Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 3997-4010.doi: 10.3864/j.issn.0578-1752.2022.20.011

• HORTICULTURE • Previous Articles     Next Articles

Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color

SUN BaoJuan1(),WANG Rui2,SUN GuangWen2,WANG YiKui3,LI Tao1,GONG Chao1,HENG Zhou1,YOU Qian1,LI ZhiLiang1()   

  1. 1Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640
    2College of Horticulture, South China Agricultural University, Guangzhou 510642
    3Institute of Vegetable, Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2022-01-20 Accepted:2022-06-06 Online:2022-10-16 Published:2022-10-24
  • Contact: ZhiLiang LI E-mail:sunbaojuan@hotmail.com;vri_li@163.com

Abstract:

【Objective】Peel color is closely related to the appearance and value of eggplant. Anthocyanin is one of the natural pigments that determines an eggplant’s peel color. Through the comparison of gene expression and metabolites as well as the analysis on the mechanism of epistatic gene interaction and regulation of anthocyanin synthesis in eggplant peel, this paper provided a theoretical basis for eggplant breeding with different peel colors.【Method】The white-peel female parent 19141 with mutation at the structural gene ANS of anthocyanin biosynthesis pathway, white-peel male parent 19147 with mutation at regulatory gene MYB1 of anthocyanin biosynthesis pathway, and their F1 hybrid E3316 with reddish-purple-peel were used as test materials, while transcriptome sequencing and wide-targeted metabolome analysis were performed on peels of commercial eggplant.【Result】The transcriptome sequencing analysis showed that: 19141_vs_19147 had the most differentially expressed genes (DEGs), followed by E3316_vs_19141. The two comparison groups both had the significant enrichment of DEGs in the flavonoid pathway. The DEGs of E3316_vs_19147 were the least and were not enriched in the flavonoid pathway. A total of 218 metabolites were detected by wide-targeted metabolome analysis. A total of 113 differential accumulated metabolites (DAMs) were detected in E3316_vs_19141, and total 98 DAMs were detected in E3316_vs_19147. The combined analysis of transcriptome and metabolome found that the relative expression levels of key structural genes CHS, CHI, F3H, DFR and ANS, key regulatory genes MYB1, AN1 and AN11, modifier genes 3GT, 5GT, AT and OMT, and transporter gene AN9 (GST) involving anthocyanin biosynthesis pathway had the relation of 19141>E3316>19147. The contents of anthocyanin metabolite cyanidin (CAS: 528-58-5) and cyanin (CAS: 20905-74-2) related to peel coloration had the relation of E3316>19147>19141. The combined analysis of transcriptome and metabolome both showed that the difference of E3316_vs_19141 was bigger than E3316_vs_19147. Under the regulation of epistatic genes, F3'H and F3'5'H genes were expressed simultaneously in eggplant peel, but the expression level of F3'H was much higher than that of F3'5'H. The anthocyanin content of E3316 was higher than that of its parents, while the chlorogenic acid content was lower than that of its parents. 【Conclusion】Under the interaction of epistatic genes with controlling the peel color, the locus (type) and mutation mode of mutant gene in parent determined the trend of gene expression in the whole anthocyanin metabolism pathway and the inhibition mode of peel pigmentation. The reddish-purple-peel F1 hybrid of two white-peel parents was the result of the function complementation of two mutated gene involved in anthocyanin biosynthesis pathway. The highly expressed F3'H was the main cause for synthesis of cyanidin, and the relationship between anthocyanin and chlorogenic acid biosynthesis was competitive in peels.

Key words: eggplant, peel color, epistatic genes, anthocyanins, transcriptome, metabolome

Fig. 1

Fruit picture of eggplants used in this study"

Fig. 2

DEGs statistics of different comparison groups"

Fig. 3

Dot map for KEGG pathway enrichment of DEGs in different comparison groups"

Table 1

DEGs enrichment of flavonoid biosynthesis pathway in different comparison groups"

基因ID
Gene ID
基因注释
Gene annotation
E3316_vs_19141
log2倍数变化
Log2 fold change
19141_vs_19147
log2倍数变化
log2 fold change
EGP22200 查尔酮异构酶基因 Chalcone isomerase 1 (CHI1) -3.00 6.94
EGP24232 查尔酮异构酶基因 Chalcone isomerase 3 (CHI3) -2.13 3.59
EGP30923 黄烷酮3-羟化酶基因 Flavanone 3-hydroxylase (F3H) -2.49 2.85
EGP10290 黄酮3′-羟化酶基因 Flavonoid 3′-hydroxylase (F3'H) _ 1.15
EGP32037 黄酮3′,5′-羟化酶基因 Flavonoid 3′5′-hydroxylase (F35H) -4.50 9.32
EGP31017 二氢黄酮醇4-还原酶 Dihydroflavonol 4-reductase (DFR) -1.53 6.93
EGP18904 花青素合成酶基因 Anthocyanidin synthase (ANS) -1.96 7.43
EGP16482 花青素O-甲基转移酶基因 Anthocyanin, O-methyltransferase (OMT) -4.35 8.26
EGP06309 花青素O-甲基转移酶基因 Anthocyanin, O-methyltransferase (OMT) _ -1.91
EGP24021 反式肉桂酸4-单加氧酶基因 cinnamate-4-hydroxylase (C4H) _ 3.31
EGP05102 羟基肉桂酰转移酶基因 Shikimate/quinate hydroxycinnamoyl transferase (HCT) -4.33 2.33
EGP30738 羟基肉桂酰转移酶基因 Shikimate/quinate hydroxycinnamoyl transferase (HCT) -1.24 1.74
EGP01163 羟基肉桂酰转移酶基因 Shikimate/quinate hydroxycinnamoyl transferase (HCT) -1.75 _
EGP02613 羟基肉桂酰辅酶A奎尼羟基肉桂转移酶 Hydroxycinnamoyl coenzyme A-quinate transferase (HQT) -0.98 _
EGP13381 反式肉桂酸4-单加氧酶基因 cinnamate-4-hydroxylase (C4H) 2.20 -1.93
EGP07013 羟基肉桂酰转移酶基因 Shikimate/quinate hydroxycinnamoyl transferase (HCT) 1.59 -0.91
EGP32043 羟基肉桂酰转移酶基因 Shikimate/quinate hydroxycinnamoyl transferase (HCT) 6.12 -7.32
EGP10080 羟基肉桂酰转移酶基因 Shikimate/quinate hydroxycinnamoyl transferase (HCT) 1.16 _

Fig. 4

PCA score of metabolites in eggplant peel of 19141, 19147 and E3316"

Fig. 5

Dot diagram for KEGG pathway enrichment of differential metabolites"

Fig. 6

Heatmap of DAMs in eggplant peel of 19141, 19147 and E3316 The metabolite in the red box was E3116, which was up-regulated compared with the parent; the metabolite in the green box was E3316, which was down regulated compared with the parent"

Fig. 7

Transcriptome and metabolome integrated analysis of peel anthocyanin synthesis controlled by epistatic genes A: The pathway of anthocyanin biosynthesis; B: The heatmap based on FPKM value of genes related to anthocyanin biosynthesis pathway; C: The structure and relative content of metabolites related to anthocyanin biosynthesis detected by wide-target metabolome analysis"

[1] MIKO B I, WRITE P D, RIGHT S, EDUCATION N. Epistasis: Gene interaction and phenotype effects. Nature Education, 2011, 6(2008): 1-6.
[2] TIGCHELAAR E C, JANICK J, ERICHSON H T. The genetics of anthocyanin coloration in eggplant (Solanum melongena L.). Genetics, 1968, 60: 475-491. doi: 10.1093/genetics/60.3.475.
doi: 10.1093/genetics/60.3.475
[3] NUNOME T, ISHIGURO K, YOSHIDA T, HIRAI M. Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers. Breeding Science, 2011, 51: 19-26. doi: 10.1270/jsbbs.51.19.
doi: 10.1270/jsbbs.51.19
[4] DOGANLAR S, FRARY A, DAUNAY M C, LESTER R N, TANKSLEY S D. Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics, 2002, 161(4): 1713-1726. doi: 10.1093/genetics/161.4.1713.
doi: 10.1093/genetics/161.4.1713 pmid: 12196413
[5] 庞文龙, 刘富中, 陈钰辉, 连勇. 茄子果色性状的遗传研究. 园艺学报, 2008, 35(7): 979-986.
PANG W L, LIU F Z, CHEN Y H, LIAN Y. Genetic study on fruit color traits of eggplant. Acta Horticulturae Sinica, 2008, 35(7): 979-986. (in Chinese)
[6] LIAO Y, SUN B J, SUN G W, LIU H C, LI Z L, LI Z X, WANG G P, CHEN R Y. AFLP and SCAR markers associated with peel color in eggplant (Solanum melongena L.). Scientia Agricultura Sinica, 2009, 8(12): 1466-1474.
[7] HOLTON T A, CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 1995, 7(7): 1071-1083. doi: 10.1105/tpc.7.7.1071.
doi: 10.1105/tpc. 7.7.1071 pmid: 12242398
[8] 宫硖, 薛静, 张晓东. 植物花青素合成途径中的调控基因研究进展. 生物技术进展, 2011, 1(6): 381-390.
GONG X, XUE J, ZHANG X D. Regulation genes in plant anthocyanin synthesis pathway. Current Biotechnology, 2011, 1(6): 381-390. (in Chinese)
[9] ALBERT N W, DAVIES K M, LEWIS D H, ZHANG H B, MONTEFIORI M, BRENDOLISE C, BOASE M R, NGO H, JAMESON P E, SCHWINN K E. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell, 2014, 26(3): 962-980. doi: 10.1105/tpc.113.122069.
doi: 10.1105/tpc.113.122069 pmid: 24642943
[10] 李翔, 刘杨, 李怀志, 王中彦, 陈火英. 茄花青素5-O糖基转移酶基因克隆与表达特征分析. 上海交通大学学报(农业科学版), 2011, 29(6): 1-5, 23.
LI X, LIU Y, LI H Z, WANG Z Y, CHEN H Y. Cloning and expression characterization of the anthocyanin 5-O glucosyltransferase in eggplant. Journal of Shanghai Jiao Tong University (Agricultural Science), 2011, 29(6): 1-5, 23. (in Chinese)
[11] WANG S J, CHEN Z, JI T, DI Q H, LI L J, WANG X F, WEI M, SHI Q H, LI Y, GONG B, YANG F J. Genome-wide identification and characterization of the R2R3MYB transcription factor superfamily in eggplant (Solanum melongena L.). Agri Gene, 2016, 2: 38-52. doi: 10.1016/j.aggene.2016.09.006
doi: 10.1016/j.aggene.2016.09.006
[12] STOMMEL J R, DUMM J M. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit. Journal of the American Society for Horticultural Science, 2015, 140(2): 129-135.
doi: 10.21273/JASHS.140.2.129
[13] SAKAMURA S, WATANABE S, OBATA Y. The structure of the major anthoeyanin in eggplant. Agricultural and Biological Chemistry, 1963, 27(9): 663-665. doi: 10.1080/00021369.1963.10858161.
doi: 10.1080/00021369.1963.10858161
[14] 孙保娟, 李植良, 黎振兴, 罗少波, 徐晓美. 茄子果色上位性基因D的定位及其InDel分子标记开发与应用. 中国, ZL2016 1 1128459.5. 2018-03-02.
SUN B J, LI Z L, LI Z X, LUO S B, XU X M. Mapping of eggplant fruit color epistatic gene D, and InDel molecular marker development and application. China, ZL2016 1 1128459.5. 2018-03-02. (in Chinese)
[15] 孙保娟, 李植良, 黎振兴, 罗少波, 吴俊. 与茄子果色上位性基因P紧密连锁的InDel分子标记及应用. 中国, ZL201810018063.8. 2018-10-02.
SUN B J, LI Z L, LI Z X, LUO S B, WU J. InDel molecular marker closely linked with epistatic gene P of eggplant fruit color and application of InDel molecular marker. China, ZL201810018063.8. 2018-10-02. (in Chinese)
[16] 李慧敏. 茄子果色上位D基因SmMYB1克隆及其在茄子花青素合成中的功能分析[D]. 广州: 华南农业大学, 2020.
LI H M. Cloning of epigenetic D gene SmMYB1 controlling peel color and its function in anthocyanin synthesis in eggplant[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[17] 吴俊. 茄子果色上位基因P基因分子标记开发及候选基因分析[D]. 广州: 华南农业大学, 2020.
WU J. Molecular marker development and candidate gene analysis of epistasis P gene controlling fruit color in eggplant (Solanum melongena L.)[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese)
[18] SPRINGOB K, NAKAJIMA J, YAMAZAKI M, SAITO K. Recent advances in the biosynthesis and accumulation of anthocyanins. Natural Product Reports, 2003, 20(3): 288-303. doi: 10.1039/b109542k.
doi: 10.1039/ b109542k pmid: 12828368
[19] GISBERT C, DUMM J M, PROHENS J, VILANOVA S, STOMMEL J R. A spontaneous eggplant (Solanum melongena L.) color mutant conditions anthocyanin-free fruit pigmentation. Hortscience, 2016, 51(7): 793-798. doi: 10.21273/HORTSCI.51.7.793.
doi: 10.21273/HORTSCI.51.7.793
[20] ZHANG Y J, HU Z L, CHU G H, HUANG C, TIAN S B, ZHAO Z P, CHEN G P. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry, 2014, 62(13): 2906-2912.
doi: 10.1021/jf404574c
[21] 邵文婷, 刘杨, 韩洪强, 陈火英. 茄子花青素合成相关基因SmMYB的克隆与表达分析. 园艺学报, 2013, 40(3): 467-478.
SHAO W T, LIU Y, HAN H Q, CHEN H Y. Cloning and expression analysis of an anthocyanin-related transcription factor gene SmMYB in eggplant. Acta Horticulturae Sinica, 2013, 40(3): 467-478. (in Chinese)
[22] 王海竹, 曲红云, 周婷婷, 徐启江. 茄萼花色苷合成相关基因DFR和MYB克隆及表达分析. 中国农业科学, 2017, 50(14): 2781-2792.
WANG H Z, QU H Y, ZHOU T T, XU Q J. Cloning and expression analysis of anthocyanin biosynthesis-associated DFR and MYB genes in Calyx of eggplant (Solanum melongena L.). Scientia Agricultura Sinica, 2017, 50(14): 2781-2792. (in Chinese)
[23] DOCIMO T, FRANCESE G, RUGGIERO A, BATELLI G, DE PALMA M, BASSOLINO L, TOPPINO L, ROTINO G L, MENNELLA G, TUCCI M. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor. Frontiers in Plant Science, 2015, 6: 1233. doi: 10.3389/fpls.2015.01233.
doi: 10.3389/fpls.2015.01233 pmid: 26858726
[24] DAUNAY M C, AUBERT S, FRARY A, DOGANLAR S, LESTER R N, BARENDSE G, VAN DER WEERDEN G, HENNART J W, HAANSTRA J, DAUPHIN F, JULLIAN E. Eggplant (Solanum melongena) fruit color:pigments, measurements and genetics // Proceeding of the 12 Eucarpia Meeting on Genetics and Breeding of Capsicum and Eggplant, 2004: 108-116.
[25] AZUMA K, OHYAMA A, IPPOUSHI K, ICHIYANAGI T, TAKEUCHI A, SAITO T, FUKUOKA H. Structures and antioxidant activity of anthocyanins in many accessions of eggplant and its related species. Journal of Agricultural and Food Chemistry, 2008, 56(21): 10154-10159. doi: 10.1021/jf801322m.
doi: 10.1021/jf801322m pmid: 18831559
[26] 张映, 赵悦琪, 陈钰辉, 连勇, 刘富中. 茄子紫色形成的分子研究进展. 园艺学报, 2019, 46(9): 1779-1796.
ZHANG Y, ZHAO Y Q, CHEN Y H, LIAN Y, LIU F Z. Progress in molecular research on purple formation of eggplant. Acta Horticulturae Sinica, 2019, 46(9): 1779-1796. (in Chinese)
[27] JEONG S T, GOTO-YAMAMOTO N, HSSHIZUME K, ESAKA M. Expression of the flavonoid 3’-hydroxylase and flavonoid 3’5’ hydroxylase genes and flavonoid composition in grape (Vitis vinefera). Plant Science, 2006, 17(1): 61-69. doi: 10.1016/j.plantsci.2005.07.025.
doi: 10.1016/j.plantsci.2005.07. 025
[28] GRAMAZIO P, PROHENS J, PLAZAS M, ANDÚJAR I, HERRAIZ F J, CASTILLO E, KNAPP S, MEYER R S, VILANOVA S. Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biology, 2014, 14: 350. doi: 10.1186/s12870-014-0350-z.
doi: 10.1186/s12870-014-0350-z pmid: 25491265
[29] MENNELLA G, LO SCALZO R, FIBIANI M, D'ALESSANDRO A, FRANCESE G, TOPPINO L, ACCIARRI N, DE ALMEIDA A E, ROTINO G L. Chemical and bioactive quality traits during fruit ripening in eggplant (Solanum melongena L.) and allied species. Journal of Agricultural and Food Chemistry, 2012, 60(47): 11821-11831. doi: 10.1021/jf3037424.
doi: 10.1021/jf3037424
[30] DOCIMO T, FRANCESE G, RUGGIERO A, BATELLI G, DE PALMA M, BASSOLINO L, TOPPINO L, ROTINO G L, MENNELLA G, TUCCI M. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor. Frontiers in Plant Science, 2015, 6: 1233. doi: 10.3389/fpls.2015.01233.
doi: 10.3389/fpls.2015.01233 pmid: 26858726
[31] PAYYAVULA R S, SHAKYA R, SENGODA V G, MUNYANEZA J E, SWAMY P, NAVARRE D A. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT- silenced lines. Plant Biotechnology Journal, 2015, 13(4): 551-564. doi: 10.1111/pbi.12280.
doi: 10.1111/pbi.12280
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[4] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[5] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[6] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[7] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[8] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[9] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[10] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[11] YUAN PingLi,HE Nan,ZHAO ShengJie,LU XuQiang,ZHU HongJu,DIAO WeiNan,GONG ChengSheng,MUHAMMAD Jawad Umer,LIU WenGe. Metabolomics Comparative Study on Fruits of Edible Seed Watermelon, Egusi and Common Watermelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4179-4195.
[12] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[13] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[14] QIN QiuHong,HE XuJiang,JIANG WuJun,WANG ZiLong,ZENG ZhiJiang. The Capping Pheromone Contents and Putative Biosynthetic Pathways in Larvae of Honeybees Apis cernana [J]. Scientia Agricultura Sinica, 2021, 54(11): 2464-2475.
[15] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!