Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 1971-1986.doi: 10.3864/j.issn.0578-1752.2022.10.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain

WU TianQi(),LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong()   

  1. College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2021-04-06 Accepted:2021-06-24 Online:2022-05-16 Published:2022-06-02
  • Contact: XiaoHong TIAN E-mail:1554726289@qq.com;txhong@hotmail.com

Abstract:

【Objective】 Foliar zinc (Zn) application is an effective agronomic biofortification strategy to realize Zn enrichment of wheat grains and to combat the human Zn malnutrition. The aim of this study was to investigate the effects of spraying Zn with different nitrogen (N) inputs on Zn enrichment and content of protein and protein components in wheat whole grain and flour.【Method】 Based on the long-term positioning experiment, the spraying experiment of Zn in wheat for two consecutive seasons was conducted during 2018-2020. A split plot design was used with soil N rates of 0 (N0), 120 (N120) and 240 ∙hm-2 (N240) as the main plot factor, and the foliar application of distilled water (Zn0) and 0.4% ZnSO4·7H2O (Zn1) as subplot. The indexes were analyzed for this study, including Zn content of various nutritional organs, Zn mobilization and distribution from leaf and other vegetative organs to grain, and protein and protein component content in grains and flour at the early filling stage and maturation stage. 【Result】Compared with N0, the grain yield under N120 and N240 treatments was significantly increased by 88%-114%, but there was no significant difference between N120 and N240. Regardless of the N inputs, the foliar Zn application could significantly increase the Zn concentration in grains and flour and the grain Zn content reached the biofortification standard. Among those treatments, the Zn concentration of wheat grains under N120 and N240 was increased by 0.95 and 1.12 times than that under N0, respectively. Compared with N0, the N inputs increased the translocation of N and Zn transferred from leaf and other vegetative organs to grain at early grain filling stage, but reduced the transfer ratio of N and Zn: N decreased from 60.2% to 48.6% and Zn decreased from 42.3% to 26.5%. A significant positive linear correlation was found between the amount of N and Zn mobilization and the content of N and Zn in grain at maturity, and the synergistic effect of N and Zn was more significant at Zn1. Compared with the early filling stage, the content of storage protein (gliadin and glutenin) in grains and flour at the mature stage increased significantly, accounting for about 80%-84% of the protein content. The content of gliadin and glutenin in grain and flour was increased by N application more than that of albumin and globulin, and the gluten was the largest. The content of protein and protein components in grain and flour were not affected by spraying Zn. However, in terms of Zn1, the increase of gluten content in grain and flour was higher than that under the condition of Zn0 with the increase of N dosage, which was 37.5% and 38.1%, respectively.【Conclusion】Foliar Zn application could achieve Zn-rich grains but did not affect the content of protein and protein components in grains and flour, indicating that there was sufficient protein pool for Zn storage in grains and flour. Therefore, a reasonable amount of soil N combined with foliar Zn application could increase the N, Zn content and nutritional quality of the grains by ensuring high and stable yield on potentially Zn-deficient calcareous soils.

Key words: wheat, foliar Zn application, basal nitrogen fertilization, Zn content, protein component

Fig. 1

Effects of basal N and foliar Zn application at the early filling stage on wheat grain yield The values are expressed as means±standard errors (n=4), and those different letters above the bars indicate significant differences among different treatments in the same year (P<0.05). The same as Fig. 2 and Fig. 3"

Fig. 2

Effects of basal N and foliar Zn application at the early filling stage on Zn content in wheat grains and flour as well as Zn accumulation in wheat grain"

Table 1

Effects of basal N and foliar Zn application on N mobilization from vegetative organs to wheat grain"

处理
Treatment
2018—2019 2019—2020
氮转移量
N mobilization (mg/plant)
氮转移比例
N transfer ratio (%)
氮转移量
N mobilization (mg/plant)
氮转移比例
N transfer ratio (%)
N0Zn0 4.5±0.5 b 53.6 3.7±0.3 c 58.4
N120Zn0 13.4±2.3 a 39.4 6.4±0.3 b 47.2
N240Zn0 14.7±1.0 a 41.9 9.9±0.9 a 51.0
N0Zn1 4.6±0.8 b 44.3 3.3±0.2c 62.6
N120Zn1 11.9±0.7 a 42.5 6.5±0.5 b 57.5
N240Zn1 10.0±0.8 a 14.7 9.3±1.4 a 55.3
变异来源
N <0.001 <0.001
Zn 0.104 0.601
N×Zn 0.281 0.882

Fig. 4

Effects of basal N application and spraying Zn on N distribution in wheat 8 DAA (days after anthesis) represent the early filling stage; 42 DAA (days after anthesis) represent the maturity. The values are expressed as means±standard errors (n=4), and those different letters above the bars indicate significant differences among different treatments in the same year (P<0.05). The distribution indicate the N distribution in two stages in 2019-2020 growing seasons of wheat"

Table 2

Effects of basal N and foliar Zn application on Zn mobilization from vegetative organs to wheat grain"

处理
Treatment
2018—2019 2019—2020
锌转移量
Zn mobilization (×10-3 mg/plant)
锌转移比例
Zn transfer ratio (%)
锌转移量
Zn mobilization (×10-3 mg/plant)
锌转移比例
Zn transfer ratio (%)
N0Zn0 3.5±0.1 c 53.6 1.7±0.3 c 41.2
N120Zn0 5.9±0.1 bc 42.9 4.2±0.3 abc 35.1
N240Zn0 4.6±0.4 bc 34.3 3.2±1.3 bc 38.4
N0Zn1 3.4±0.4 c 48.9 2.1±0.5 c 39.2
N120Zn1 15.3±0.5 a 27.7 10.1±0.7 a 23.7
N240Zn1 12.8±0.3 ab 18.6 11.3±0.8 ab 14.6
变异来源
N 0.042 0.014
Zn 0.017 0.024
N×Zn 0.226 0.245

Fig. 5

Effects of basal N and foliar Zn application at the early filling stage on Zn distribution in wheat 8 DAA (days after anthesis) represent the early filling stage; 42 DAA (days after anthesis) represent the maturity. The values are expressed as means±standard errors (n=4), and those different letters above the bars indicate significant differences among different treatments in the same year (P<0.05). The distribution indicate the Zn distribution in two stages in 2019-2020 growing season of wheat"

Fig. 6

Correlation analysis of the amount of N and Zn transferred from vegetative organs to grain after anthesis and the contents of N and Zn in wheat grain"

Fig. 7

Effects of basal N and foliar Zn application at the early filling stage on protein and protein components content in wheat grain and flour at different stages in 2019-2020 8 DAA (Days after anthesis) represent the early filling stage; 42 DAA (Days after anthesis) represent the maturation stage. Different letters above the bars indicate significant differences between different treatments of the same component (P<0.05)"

Fig. 3

Effects of basal N and foliar Zn application at the early filling stage on PA and TAZ content in wheat grains and flour"

[1] GIBSON R S. Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant and Soil, 2012, 361(1/2): 291-299. doi: 10.1007/s11104-012-1209-4.
doi: 10.1007/s11104-012-1209-4
[2] WHO: Vitamin and mineral nutrition information system,Geneva. World Health Organization, 2016, http://www.who.int.
[3] HOTZ C, BROWN K. Assessment of the risk of deficiency in populations and options for its control. Food and Nutrition Bulletin, 2004, 25: 194-204.
doi: 10.1177/156482650402500213
[4] STEIN A J. Global impacts of human mineral malnutrition. Plant and Soil, 2010, 335(1/2): 133-154. doi: 10.1007/s11104-009-0228-2.
doi: 10.1007/s11104-009-0228-2
[5] DOKOOHAKI H, GHEYSARI M, MEHNATKESH A, AYOUBI S. Applying the CSM-CERES-Wheat model for rainfed wheat with specified soil characteristic in undulating area in Iran. Archives of Agronomy and Soil Science, 2015, 61(9): 1231-1245. doi: 10.1080/03650340.2014.984696.
doi: 10.1080/03650340.2014.984696
[6] HUANG T M, HUANG Q N, SHE X, MA X L, HUANG M, CAO H B, HE G, LIU J S, LIANG D L, MALHI S S, WANG Z H. Grain zinc concentration and its relation to soil nutrient availability in different wheat cropping regions of China. Soil and Tillage Research, 2019, 191: 57-65. doi: 10.1016/j.still.2019.03.019.
doi: 10.1016/j.still.2019.03.019
[7] CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 2018, 69(1): 172-180. doi: 10.1111/ejss.12437.
doi: 10.1111/ejss.12437
[8] ZOU C, DU Y, RASHID A, RAM H, SAVASLI E, PIETERSE P J, ORTIZ-MONASTERIO I, YAZICI A, KAUR C, MAHMOOD K, SINGH S, LE ROUX M R, KUANG W, ONDER O, KALAYCI M, CAKMAK I. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. Nitric Oxide, 2019, 67(29): 8096-8106. doi: 10.1021/acs.jafc.9b01829.
doi: 10.1021/acs.jafc.9b01829
[9] GRAHAM R D, WELCH R M, BOUIS H E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods. Principles, perspectives and knowledge gaps. 2001, 70: 77-142. doi: 10.1016/S0065-2113(01)70004-1.
doi: 10.1016/S0065-2113(01)70004-1
[10] BOUIS H E, WELCH R M. Biofortification-A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 2010, 50: S-20. doi: 10.2135/cropsci2009.09.0531.
doi: 10.2135/cropsci2009.09.0531
[11] CAKMAK I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 2008, 302(1/2): 1-17. doi: 10.1007/s11104-007-9466-3.
doi: 10.1007/s11104-007-9466-3
[12] ZOU C Q, ZHANG Y Q, RASHID A, RAM H, SAVASLI E, ARISOY R Z, ORTIZ-MONASTERIO I, SIMUNJI S, WANG Z H, SOHU V, HASSAN M, KAYA Y, ONDER O, LUNGU O, MUJAHID M Y, JOSHI A K, ZELENSKIY Y, ZHANG F S, CAKMAK I. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 2012, 361(1/2): 119-130. doi: 10.1007/s11104-012-1369-2.
doi: 10.1007/s11104-012-1369-2
[13] 李宏云, 王少霞, 李萌, 田霄鸿, 赵爱青, 国春慧. 不同水氮管理下锌与氮磷肥配合喷施对冬小麦锌营养品质的影响. 中国农业科学, 2014, 47(20): 4016-4026. doi: 10.3864/j.issn.0578-1752.2014.20.010.
doi: 10.3864/j.issn.0578-1752.2014.20.010
LI H Y, WANG S X, LI M, TIAN X H, ZHAO A Q, GUO C H. Effects of combined foliar Zn application with N or P under different water and nitrogen managements on Zn nutritional quality of winter wheat. Scientia Agricultura Sinica, 2014, 47(20): 4016-4026. doi: 10.3864/j.issn.0578-1752.2014.20.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.20.010
[14] 王少霞, 李萌, 田霄鸿, 陈艳龙, 李硕, 刘珂, 贾舟. 锌与氮磷钾配合喷施对小麦锌累积、分配及转移的影响. 植物营养与肥料学报, 2018, 24(2): 296-305. doi: 10.11674/zwyf.17178.
doi: 10.11674/zwyf.17178
WANG S X, LI M, TIAN X H, CHEN Y L, LI S, LIU K, JIA Z. Effects of combined foliar application of Zn with N, P, or K on Zn accumulation, distribution and translocation in wheat. Plant Nutrition and Fertilizer Science, 2018, 24(2): 296-305. doi: 10.11674/zwyf.17178. (in Chinese)
doi: 10.11674/zwyf.17178
[15] AZIZ M Z, YASEEN M, ABBAS T, NAVEED M, MUSTAFA A, HAMID Y, SAEED Q, XU M G. Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. Journal of Integrative Agriculture, 2019, 18(6): 1369-1378. doi: 10.1016/S2095-3119(18)62095-7.
doi: 10.1016/S2095-3119(18)62095-7
[16] ERENOGLU E B, KUTMAN U B, CEYLAN Y, YILDIZ B, CAKMAK I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ((65) Zn) in wheat. The New Phytologist, 2011, 189(2): 438-448. doi: 10.1111/j.1469-8137.2010.03488.x.
doi: 10.1111/j.1469-8137.2010.03488.x.
[17] CHEN X P, ZHANG Y Q, TONG Y P, XUE Y F, LIU D Y, ZHANG W, DENG Y, MENG Q F, YUE S C, YAN P, CUI Z L, SHI X J, GUO S W, SUN Y X, YE Y L, WANG Z H, JIA L L, MA W Q, HE M R, ZHANG X Y, KOU C L, LI Y T, TAN D S, CAKMAK I, ZHANG F S, ZOU C Q. Harvesting more grain zinc of wheat for human health. Scientific Reports, 2017, 7: 7016. doi: 10.1038/s41598-017-07484-2.
doi: 10.1038/s41598-017-07484-2
[18] XIA H Y, XUE Y F, LIU D Y, KONG W L, XUE Y H, TANG Y Y, LI J, LI D, MEI P P. Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Frontiers in Plant Science, 2018, 9: 677. doi: 10.3389/fpls.2018.00677.
doi: 10.3389/fpls.2018.00677
[19] PASCOALINO J A L, THOMPSON J A, WRIGHT G, FRANCO F A, SCHEEREN P L, PAULETTI V, MORAES M F, WHITE P J. Grain zinc concentrations differ among Brazilian wheat genotypes and respond to zinc and nitrogen supply. PLoS One, 2018, 13(7): e0199464. doi: 10.1371/journal.pone.0199464.
doi: 10.1371/journal.pone.0199464
[20] WATERS B M, UAUY C, DUBCOVSKY J, GRUSAK M A. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 2009, 60(15): 4263-4274. doi: 10.1093/jxb/erp257.
doi: 10.1093/jxb/erp257
[21] DISTELFELD A, CAKMAK I, PELEG Z, OZTURK L, YAZICI A M, BUDAK H, SARANGA Y, FAHIMA T. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum, 2007, 129(3): 635-643. doi: 10.1111/j.1399-3054.2006.00841.x.
doi: 10.1111/j.1399-3054.2006.00841.x.
[22] CAKMAK I, KALAYCI M, KAYA Y, TORUN A A, AYDIN N, WANG Y, ARISOY Z, ERDEM H, YAZICI A, GOKMEN O, OZTURK L, HORST W J. Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9092-9102. doi: 10.1021/jf101197h.
doi: 10.1021/jf101197h
[23] KUTMAN U B, KUTMAN B Y, CEYLAN Y, OVA E A, CAKMAK I. Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil, 2012, 361(1/2): 177-187. doi: 10.1007/s11104-012-1300-x.
doi: 10.1007/s11104-012-1300-x
[24] VELU G, ORTIZ-MONASTERIO I, CAKMAK I, HAO Y, SINGH R P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, 2014, 59(3): 365-372. doi: 10.1016/j.jcs.2013.09.001.
doi: 10.1016/j.jcs.2013.09.001
[25] DIONISIO G, UDDIN M N, VINCZE E. Enrichment and identification of the most abundant zinc binding proteins in developing barley grains by zinc-IMAC capture and nano LC-MS/MS. Proteomes, 2018, 6(1): 3. doi: 10.3390/proteomes6010003.
doi: 10.3390/proteomes6010003
[26] PERSSON D P, DE BANG T C, PEDAS P R, KUTMAN U B, CAKMAK I, ANDERSEN B, FINNIE C, SCHJOERRING J K, HUSTED S. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. The New Phytologist, 2016, 211(4): 1255-1265. doi: 10.1111/nph.13989.
doi: 10.1111/nph.13989
[27] PECK A W, MCDONALD G K, GRAHAM R D. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). Journal of Cereal Science, 2008, 47(2): 266-274. doi: 10.1016/j.jcs.2007.04.006.
doi: 10.1016/j.jcs.2007.04.006
[28] 董明, 王琪, 周琴, 蔡剑, 王笑, 戴廷波, 姜东. 花后5天喷施锌肥有效提高小麦籽粒营养和加工品质. 植物营养与肥料学报, 2018, 24(1): 63-70. doi: 10.11674/zwyf.17106.
doi: 10.11674/zwyf.17106
DONG M, WANG Q, ZHOU Q, CAI J, WANG X, DAI T B, JIANG D. Efficient promotion of the nutritional and processing quality of wheat grain by Zn forliar spraying at 5 days after anthesis. Plant Nutrition and Fertilizer Science, 2018, 24(1): 63-70. doi: 10.11674/zwyf.17106. (in Chinese)
doi: 10.11674/zwyf.17106
[29] HE L, QY W, RENGEL Z, ZHAO P. Zinc fertilization alters flour protein composition of winter wheat genotypes varying in gluten content. Plant, Soil and Environment, 2016, 61(No.5): 195-200. doi: 10.17221/817/2014-pse.
doi: 10.17221/817/2014-pse
[30] BROADLEY M R, WHITE P J, HAMMOND J P, ZELKO I, LUX A. Zinc in plants. New Phytologist, 2007, 173: 677-702. doi: 10.1111/j.1469-8137.2007.01996.
doi: 10.1111/j.1469-8137.2007.01996
[31] DOOLETTE C L, READ T L, LI C, SCHECKEL K G, DONNER E, KOPITTKE P M, SCHJOERRING J K, LOMBI E. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciation. Journal of Experimental Botany, 2018, 69(18): 4469-4481. doi: 10.1093/jxb/ery236.
doi: 10.1093/jxb/ery236
[32] HAUG W, LANTZSCH H J. Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 1983, 34(12): 1423-1426. doi: 10.1002/jsfa.2740341217.
doi: 10.1002/jsfa.2740341217
[33] WANG Z M, LIU Q, PAN F, YUAN L X, YIN X B. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crops Research, 2015, 184: 58-64. doi: 10.1016/j.fcr.2015.09.007.
doi: 10.1016/j.fcr.2015.09.007
[34] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D . Soil and Agricultural Chemistry Analysis. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[35] MILLER L V, KREBS N F, HAMBIDGE K M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. The Journal of Nutrition, 2007, 137(1): 135-141. doi: 10.1093/jn/137.1.135.
doi: 10.1093/jn/137.1.135
[36] 赖学华, 丁建国, 赵晶, 郭蔼光. 不同栽培模式下小麦灌浆期蛋白质周转研究. 西北植物学报, 2005, 25(8): 1574-1578. doi: 10.3321/j.issn:1000-4025.2005.08.014.
doi: 10.3321/j.issn:1000-4025.2005.08.014
LAI X H, DING J G, ZHAO J, GUO A G. Protein turnover of wheat in different planting modes at the kernel-filling stage. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1574-1578. doi: 10.3321/j.issn:1000-4025.2005.08.014. (in Chinese)
doi: 10.3321/j.issn:1000-4025.2005.08.014
[37] 熊淑萍, 王小纯, 李春明, 马新明, 杜少勇, 张营武, 蔺世召. 冬小麦根系时空分布动态及产量对不同氮源配施的响应. 植物生态学报, 2011, 35(7): 759-768. doi: 10.3724/SP.J.1258.2011.00759.
doi: 10.3724/SP.J.1258.2011.00759
XIONG S P, WANG X C, LI C M, MA X M, DU S Y, ZHANG Y W, LIN S Z. Responses of the spatial-temporal distribution of winter wheat (Triticum aestivum) roots and yield to different ratios of nitrogen sources. Chinese Journal of Plant Ecology, 2011, 35(7): 759-768. doi: 10.3724/SP.J.1258.2011.00759. (in Chinese)
doi: 10.3724/SP.J.1258.2011.00759
[38] KUTMAN U B, YILDIZ B, OZTURK L, CAKMAK I. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry Journal, 2010, 87(1): 1-9. doi: 10.1094/cchem-87-1-0001.
doi: 10.1094/cchem-87-1-0001
[39] ANDRESEN E, PEITER E, KÜPPER H. Trace metal metabolism in plants. Journal of Experimental Botany, 2018, 69(5): 909-954. doi: 10.1093/jxb/erx465.
doi: 10.1093/jxb/erx465
[40] XUE Y F, YUE S C, ZHANG Y Q, CUI Z L, CHEN X P, YANG F C, CAKMAK I, MCGRATH S P, ZHANG F S, ZOU C Q. Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant and Soil, 2012, 361(1/2): 153-163. doi: 10.1007/s11104-012-1510-2.
doi: 10.1007/s11104-012-1510-2
[41] 杨习文, 宋淼, 李秋杰, 周苏玫, 韩少宇, 陈旭, 徐利利, 贺德先. 氮锌配施对小麦锌转运、分配与累积的影响. 应用生态学报, 2020, 31(1): 148-156. doi: 10.13287/j.1001-9332.202001.027.
doi: 10.13287/j.1001-9332.202001.027
YANG X W, SONG M, LI Q J, ZHOU S M, HAN S Y, CHEN X, XU L L, HE D X. Impacts of combined N and Zn application on Zn translocation, partitioning, and accumulation in Triticum aestivum. Chinese Journal of Applied Ecology, 2020, 31(1): 148-156. doi: 10.13287/j.1001-9332.202001.027. (in Chinese)
doi: 10.13287/j.1001-9332.202001.027
[42] PEARSON J N, JENNER C F, RENGEL Z, GRAHAM R D. Differential transport of Zn, Me and sucrose along the longitudinal axis of developing wheat grains. Physiologia Plantarum, 1996, 97(2): 332-338. doi: 10.1034/j.1399-3054.1996.970217.x.
doi: 10.1034/j.1399-3054.1996.970217.x.
[43] 陈娟, 王少霞, 田霄鸿, 陈艳龙, 朱文玲, 李秀双, 刘珂, 杨畅. 锌与农药配合喷施对小麦锌累积分配及转移的影响. 西北农林科技大学学报(自然科学版), 2019, 47(3): 67-76. doi: 10.13207/j.cnki.jnwafu.2019.03.010.
doi: 10.13207/j.cnki.jnwafu.2019.03.010
CHEN J, WANG S X, TIAN X H, CHEN Y L, ZHU W L, LI X S, LIU K, YANG C. Effect of combined foliar application of zinc and pesticides on accumulation, distribution and transfer of zinc in wheat. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(3): 67-76. doi: 10.13207/j.cnki.jnwafu.2019.03.010. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2019.03.010
[44] WANG X Z, LIU D Y, ZHANG W, WANG C J, CAKMAK I, ZOU C Q. An effective strategy to improve grain zinc concentration of winter wheat, Aphids prevention and farmers’ income. Field Crops Research, 2015, 184: 74-79. doi: 10.1016/j.fcr.2015.08.015.
doi: 10.1016/j.fcr.2015.08.015
[45] WANG S X, SUN N H, YANG S, TIAN X H, LIU Q. The effectiveness of foliar applications of different zinc source and urea to increase grain zinc of wheat grown under reduced soil nitrogen supply. Journal of Plant Nutrition, 2021, 44(5): 644-659. doi: 10.1080/01904167.2020.1849286.
doi: 10.1080/01904167.2020.1849286
[46] LI M, WANG S X, TIAN X H, ZHAO J H, LI H Y, GUO C H, CHEN Y L, ZHAO A Q. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P. Journal of Cereal Science, 2015, 61: 26-32. doi: 10.1016/j.jcs.2014.09.009.
doi: 10.1016/j.jcs.2014.09.009
[47] GONZALEZ D, ALMENDROS P, OBRADOR A, ALVAREZ J M. Zinc application in conjunction with urea as a fertilization strategy for improving both nitrogen use efficiency and the zinc biofortification of barley. Journal of the Science of Food and Agriculture, 2019, 99(9): 4445-4451. doi: 10.1002/jsfa.9681.
doi: 10.1002/jsfa.9681
[48] LI M, WANG S X, TIAN X H, HUANG Y P. Improving nutritional quality of wheat grain through foliar zinc combined with macronutrients. Agronomy Journal, 2018, 110(1): 38-46. doi: 10.2134/agronj2017.08.0437.
doi: 10.2134/agronj2017.08.0437
[49] DOOLETTE C L, READ T L, HOWELL N R, CRESSWELL T, LOMBI E. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: a 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. Science of the Total Environment, 2020, 749: 142369. doi: 10.1016/j.scitotenv.2020.142369.
doi: 10.1016/j.scitotenv.2020.142369
[50] WIESER H, SEILMEIER W. The influence of nitrogen fertilisation on quantities and proportions of different protein types in wheat flour. Journal of the Science of Food and Agriculture, 1998, 76(1): 49-55. doi: 10.1002/(sici)1097-0010(199801)76:1<49:aid-jsfa950>3.0.co;2-2.
doi: 10.1002/(sici)1097-0010(199801)76:1<49:aid-jsfa950>3.0.co;2-2
[51] GOESAERT H, BRIJS K, VERAVERBEKE W S, COURTIN C M, GEBRUERS K, DELCOUR J A. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science & Technology, 2005, 16(1/2/3): 12-30. doi: 10.1016/j.tifs.2004.02.011.
doi: 10.1016/j.tifs.2004.02.011
[52] 赵鹏, 杨帆, 睢福庆, 王巧燕. 氮锌配施对冬小麦氮利用、产量及籽粒蛋白质含量的影响. 中国农业大学学报, 2013, 18(3): 28-33.
ZHAO P, YANG F, SUI F Q, WANG Q Y. Effect of combined application of Zn and N fertilizers on nitrogen use, grain yield and protein content in winter wheat. Journal of China Agricultural University, 2013, 18(3): 28-33. (in Chinese)
[53] TRIBOI E. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. Journal of Experimental Botany, 2003, 54(388): 1731-1742. doi: 10.1093/jxb/erg183.
doi: 10.1093/jxb/erg183
[54] DIER M, HÜTHER L, SCHULZE W X, ERBS M, KÖHLER P, WEIGEL H J, MANDERSCHEID R, ZÖRB C. Elevated atmospheric CO2 concentration has limited effect on wheat grain quality regardless of nitrogen supply. Journal of Agricultural and Food Chemistry, 2020, 68(12): 3711-3721. doi: 10.1021/acs.jafc.9b07817.
doi: 10.1021/acs.jafc.9b07817
[55] ROSSMANN A, BUCHNER P, SAVILL G P, POWERS S J, HAWKESFORD M J, MÜHLING K H. Foliar N application at anthesis stimulates gene expression of grain protein fractions and alters protein body distribution in winter wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 2019, 67(46): 12709-12719. doi: 10.1021/acs.jafc.9b04634.
doi: 10.1021/acs.jafc.9b04634
[56] 石玉, 张永丽, 于振文. 施氮量对不同品质类型小麦子粒蛋白质组分含量及加工品质的影响. 植物营养与肥料学报, 2010, 16(1): 33-40.
SHI Y, ZHANG Y L, YU Z W. Effects of nitrogen fertilization on protein components contents and processing quality of different wheat genotypes. Plant Nutrition and Fertilizer Science, 2010, 16(1): 33-40. (in Chinese)
[57] MARTRE P, PORTER J R, JAMIESON P D, TRIBOÏ E. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiology, 2003, 133(4): 1959-1967. doi: 10.1104/pp.103.030585.
doi: 10.1104/pp.103.030585
[58] GIULIANI M M, GIUZIO L, DE CARO A, FLAGELLA Z. Relationships between nitrogen utilization and grain technological quality in durum wheat: I. nitrogen translocation and nitrogen use efficiency for protein. Agronomy Journal, 2011, 103(5): 1487-1494. doi: 10.2134/agronj2011.0153.
doi: 10.2134/agronj2011.0153
[59] SHEWRY P R, MITCHELL R A C, TOSI P, WAN Y F, UNDERWOOD C, LOVEGROVE A, FREEMAN J, TOOLE G A, MILLS E N C, WARD J L. An integrated study of grain development of wheat (cv. Hereward). Journal of Cereal Science, 2012, 56(1): 21-30. doi: 10.1016/j.jcs.2011.11.007.
doi: 10.1016/j.jcs.2011.11.007
[60] GUPTA R B, MASCI S, LAFIANDRA D, BARIANA H S, MACRITCHIE F. Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. Journal of Experimental Botany, 1996, 47(9): 1377-1385. doi: 10.1093/jxb/47.9.1377.
doi: 10.1093/jxb/47.9.1377
[61] TAO Z Q, WANG D M, CHANG X H, WANG Y J, YANG Y S, ZHAO G C. Effects of zinc fertilizer and short-term high temperature stress on wheat grain production and wheat flour proteins. Journal of Integrative Agriculture, 2018, 17(9): 1979-1990. doi: 10.1016/S2095-3119(18)61911-2.
doi: 10.1016/S2095-3119(18)61911-2
[62] WANG Y X, SPECHT A, HORST W J. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. The New Phytologist, 2011, 189(2): 428-437. doi: 10.1111/j.1469-8137.2010.03489.x.
doi: 10.1111/j.1469-8137.2010.03489.x.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!