.00 5.14±0.16 13.58±0.26 91.67
白芙蓉Baifurong - - - - - - - -
粉芙蓉Fenfurong 1.30±0.04 9.16±0.35 0.34±0.00 0.28±0.00 0.91±0.17 0.68±0.01 3.37±0.11 16.04
红芙蓉Hongfurong 5.89±0.33 45.91±0.78 0.77±0.02 0.45±0.06 2.04±0.05 2.54±0.15 9.86±0.67 67.46
白嫦娥彩Baichangecai - - - - - - - -
粉嫦娥彩Fenchangecai 1.12±0.02 3.12±0.05 - - 0.76±0.00 0.56±0.01 2.82±0.51 8.38
红嫦娥彩Hongchangecai 5.71±0.05 18.72±0.45 - - 1.91±0.12 2.42±0.08 8.19±0.71 36.95
白五宝Baiwubao - - - - - - - -
粉五宝Fenwubao 0.11±0.00 5.25±0.19 - 0.18±0.00 2.27±0.15 0.64±0.07 15.75±0.43 24.2
红五宝Hongwubao 0.42±0.05 14.52±0.35 - 0.56±0.07 4.16±0.32 1.08±0.01 27.42±0.37 48.16
白碧玉Baibiyu - - - - - - - -
粉碧玉Fenbiyu 0.12±0.00 2.07±0.05 - - 0.83±0.01 0.23±0.00 2.21±0.28 5.46
红碧玉Hongbiyu 0.71±0.06 7.86±0.33 - - 2.08±0.05 0.82±0.17 8.56±0.45 20.03
白七仙女Baiqixiannv - - - - - - - -
粉七仙女Fenqixiannv 0.16±0.00 2.23±0.18 - - 0.51±0.13 0.25±0.01 2.71±0.23 5.86
红七仙女Hongqixiannv 0.44±0.01 4.74±0.18 - - 0.63±0.00 0.39±0.01 5.16±0.16 11.36

Table 4

Proportions of anthocyanin components in C. japonica cultivars"

品种
Cultivars
花青苷 Anthocyanin (%)
Cy3Ga Cy3G Cy3GaECaf Cy3GECaf Gy3GZpC Cy3GaEpC Cy3GEpC 合计 Total
白宝珠Baibaozhu - - - - - - - -
粉宝珠Fenbaozhu 7.13 51.68 1.45 0.93 3.42 5.68 29.70 100.00
红宝珠Hongbaozhu 8.09 67.98 1.22 0.71 1.57 5.61 14.81 100.00
白芙蓉Baifurong - - - - - - - -
粉芙蓉Fenfurong 8.10 57.11 2.12 1.75 5.67 4.24 21.01 100.00
红芙蓉Hongfurong 8.73 68.06 1.14 0.67 3.02 3.77 14.62 100.00
白嫦娥彩Baichangecai - - - - - - - -
粉嫦娥彩Fenchangecai 13.37 37.23 0.00 0.00 9.07 6.68 33.65 100.00
红嫦娥彩Hongchangecai 15.45 50.66 0.00 0.00 5.17 6.55 22.17 100.00
白五宝Baiwubao - - - - - - - -
粉五宝Fenwubao 0.45 21.69 0.00 0.74 9.38 2.64 65.08 100.00
红五宝Hongwubao 0.87 30.15 0.00 1.16 8.64 2.24 56.94 100.00
白碧玉Baibiyu - - - - - - - -
粉碧玉Fenbiyu 2.20 37.91 0.00 0.00 15.20 4.21 40.48 100.00
红碧玉Hongbiyu 3.54 39.24 0.00 0.00 10.38 4.09 42.74 100.00
白七仙女Baiqixiannv - - - - - - - -
粉七仙女Fenqixiannv 2.73 38.05 0.00 0.00 8.70 4.27 46.25 100.00
红七仙女Hongqixiannv 3.87 41.73 0.00 0.00 5.55 3.43 45.42 100.00
[1] 高继银, 苏玉华, 胡羡聪 . 国内外茶花名种识别与欣赏. 杭州: 浙江科学技术出版社, 2007.
GAO J Y, SU Y H, HU X C. The Identification and Appreciation of the World’s Outstanding Camellias. Hangzhou: Zhejiang Science and Technology Press, 2007. (in Chinese)
[2] 管开云, 李纪元, 王仲朗 . 中国茶花图鉴. 杭州: 浙江科学技术出版社, 2014.
GUAN K Y, LI J Y, WANG Z L. Camellias of China. Hangzhou: Zhejiang Science and Technology Press, 2014. (in Chinese)
[3] TANAKA Y, TSUDA S, KUSUMI T . Metabolic engineering to modify flower color. Plant Cell Physiology, 1998,39(11):1119-1126.
doi: 10.1093/oxfordjournals.pcp.a029312
[4] HE D Y, LI X Y, XUAN S, WANG L L, LI S Y, XU Y P . Camellia nitidissim a, C.W. Chi: A review of botany, chemistry and pharmacology. Phytochemistry Reviews, 2018,17(2):327-349.
doi: 10.1007/s11101-017-9537-x
[5] HAYASHI K, ABE Y . Studien über anthocyane, XXIII. Papier- chromatographische übersicht der anthocyane im pfanzenreich I. Miscellaneous Reports of the Research Institute for Natural Resources, 1953,29:1-8.
[6] SAKATA Y, ARISUMI K . Cyanidin-3-galactoside, a new anthocyanin from Camellia japonica ssp. rusticana (Honda) Kitamura and its occurrence in the garden forms of Camellia of Japanese origin. Journal of the Japanese Society for Horticultural Science, 1986,55(1):82-88.
doi: 10.2503/jjshs.55.82
[7] SAITO N, YOKOI M, YAMAJI M, HONDA T . Cyanidin-3-p- coumaroylglucoside in Camellia species and cultivars. Phytochemistry, 1987,26(10):2761-2762.
[8] LI J B, HASHIMOTO F, SHIMIZU K, SAKATA Y . Anthocyanins from red flowers of Camellia reticulata L. Bioscience Biotechnology and Biochemistry, 2007,71(11):2833-2836.
doi: 10.1271/bbb.70124
[9] LI J B, HASHIMOTO F, SHIMIZU K, SAKATA Y . Anthocyanins from red flowers of Camellia cultivar‘Dalicha’. Phytochemistry, 2008,69(18):3166-3171.
doi: 10.1016/j.phytochem.2008.03.014
[10] LI J B, HASHIMOTO F, SHIMIZU K, SAKATA Y . Anthocyanins from the red flowers of Camellia saluenensis Stapf ex Bean. Journal of the Japanese Society for Horticultural Science, 2008,77(1):75-79.
doi: 10.2503/jjshs1.77.75
[11] LI J B, HASHIMOTO F, SHIMIZU K, SAKATA Y . A new acylated anthocyan in form the red flowers of Camellia hongkongensis and characterization of anthocyanins in the Section Camellia species. Journal of Plant Ecology, 2009,51(6):545-552.
[12] UDDIN A F M, HASHIMOTO F, MIWA T, OHBO K, SAKATA Y . Seasonal variation in pigmentation and anthocyanidin phenetics in commercial Eustoma flowers. Scientia Horticulturae, 2004,100(1):103-115.
doi: 10.1016/j.scienta.2003.07.002
[13] BYAMUKAMA R, JORDHEIM M, KIREMIRE B, NAMUKOBE J, ANDERSEN Q M . Anthocyanins from flowers of Hippeastrum cultivars. Scientia Horticulturae, 2006,109(3):262-266.
doi: 10.1016/j.scienta.2006.05.007
[14] HASHIMOTO F, TANAKA M, MAEDA H, FUKUDA S, SHIMIZU K, SAKATA Y . Changes in flower coloration and sepal anthocyanins of cyanic Delphinium cultivars during flowering. Bioscience Biotechnology and Biochemistry, 2002,66(8):1652-1659.
doi: 10.1271/bbb.66.1652
[15] WANG L S, HASHIMOTO F, SHIRAISHI A, AOKI N, LI J J, SAKATA Y . Chemical taxonomy in Xibei tree peony from China by floral pigmentation. Journal of Plant Research, 2004,117(1):47-55.
doi: 10.1007/s10265-003-0130-6
[16] WANG L S, SHIRAISHI A, HASHIMOTO F, AOKI N, SHIMIZU K, SAKATA Y . Analysis of petal anthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) tree peony cultivars. Journal of Plant Research, 2001,114(1113):33-43.
doi: 10.1007/PL00013966
[17] 钟培星, 王亮生, 李珊珊, 徐彦军, 朱满兰 . 芍药开花过程中花色和色素的变化. 园艺学报, 2012,39(11):2271-2282.
ZHONG P X, WANG L S, LI S S, XU Y J, ZHU M L . The Changes of floral color and pigments pomposition during the flowering period in Paeonia lactiflora Pallas. Acta Horticulturae Sinica, 2012,39(11):2271-2282. (in Chinese)
[18] LOPES-DA-SILVA F, ESCRIBANO-BAILON T, PEREZ-ALONSO J J, SANTOS-BUELGA C . Anthocyanin pigments in strawberry. LWT-Food Science and Technology, 2007,40(2):374-382.
doi: 10.1016/j.lwt.2005.09.018
[19] OH Y S, LEE J H, YOON S H, OH C H, CHOI D S, CHOE E, JUNG M Y . Characterization and quantification of anthocyanins in grape juices obtained from the grapes cultivated in Korea. Journal of Food Science, 2008,73(5):378-389.
[20] 张洁, 王亮生, 高锦明, 李圣波, 徐彦军, 李崇晖, 杨瑞珍 . 贴梗海棠花青苷组成及其与花色的关系. 园艺学报, 2011,38(3):527-534.
ZHANG J, WANG L S, GAO J M, LI S B, XU Y J, LI C H, YANG R Z . Identification of anthocyanins involving in petal coloration in Chaenomeles speciosa cultivars. Acta Horticulturae Sinica, 2011,38(3):527-534. (in Chinese)
[21] WU X L, PRIOR R L . Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. Journal of Agricultural and Food Chemistry, 2005,53(7):2589-2599.
doi: 10.1021/jf048068b
[22] HARBORNE J B . Spectral methods of characterizing anthocyanins. Biochemical Journal, 1958,70(1):22-28.
doi: 10.1042/bj0700022
[23] FOSSEN T, ANDERSEN M . Cyanidin-3-O-(6’-succinyl-glucopyranoside) and other anthoyanins from Phragmites australis. Phytochemistry, 1998,49(1):1065-1068.
doi: 10.1016/S0031-9422(98)00064-8
[24] 张洁, 李崇晖, 王亮生, 陈峰 . 植物花青苷液质联用方法的分析鉴定. 食品安全质量检测学报, 2013,4(3):760-768.
ZHANG J, LI C H, WANG L S, CHEN F . Golden rules of separation and characterization of plant anthocyanins by high pressure liquid chromatography-tandem mass spectrometry. Journal of Food Safety and Quality, 2013,4(3):760-768. (in Chinese)
[25] DOWNEY M O, ROCHFORT S . Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin. Journal of Chromatography A, 2008,1201(1):43-47.
doi: 10.1016/j.chroma.2008.06.002 pmid: 18573501
[26] ZHANG J, WANG L S, GAO J M, XU Y J, LI L F, LI C H . Rapid separation and identification of anthocyanins from flowers of Viola yedoensis and V.prionantha by high-performance liquid chromatography- photodiode array detection-electrospray ionisation mass spectrometry. Phytochemical Analysis, 2012,23(1):16-22.
doi: 10.1002/pca.v23.1
[27] LIN J N, LIN H Y, YANG N S, LI Y H, LEE M R, CHUANG C H, HO C T, KUO S C, WAY T D . Chemical constituents and anticancer activity of yellow camellias against MDA-MB-231 human breast cancer cells. Journal of Agricultural and Food Chemistry, 2013,61(40):9638-9644.
doi: 10.1021/jf4029877 pmid: 24001127
[28] SONG L X, WANG X S, ZHENG X Q, HUANG D J . Polyphenolic antioxidant profiles of yellow Camellia. Food Chemistry, 2011,129(2):351-357.
doi: 10.1016/j.foodchem.2011.04.083
[29] HE D Y, WANG X T, ZHANG P, LUO X X, LI X Y, WANG L L, LI S Y, XU Y P . Evaluation of the anxiolytic and antidepressant activities of the aqueous extract from Camellia euphlebia Merr. ex Sealy in mice. Evidence-Based Complementray and Alternative Medicine, 2015,11:1-8.
[30] SAKATA Y, ARISUMI K . Constitution of anthocyanins in flowers of the wild forrns of section Camelllia of Japanese and forrnosan origin. Journal of the Japanese Society for Horticultural Science, 1987,56(2):208-214.
doi: 10.2503/jjshs.56.208
[31] SAKATA Y, ARISUMI K . Anthocyanins in Camellia polyodonta, C. semiserrata and C. chekiangoleosa, and their phylogenic positions in section Camellia. Journal of the Japanese Society for Horticultural Science, 1992,61(2):375-381.
doi: 10.2503/jjshs.61.375
[32] 孙卫, 李崇晖, 王亮生, 戴思兰 . 菊花不同花色品种中花青素苷代谢分析. 植物学报, 2010,45(3):327-336.
doi: 10.3969/j.issn.1674-3466.2010.03.004
SUN W, LI C H, WANG L S, DAI S L . Analysis of athocyanins and flavones in different-colored flowers of chrysanthemum. Chinese Bulletin of Botany, 2010,45(3):327-336. (in Chinese)
doi: 10.3969/j.issn.1674-3466.2010.03.004
[33] MIKANAGI Y, SAITO N, YOKOI M, TATSUZAWA F . Anthocyanins in flowers of genusRosa, sections Cinnamomeae(= Rosa), Chinenses, Gallicanae and some modern garden roses. Biochemical Systematics and Ecology, 2000,28(9):887-902.
doi: 10.1016/S0305-1978(99)00127-1
[34] PENG X, YU D Y, FENG B M, WANG Y Q, SHI L Y . A new acylated flavonoid glycoside from the flowers of Camellia nitidissima and its effect on the induction of apoptosis in human lymphoma U937 cells. Journal of Asian Natural Products Research, 2012,14(8):799-804.
doi: 10.1080/10286020.2012.691475
[35] ZHANG Y L, YIN C P, KONG L C, JIANG D H . Extraction optimisation, purification and major antioxidant component of red pigments extracted from Camellia japonica. Food Chemistry, 2011,129(6):660-664.
doi: 10.1016/j.foodchem.2011.05.001
[36] QI J, SHI R F, YU J M, LI Y, YUAN S T, YANG J Z, HU J M, JIA A Q . Chemical constituents from leaves of Camellia nitidissima and their potential cytotoxicity on SGC7901 cells. Chinese Herbal Medicines, 2016,8(1):80-84.
doi: 10.1016/S1674-6384(16)60012-6
[37] SANGWAN N S, SHANKER S, SANGWAN R S, KUMAR S . Plant-derived products as antimutagens. Phytotherapy Research, 2015,12(6):389-399.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[3] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[6] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[7] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[8] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[9] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[10] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[11] ZHOU Jun,LIN Qing,SHAO BaoQuan,REN DuanYang,LI JiaQi,ZHANG Zhe,ZHANG Hao. Evaluating the Application Effect of Single-Step Genomic Selection in Pig Populations [J]. Scientia Agricultura Sinica, 2022, 55(15): 3042-3049.
[12] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[13] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[14] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[15] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!