Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 1942-1960.doi: 10.3864/j.issn.0578-1752.2019.11.009

• HORTICULTURE • Previous Articles     Next Articles

Genome Wide Identification and Expression Analysis of the U-box Gene Family in Citrus

LI QiuYue1,ZHANG YaFei1,PENG Jie1,WANG Xu1,ZHANG ZhiQiang1,DAI XiangSheng3,JIANG Dong1,2()   

  1. 1 Citrus Research Institute, Southwest University, Chongqing 400712
    2 Citrus Research Institute of Chinese Academy of Agricultural Sciences, Chongqing 400712
    3 Management Committee of Jinggangshan Agricultural Science and Technology Park,Jinggangshan 343000, Jiangxi
  • Received:2018-12-29 Accepted:2019-02-18 Online:2019-06-01 Published:2019-06-11
  • Contact: Dong JIANG E-mail:jiangdong@cric.cn

Abstract:

【Objective】 The objectives of this study were to analyze the distribution, structure and evolution of U-box in citrus genome by bioinformatics, to study the expression specificity of family members in different tissues and their responses to abiotic stress and hormones, and to investigate the biological function of U-box gene family in citrus. 【Method】 According to the reported U-box gene of Arabidopsis thaliana, the U-box gene in citrus genome was identified by BLASTp tool in Phytozome database. Phylogenetic tree, subcellular localization prediction, relative mass and isoelectric point and other physical and chemical properties, and scaffold location of U-box member were analyzed with MEGA6.0, Cello, SMART, GSDS2.0, ExPASy and MapChart, respectively. The expression pattern of U-box gene family under low temperature stress was analyzed, and the expression of some members of U-box gene family in citrus treated with NaCl, PEG6000 and different hormones was detected by real-time fluorescence quantitative PCR (qRT-PCR). 【Result】 Fifty-six members of CcPUBs gene family were identified from the whole genome of Citrus clementina, and they could be divided into 7 categories, namely as U-box only, U-box+ARM-1, U-box+WD40-1, TPR+U-box, Kinase+U-box, U-box+ARM-2 and U-box+WD40-2. The theoretical isoelectric point of the family protein was ranged from 5.19 to 9.14, and the number of amino acids encoded was 281 to 1 441. The results of subcellular localization prediction showed that the members of the gene family were located in different positions of the cell, mainly in the nucleus or chloroplast, and a few in the plasma membrane. Cluster analysis showed that citrus U-box was closely related to monocotyledonous rice, and members with the same domain in citrus and Arabidopsis thaliana were clustered together. The results showed that U-box members of citrus had different biological functions, and scaffold localization analysis showed that 56 U-box members were unevenly distributed on citrus 1-9 scaffold. The results of RNA-Seq analysis under cold stress showed that U-box gene family was involved in the response of plants to cold stress and showed four different response patterns. One representative gene was selected respectively from five different clusters of citrus U-box gene family for qRT-PCR analysis. The results showed that CcPUB48 was expressed in all tissues of kumquat, and CcPUB9 and CcPUB4 were mainly expressed in stems and flowers, CcPUB10 was mainly expressed in flowers, stems and young fruits, and CcPUB41 was mainly expressed in leaves and stems. It reflected the tissue-specific expression difference of different U-box members. The expression of CcPUB4, CcPUB10 and CcPUB41 was up-regulated under NaCl stress, but the expression of CcPUB48 had no significant change under salt stress. The expression of CcPUB4 was up-regulated under Na2CO3 treatment, which was consistent with that of NaCl treatment, but the expression trend of CaCl2 treatment was different from that of NaCl treatment. Under the treatment of PEG6000, the expression of CcPUB4 increased at first and then decreased, while CcPUB9, CcPUB41 and CcPUB48 did not change significantly under the treatment of PEG6000. Under gibberellin (GA3) treatment, CcPUB4 was significantly up-regulated at 3 h, while under auxin (IAA) and abscisic acid (ABA), the expression of CcPUB10 showed irregular changes, and the expression of CcPUB10 increased gradually under gibberellin (gibberellin) treatment.【Conclusion】 Fifty-six members of U-box gene were identified from the whole genome of Citrus clementina. All members contained U-box conserved domain and were located in different positions of cells. U-box gene family was involved in the response of plants to cold stress and showed four different response patterns. Under NaCl, PEG6000 and hormone treatment, CcPUB4 and CcPUB10 had different degrees of response, but CcPUB9, CcPUB41 and CcPUB48 had no obvious or no response. This experiment provided a theoretical guidance for the further study of U-box gene family in citrus stress resistance and growth and development mechanism.

Key words: citrus, CcPUB gene family, hormone, stress, gene expression

Table 1

Primers used in this study"

引物名称 Primer name 正向引物序列 Forward primer sequence 反向引物序列 Reverse primer sequence
CcPUB4 CCGGTGACTTTATCCACTGGG GAATGGGTTCAAAACTCGTCAGG
CcPUB9 GCCAGCTGAGGTCCCGGATT TGCCTTGTATGCCCAACCATGT
CcPUB10 CAAAACCCGTAGTCCGAAAA AATTCACCATCCGAGTCTGC
CcPUB41 ACGCCGTCCAGTATCCTTC AATTCCAGCATTCCCATCCA
CcPUB48 CTGAGCGAAGGTACCAGAG AGTGTTCATCCACCATTCC
β-Actin CCCCATCGTTACCGTCCAG CGCCTTGCCAGTTGAATATCC

Table 2

The U-box genes identified in citrus"

基因名称
Gene name
基因组登录号
Gene accession No.
蛋白质大小
Protein length (aa)
分子量
Molecular mass (KD)
等电点
Isoelectric point (PI)
box位置
U-box domain location
细胞定位
Subcellular localizations
CcPUB1 Ciclev10007255m 1380 152.75 5.46 449-513 细胞核 Nuclear
CcPUB2 Ciclev10007527m 769 85.86 6.02 700-762 叶绿体 Chloroplast
CcPUB3 Ciclev10018144m 1088 121.83 6.16 613-677 细胞核 Nuclear
CcPUB4 Ciclev10015253m 444 49.84 8.1 36-100 叶绿体 Chloroplast
CcPUB5 Ciclev10014584m 636 69.48 6.56 257-320 叶绿体 Chloroplast
CcPUB6 Ciclev10014430m 715 78.42 7.01 291-354 叶绿体 Chloroplast
CcPUB7 Ciclev10019643m 537 58.77 6.17 28-91 叶绿体 Chloroplast
CcPUB8 Ciclev10019147m 683 75.51 8.48 279-342 叶绿体 Chloroplast
CcPUB9 Ciclev10032341m 281 31.97 6.03 207-270 细胞质 Cytoplasmic
CcPUB10 Ciclev10024300m 1441 160.62 5.78 506-570 细胞核 Nuclear
CcPUB11 Ciclev10024335m 433 47.91 5.77 79-142 细胞质 Cytoplasmic
CcPUB12 Ciclev10018951m 775 85.47 6.91 239-302 细胞核 Nuclear
CcPUB13 Ciclev10018671m 1008 112.36 5.75 265-328 细胞核 Nuclear
CcPUB14 Ciclev10018795m 888 99.09 5.89 821-884 细胞核 Nuclear
CcPUB15 Ciclev10033932m 687 75.23 6.63 284-347 质膜 Plasma
CcPUB16 Ciclev10030962m 627 68.42 5.49 249-312 叶绿体 Chloroplast
CcPUB17 Ciclev10031496m 456 50.85 8.39 75-138 细胞质 Cytoplasmic
CcPUB18 Ciclev10030608m 1019 113.74 6.24 233-300 细胞核 Nuclear
CcPUB19 Ciclev10030759m 775 86 5.57 282-345 细胞核 Nuclear
CcPUB20 Ciclev10030837m 713 79.13 5.19 220-283 细胞核 Nuclear
CcPUB21 Ciclev10030762m 775 86 5.57 282-345 细胞核 Nuclear
CcPUB22 Ciclev10001406m 395 44.04 6.57 6-69 细胞核 Nuclear
CcPUB23 Ciclev10001380m 398 44.51 8.54 13-76 叶绿体 Chloroplast
CcPUB24 Ciclev10000413m 728 80.97 6.79 248-311 细胞核 Nuclear
CcPUB25 Ciclev10000389m 744 82.67 6.62 264-327 细胞核 Nuclear
CcPUB26 Ciclev10003715m 643 71.66 5.37 274-337 叶绿体 Chloroplast
CcPUB27 Ciclev10000306m 813 89.10 5.38 32-100 细胞核 Nuclear
CcPUB28 Ciclev10011217m 683 74.80 9.14 276-339 叶绿体 Chloroplast
CcPUB29 Ciclev10011844m 416 46.12 8.38 9-74 叶绿体 Chloroplast
CcPUB30 Ciclev10011847m 414 46.93 8.16 12-78 叶绿体 Chloroplast
CcPUB31 Ciclev10011415m 546 59.20 8.42 45-108 叶绿体 Chloroplast
CcPUB32 Ciclev10010958m 1049 118.38 5.48 954-1017 叶绿体 Chloroplast
CcPUB33 Ciclev10011388m 564 64.68 5.22 469-532 细胞质 Cytoplasmic
CcPUB34 Ciclev10011387m 564 64.68 5.22 469-532 细胞质 Cytoplasmic
CcPUB35 Ciclev10011113m 779 88.36 5.43 684-747 叶绿体 Chloroplast
CcPUB36 Ciclev10025062m 679 75.18 5.65 210-273 叶绿体Chloroplast
基因名称
Gene name
基因组登录号
Gene accession No.
蛋白质大小
Protein length (aa)
分子量
Molecular mass (KD)
等电点
Isoelectric point (PI)
box位置
U-box domain location
细胞定位
Subcellular localizations
CcPUB37 Ciclev10024987m 737 81.58 5.84 268-331 叶绿体Chloroplast
CcPUB38 Ciclev10024899m 828 90.51 5.92 239-302 叶绿体Chloroplast
CcPUB39 Ciclev10025589m 450 49.00 7.01 69-132 细胞质Cytoplasmic
CcPUB40 Ciclev10025214m 597 65.21 6.98 39-101 叶绿体Chloroplast
CcPUB41 Ciclev10024952m 760 85.82 6.21 688-751 细胞核Nuclear
CcPUB42 Ciclev10024909m 808 91.47 6.18 736-799 叶绿体Chloroplast
CcPUB43 Ciclev10025637m 435 48.23 8 13-76 质膜Plasma
CcPUB44 Ciclev10028003m 643 71.65 6.54 272-335 叶绿体Chloroplast
CcPUB45 Ciclev10028522m 418 45.74 6.21 17-80 细胞核Nuclear
CcPUB46 Ciclev10028557m 407 45.49 8.78 9-76 叶绿体Chloroplast
CcPUB47 Ciclev10028564m 405 45.68 8.92 9-74 叶绿体Chloroplast
CcPUB48 Ciclev10027966m 661 71.37 5.43 261-324 叶绿体Chloroplast
CcPUB49 Ciclev10028111m 564 60.47 5.46 164-227 叶绿体Chloroplast
CcPUB50 Ciclev10027788m 887 99.83 8.08 820-883 细胞核Nuclear
CcPUB51 Ciclev10029840m 1048 115.56 6.56 265-333 叶绿体Chloroplast
CcPUB52 Ciclev10004235m 1012 112.79 5.91 261-324 叶绿体Chloroplast
CcPUB53 Ciclev10004724m 526 56.90 6.07 1-66 叶绿体Chloroplast
CcPUB54 Ciclev10004393m 757 84.621 5.93 692-754 细胞核Nuclear
CcPUB55 Ciclev10004338m 810 90.50 6.31 745-807 细胞核Nuclear
CcPUB56 Ciclev10006472m 780 88.56 6.55 713-776 叶绿体Chloroplast

Fig. 1

The phylogenetic tree and structure of U-box proteins in citrus"

Fig. 2

The phylogenetic tree of U-box protein between Citrus, Arabidopsis and rice"

Fig. 3

Gene structure of 56 U-box gene in citrus"

Fig. 4

Scafflod locations of U-box gene in Citrus (Mb)"

Table 3

Cis-acting regulatory elements in promoter of U-box gene family predicted by plantCARE"

顺式元件
Cis-element
典型序列
Typical sequence
特性
Characteristic
基因
Gene
G-box CACGT 光响应
Cis-acting regulatory element involved in light responsiveness
CcPUB1、CcPUB3—CcPUB11、CcPUB13—CcPUB17、CcPUB21— CcPUB23、CcPUB25、CcPUB26、CcPUB28—CcPUB37、CcPUB39、CcPUB42— CcPUB45、CcPUB47—CcPUB56
ATCT-motif AATCT 光响应
Part of a conserved DNA module involved in light responsiveness
CcPUB7、CcPUB18、CcPUB22、CcPUB23、CcPUB28、CcPUB30、CcPUB31、CcPUB39、CcPUB53、CcPUB55、CcPUB56
ACE AAAACGTTTA 光响应
Cis-acting element involved in light responsiveness
CcPUB3、CcPUB10、CcPUB21、CcPUB26、CcPUB32、CcPUB39
LTR CCGAAA 低温反应
Cis-acting element involved in low- temperature responsiveness
CcPUB2CcPUB5、CcPUB8、CcPUB10、CcPUB16、CcPUB17、CcPUB23、CcPUB25、CcPUB26、CcPUB28、CcPUB29、CcPUB32、CcPUB38、CcPUB39、CcPUB42—CcPUB44、CcPUB46、CcPUB56
TGACG-motif TGACG MeJA响应
Cis-acting regulatory element involved in the MeJA-responsiveness
CcPUB1—CcPUB6、CcPUB8、CcPUB9、CcPUB11、CcPUB13— CcPUB18、CcPUB23、CcPUB27、CcPUB29、CcPUB31—CcPUB38、CcPUB40—CcPUB44、CcPUB46、CcPUB47、CcPUB50、CcPUB52、CcPUB55、CcPUB56
ABRE GACACGTGGC
TACGTG
脱落酸响应
Cis-acting element involved in the abscisic acid responsiveness
CcPUB1—CcPUB11、CcPUB13—CcPUB17、CcPUB22、CcPUB23、CcPUB26、CcPUB28—CcPUB30、CcPUB32—CcPUB37、CcPUB39、CcPUB42—CcPUB45、CcPUB47—CcPUB53、CcPUB55、CcPUB56
GARE-motif TCTGTTG,
AAACAGA
赤霉素响应
Gibberellin-responsive element
CcPUB2、CcPUB5、CcPUB6、CcPUB8、CcPUB9、CcPUB13、CcPUB15、CcPUB16、CcPUB27、CcPUB31、CcPUB45、CcPUB47、
MBS TAACTG MYB结合位点参与干旱诱导
MYB binding site involved in drought- induction
CcPUB1、CcPUB4—CcPUB9、CcPUB11、CcPUB14、CcPUB16、CcPUB17、CcPUB21、CcPUB23、CcPUB25—CcPUB27、CcPUB31— CcPUB37、CcPUB39、CcPUB44、CcPUB50、CcPUB51、CcPUB55、CcPUB56
DRE TGGCCGAC 冷和脱水
Regulatory element involved in cold- and dehydration-responsiveness
CcPUB4、CcPUB5、CcPUB7、CcPUB8、CcPUB13、CcPUB21、CcPUB23、CcPUB26、CcPUB29、CcPUB37、CcPUB40—CcPUB42、CcPUB44、CcPUB46、CcPUB51、CcPUB56
ERE ATTTTAAA
乙烯响应
Ethylene responsive element
CcPUB2—CcPUB9、CcPUB11、CcPUB12、CcPUB14、CcPUB17、CcPUB18、CcPUB21—CcPUB23、CcPUB25、CcPUB26、CcPUB28、CcPUB29、CcPUB31、CcPUB32、CcPUB37—CcPUB42、CcPUB44、CcPUB45、CcPUB47、CcPUB50—CcPUB53、CcPUB56

Fig. 5

Relative expression of CcPUB4, CcPUB9, CcPUB10, CcPUB41 and CcPUB48 in different tissues Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 6

Relative expressions of CcPUB4, CcPUB9, CcPUB10, CcPUB41 and CcPUB48 under different treatments of exogenous plant hormones"

Fig. 7

Relative expressions of CcPUB4, CcPUB9, CcPUB10, CcPUB41 and CcPUB48 under different abiotic stresses"

Fig. 8

Relative expression of CcPUB4 under Na2CO3 and CaCl2 stress"

Fig. 9

Expression profile analysis of Citrus U-box family under cold Stress"

[1] SMALLE J, VIERSTRA R D . The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology, 2004,55:555-590.
doi: 10.1146/annurev.arplant.55.031903.141801 pmid: 15377232
[2] 刘锴栋, 袁长春 . 泛素/26S蛋白酶体途径及其在植物生长发育中的功能. 基因组学与应用生物学, 2009,28(6):1219-1228.
LIU Y D, YUAN C C . The ubiquitin/26S proteasome pathway and the function in plant development. Genomics and Applied Biology, 2009,28(6):1219-1228. (in Chinese)
[3] 宋素胜, 谢道昕 . 泛素蛋白酶体途径及其对植物生长发育的调控. 植物学通报, 2006,23(5):564-577.
SONG S S, XIE D X . The ubiquitin-proteosome pathway and plant development. Bulletin of Botany, 2006,23(5):564-577. (in Chinese)
[4] VANDEMARK A P, HILL C P . Structural basis of ubiquitylation. Current Opinion Structural Biology, 2002,12(6):822-830.
doi: 10.1016/S0959-440X(02)00389-5
[5] HATAKEYAMA S, YADA M, MATSUMOTO M, ISHIDA N, NAKAYAMA K I . U-box proteins as a new family of ubiquitin- protein ligases. The Journal of Biological Chemistry, 2001,276(35):33111-33120.
doi: 10.1074/jbc.M102755200
[6] PATTERSON C . A new gun in town: the U-box is a ubiquitin ligase domain. Science’s STKE, 2002,2002(116): p e4.
doi: 10.1126/stke.2002.116.pe4 pmid: 11805346
[7] FARMER L M, BOOK A J, LEE K H, LIN Y L, FU H, VIERSTRA R D . The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. The Plant Cell, 2010,22(1):124-142.
doi: 10.1105/tpc.109.072660 pmid: 20086187
[8] VIERSTRA R D . The ubiquitin-26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 2009,10(6):385-397.
[9] GONZALEZ -LAMOTHE R, TSITSIGIANNIS D I, LUDWIG A A, PANICOT M, SHIRASU K. JONES J D G , The U-Box protein CMPG1is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell, 2006,18(4):1067-1083.
doi: 10.1105/tpc.106.040998
[10] CHO S K, CHUNG H S, RYU M Y, PARK M J, LEE M M, BAHK Y, KIM J, PAI H S, KIM W T . Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-box E3 ubiquitin ligases homolog. Plant Physiology, 2006,142(4):1664-1682.
doi: 10.1104/pp.106.087965
[11] LIU Y C, WU Y R, HUANG X H, SUN J, XIE Q . AtPUB19, a U-Box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Molecular Plant, 2011,4(6):938-946.
doi: 10.1093/mp/ssr030 pmid: 3221247
[12] HWANG J H, SEO D H, KANG B G, KWAK J M, KIM W T . Suppression of Arabidopsis AtPUB30 resulted in increased tolerance to salt stress during germination. Plant Cell Reports, 2015,34(2):277-289.
doi: 10.1007/s00299-014-1706-4
[13] BRAUMANN I, URBAN W, PREUβ A, DOCKTER C, ZAKHRABEKOVA S, HANSSON M . Semi-dwarf barley (Hordeum vulgare L.) brh2 and ari-l mutants are deficient in a U-box E3 ubiquitin ligase. Plant Growth Regulation, 2018,86(2):223-234.
doi: 10.1007/s10725-018-0423-3
[14] SAMUEL M A, MUDGIL Y, SALT J N, DELMAS F, RAMACHANDRAN S, CHILELLI A, GORING D R . Interactions between the S-Domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiology, 2008,147(4):2084-2095.
doi: 10.1104/pp.108.123380
[15] WU G, TEROL J, IBANEZ V, LOPEZ-GARCIA A, PEREZ-ROMAN E, BORREDA C, DOMINGO C, TADEO F R, CARBONELL- CABALLERO J, ALONSO R, CURK F, DU D, OLLITRAULT P, ROOSE M L, DOPAZO J, GMITTER F G, ROKHSAR D S, TALON M . Genomics of the origin and evolution of Citrus. Nature, 2018,554(7692):311-316.
doi: 10.1038/nature25447 pmid: 29414943
[16] 郑兴卫, 邵麟惠, 李聪 . 蒺藜苜蓿全基因组中U-box 基因家族的筛选与特征分析. 草业学报, 2015,24(8):130-141.
doi: 10.11686/cyxb2015102
ZHENG X W, SHAO L H, LI C . Genome-wide screening and characterization of the U-box gene family in Medicago truncatula. Acta Prataculturase Sinica, 2015,24(8):130-141.(in Chinese)
doi: 10.11686/cyxb2015102
[17] WIBORG J, O'SHEA C, SKRIVER K . Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochemical Journal, 2008,413(3):447-457.
doi: 10.1042/BJ20071568 pmid: 18393940
[18] 曹英豪 . 水稻U-box基因家族的特征及转录表达模式分析[D]. 保定: 河北农业大学, 2010.
CAO Y H . The characteristics of Rice U-Box gene family with its transcription and expression pattern analysis[D]. Baoding: Agricultural University of Hebei, 2010.(in Chinese)
[19] 李菲, 何小红, 龚记熠 . 番茄基因组中U-box基因家族的鉴定与分析. 分子植物育种. 2018,16(11):3468-3476
LI F, HE X H, GONG J Y . Identification and analysis of U-box gene family in tomato genome. Molecular Plant Breeding, 2018,16(11):3468-3476.(in Chinese)
[20] 刘永昌, 曾丽亚, 盘俊, 齐成媚, 袁志辉, 何福林, 胡克坚, 刘小文 . 雷蒙德氏棉Plant U-box(GrPUBs)基因家族生物信息学分析. 分子植物育种, 2018,16(13):4157-4171.
LIU Y C, ZENG L Y, PAN J, QI C M, YUAN Z H, HE F L, HU K J, LIU X W . Bioinformatics analysis of the plant U-box gene families ( Gr PUBs ) in Gossypium raimondii. Molecular Plant Breeding, 2018,16(13):4157-4171. (in Chinese)
[21] IGNACIO M . Ancient origin of animal U-box ubiquitin ligases. BMC Evolutionary Biology, 2010,10(1):331.
doi: 10.1186/1471-2148-10-331 pmid: 20979629
[22] CONSORTIUM T T G . The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012,485(7400):635.
doi: 10.1038/nature11119
[23] LUO J, SHEN G, YAN J, HE C, ZHANG H . AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. The Plant Journal, 2006,46(4):649-657.
doi: 10.1111/tpj.2006.46.issue-4
[24] ADLER G, KONRAD Z, ZAMIR L, MISHRA A K, RAVEH D, BAR-ZVI D . The Arabidopsis paralogs,PUB46 and PUB48, encoding U-box E3 ubiquitin ligases, are essential for plant response to drought stress. BMC Plant Biology, 2017,17(1):8.
doi: 10.1186/s12870-016-0963-5
[25] BERGLER J, HOTH S . Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biology, 2011,13(5):725-730.
doi: 10.1111/plb.2011.13.issue-5
[26] SADANANDOM A . The U-box protein AtPUB17 is a functional ortholog of NtACRE276 and its E3 ubiquitin ligase activity is required for plant cell death and defence. Comparative Biochemistry & Physiology Part A, 2007,146(4):S203-S203.
[27] SANKARANARAYANAN S, SAMUEL M A . A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis. Plant Signaling & Behavior, 2015,10(3):e989749.
[28] 齐晨辉, 赵先炎, 韩朋良 . 苹果U-box型E3泛素连接酶MdPUB24的耐盐性和ABA敏感性鉴定. 园艺学报, 2017,44(12):2255-2264.
QI C H, ZHAO X Y, HAN P L . Functional identification of salt tolerance and ABA sensitivity of apple U-box E3 ubiquitin ligase MdPUB24. Acta Horticulturae Sinica, 2017,44(12):2255-2264. (in Chinese)
[29] LIU J, LI W, NING Y, SHIRSEKAR G, CAI Y, WANG X, DAI L, WANG Z, LIU W, WANG G L . The U-Box E3 ligase SPL11/PUB13 is a convergence point of defense and flowering signaling in plants. Plant Physiology, 2012,160(1):28-37.
doi: 10.1104/pp.112.199430
[30] SHARMA M, PANDEY G K . Expansion and function of repeat domain proteins during stress and development in plants. Frontiers in Plant Science, 2016,6:1218.
[31] SANTNER A, CALDERON-VILLALOBOS L I A, ESTELLE M . Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 2009,5(5):301-307.
doi: 10.1038/nchembio.165 pmid: 19377456
[32] HWANG J H, DONG H S, KANG B G, KWAK J M, KIM W T . Suppression of Arabidopsis, AtPUB30, resulted in increased tolerance to salt stress during germination. Plant Cell Reports, 2015,34(2):277-289.
doi: 10.1007/s00299-014-1706-4
[33] CHO S K, CHUANG H S, RYU M Y, PARK M J, LEE M M, BAHK Y, KIM J, PAI H S, KIM W T . Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog. Plant Physiology, 2006,142(4):1664-1682.
doi: 10.1104/pp.106.087965
[34] KOBAYASHI S, TSUGAMA D, LIU S, TAKANO T . A U-Box E3 ubiquitin ligase, PUB20, interacts with the Arabidopsis G-Protein β subunit, AGB1. PLoS ONE, 2012,7(11):e49207.
doi: 10.1371/journal.pone.0049207
[35] SEO D H, RYU M Y, JAMMES F, HWANG J H, TUREK M, KANG B G, KWAK J M, KIM W T . Roles of Four Arabidopsis U-Box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiology, 2012,160(1):556-568.
doi: 10.1104/pp.112.202143
[36] YEE D, GORING D R . The diversity of plant U-box E3 ubiquitin ligases: From upstream activators to downstream target substrates. Journal of Experimental Botany, 2009,60(4):1109-1121.
doi: 10.1093/jxb/ern369 pmid: 19196749
[37] WANG M, ZHANG X, LIU J H . Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata (L.) Raf.) in response to cold stress. BMC Genomics, 2015,16(1):555.
doi: 10.1186/s12864-015-1629-7
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[5] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[6] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[7] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[8] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[9] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[10] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[11] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[12] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[13] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[14] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[15] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!