Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2347-2359.doi: 10.3864/j.issn.0578-1752.2022.12.007

• PLANT PROTECTION • Previous Articles     Next Articles

Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha

JIN MengJiao1,2(),LIU Bo2(),WANG KangKang2,ZHANG GuangZhong2,QIAN WanQiang2(),WAN FangHao1,2()   

  1. 1College of Plant Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong
    2Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences/Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture/Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Shenzhen 518120, Guangdong
  • Received:2021-12-03 Accepted:2021-12-27 Online:2022-06-16 Published:2022-06-23
  • Contact: WanQiang QIAN,FangHao WAN E-mail:jinmj_97@163.com;liubo03@caas.cn;qianwanqiang@caas.cn;wanfanghao@caas.cn

Abstract:

【Objective】Light is one of the important ecological factors for photosynthesis of plants. The capture and utilization of light by photosynthetic pigments affects the growth and development of plants, and then affects their survival and fitness in natural ecosystems. The objective of this study is to clarify the photosynthetic physiological characteristics and response of gene expression of chlorophyll biosynthesis pathway to different light intensities in Mikania micrantha, as well as the relationship between photosynthetic energy and chlorophyll transformation, and to provide physiological and ecological evidences for explaining the “rapid growth” of M. micrantha.【Method】The photosynthetic pigment content of M. micrantha was determined by ethanol extraction under different light intensities (0, 20%, 40% and 100%). The variation pattern of chlorophyll a and b ratio (Chl a/b) was analyzed. The photosynthetic characteristics of M. micrantha were compared with the representative plants of different photosynthetic pathways (C3, C4 and CAM). The contents of ATP and starch in M. micrantha leaves under the above light intensities were determined by micro-method and anthrone colorimetric method. The cDNA library of M. micrantha under different light intensities was established and sequenced. Bioinformatics software including OrthoFinder, Blastp, HISAT2, StringTie, R package were used to analyze the expression pattern of genes involved in chlorophyll synthesis and light-harvesting complex (LHC) in M. micrantha under different light intensities. The expression patterns of genes related to chlorophyll synthesis pathway were identified.【Result】At 100% light intensity, the Chl b and carotenoid contents and Chl a/b in M. micrantha leaves were similar to those in C4 plant (maize). The Chl a/b in M. micrantha and maize leaves was significantly higher than that in C3 (rice and tomato) and CAM (aloe) plants. The contents of Chl a, Chl b and carotenoid in M. micrantha leaves under different light intensities did not change significantly, but Chl a/b significantly increased with increasing light intensity. Between the 40% and 100% light intensity, ATP content in M. micrantha leaves changed slightly, while starch content in M. micrantha leaves increased significantly in 100% light intensity. When the light intensity was 0, starch content decreased sharply and ATP content increased. The gene expression levels of HEMA, CHLH, CRD1 and CAO gene families involved in chlorophyll biosynthesis in M. micrantha were regulated by light induction, and the expression levels of light-harvesting complex (LHC) genes were higher under high light intensity.【Conclusion】Under different light conditions, M. micrantha may regulate the synthesis of Chl a and Chl b, and the mutual transformation of starch and ATP, which lay the foundation for the higher photosynthetic rate and light adaptability of M. micrantha.

Key words: Mikania micrantha, photosynthetic pigment characteristics, ATP content, starch storage, response to different light environments, regulation of gene expression

Fig. 1

Variation curves of diurnal photoperiod light intensity settings for five species"

Fig. 2

The changes of photosynthetic pigment content and Chl a/b in different photosynthetic pathways plants Different lowercases on the bars represent significant difference at P<0.05 level among different plants with the same index. Five biological replicates were set for each species"

Fig. 3

Changes of photosynthetic pigment content and Chl a/b in M. micrantha under different light intensities Different lowercases represent significant difference at P<0.05 level. The same as Fig. 4"

Fig. 4

Changes of ATP and starch contents in M. micrantha under different light intensities"

Table 1

Expression levels of gene families in chlorophyll biosynthesis pathway under different light intensities"

基因家族
Gene family
基因名称
Gene ID
不同时间下的光照强度 Light intensity under different times
8:00 (40%) 12:00 (100%) 17:00 (20%) 18:00 (0)
HEMA Mm03G008458 265.7 3069.0 516.0 505.3
Mm04G009926 1.0 8.3 19.0 12.3
Mm04G009947 0.3 9.0 29.3 6.3
Mm09G022271 1165.3 796.3 950.0 1128.7
HEMC Mm03G007750 1651.0 1452.3 2872.0 2340.3
Mm15G034118 326.0 279.7 741.3 636.0
Mm15G034127 309.7 283.0 774.3 608.0
HEMD Mm19G040701 549.0 542.0 628.0 722.0
Mm19G040704 292.67 181.0 282.7 359.3
Mm19G040708 207.3 107.0 118.3 147.3
Mm19G040711 142.3 86.3 79.3 104.7
HEME Mm01G003424 1007.7 810.3 2560.0 2159.0
Mm07G017442 324.3 427.7 1019.3 875.7
Mm14G033554 1.3 3.7 5.3 7.0
HEMF Mm04G008958 4639.3 3728.0 6053.0 5493.3
GUN4 Mm06G015460 11.0 20.0 25.0 13.3
Mm06G015530 6.0 12.7 14.7 13.0
CHLH Mm13G030916 9896.7 15342.3 2337.0 2011.3
MmUnG043782 6985.3 10106.3 1522.3 1202.3
CHLI Mm18G039053 2991.7 5393.0 5682.7 5434.0
Mm01G002914 3245.3 2445.0 3985.0 3772.0
CRD1 Mm13G030861 2430.3 2990.7 423.3 386.7
Mm13G030884 3649.3 4209.0 594.7 483.3
PCB Mm17G037161 216.0 472.3 710.7 513.0
POR Mm01G002138 814.0 3970.3 5360.0 4283.0
Mm03G008274 32.0 1323.7 3327.3 4707.0
Mm04G009104 28.7 73.0 117.3 94.0
Mm07G016864 12.7 40.7 104.7 113.0
Mm16G036000 16.3 12.3 45.0 17.0
MmUnG042187 17.7 14.0 60.3 26.7
MmUnG044337 0.3 0.7 1.3 0.3
G4 Mm07G017733 17.3 4.0 34.7 14.7
Mm17G037705 3177.7 2369.0 3596.0 3518.0
CLH Mm06G015923 107.0 116.3 276.7 51.3
Mm07G018083 430.0 857.3 966.7 785.0
MmUnG042738 1.7 2.7 5.3 2.0
CAO Mm01G001296 67.3 276.3 165.7 63.0
Mm01G001298 2.0 3.3 4.0 1.3
Mm02G004540 5003.7 2837.0 421.0 518.3
Mm05G012908 4965.3 4202.7 2773.3 2253.7
Mm08G021299 1425.3 2045.7 549.3 573.0
Mm16G036155 706.7 757.7 1119.3 911.7

Table 2

Gene expression levels of light-harvesting complex (LHC) protein family under different light intensities"

基因家族
Gene family
基因名称
Gene ID
不同时间下的光照强度 Light intensity under different times
8:00 (40%) 12:00 (100%) 17:00 (20%) 18:00 (0)
LHCB2 Mm01G002159 182.0 4514.0 138.0 174.0
Mm01G002160 15.0 689.0 20.7 109.7
Mm07G019027 6013.7 27098.0 1747.7 1522.7
Mm18G039443 8876.3 79479.0 15727.0 5623.7
MmUnG042961 24.0 873.7 50.7 130.7
MmUnG042962 1025.0 9108.3 427.0 466.7
Mm11G026494 660.7 8919.0 3085.7 3943.7
LHCB3 Mm16G035290 425.0 23868.7 6085.0 5605.7
MmUnG044047 7463.0 36412.7 3480.3 6033.0
Mm12G028787 713.7 5819.0 784.3 1731.0
Mm12G028786 33.0 109.3 57.0 64.0
Mm07G019026 4625.3 15617.3 2046.7 2507.7
LHCB5 Mm19G040589 6216.3 24846.7 9970.7 9191.3
Mm11G026495 2.0 183.7 54.7 270.3
Mm11G026493 246.3 3081.3 1335.7 2221.0
Mm10G024129 593.3 12951.7 1605.0 784.7
Mm11G026496 264.0 6615.3 1325.7 2067.3
LIL3 Mm04G009004 3726.0 2896.0 5061.7 4622.0
Mm12G028071 1768.3 1584.3 2006.3 1737.0

Fig. 5

Variation of gene expression levels at different time points in regulating chlorophyll biosynthesis pathway The changes of expression levels at different times are shown in the form of heat maps, in which, from left to right, the gene expression levels of M. micrantha related enzymes regulating chlorophyll biosynthesis under different light intensities at 8:00, 12:00, 17:00 and 18:00, respectively"

Fig. 6

Heat map of the light-harvesting complex (LHC) protein family gene expression changes under different light intensities"

[1] HOLM L G, PLUCKNETT D L, PANCHO J V, HERBERGER J P. The World’s Worst Weeds:Distribution and Biology. University Press of Hawaii, 1977.
[2] SANKARAN K V, PUZARI K C, ELLISON C A, KUMAR P S, DEV U. Field release of the rust fungus Puccinia spegazzinii to control Mikania micrantha in India:Protocols and raising awareness// Proceedings of the XII International Symposium on Biological Control of Weeds. France: CAB International Wallingford, 2008: 384-389.
[3] DAY M D, KAWI A, KURIKA K, DEWHURST C F, WAISALE S, SAUL-MAORA J, FIDELIS J, BOKOSOU J, MOXON J, ORAPA W, SENARATNE K A D. Mikania micrantha Kunth (Asteraceae) (mile- a-minute): Its distribution and physical and socioeconomic impacts in Papua New Guinea. Pacific Science, 2012, 66(2): 213-223. DOI: 10.2984/66.2.8.
doi: 10.2984/66.2.8
[4] ELLISON C A, SANKARAN K V. Profile of an invasive plant: Mikania micrantha//ELLISON C A, SANKARAN K V, MURPHY S T. Invasive Alien Plants: Impacts on Development and Options for Management, 2017: 18-28.
[5] LOWE S, BROWNE M, BOUDJELAS S, DE POORTER M. 100 of the world’s worst invasive alien species: A selection from the global invasive species database. Auckland: Invasive Species Specialist Group, 2000.
[6] 中国第一批外来入侵物种名单. 中华人民共和国国务院公报, 2003(23): 41-46.
First list of invasive alien species in China. Bulletin of the State Council of the People’s Republic of China, 2003(23): 41-46. (in Chinese)
[7] 王伯荪, 廖文波, 昝启杰, 李鸣光, 周先叶, 高三红. 薇甘菊Mikania micrantha在中国的传播. 中山大学学报(自然科学版), 2003, 42(4): 47-50, 54.
WANG B S, LIAO W B, ZAN Q J, LI M G, ZHOU X Y, GAO S H. The spread of Mikania micrantha in China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(4): 47-50, 54. (in Chinese)
[8] 李秋玲, 张峰, 肖辉林. 外来入侵植物薇甘菊的危害现状及治理途径. 北京农业, 2011(33): 129-130.
LI Q L, ZHANG F, XIAO H L. Alien invasive species Mikania micrantha harm situation and control ways. Beijing Agriculture, 2011(33): 129-130. (in Chinese)
[9] 李鸣光, 鲁尔贝, 郭强, 昝启杰, 韦萍萍, 蒋露, 徐华林, 钟填奎. 入侵种薇甘菊防治措施及策略评估. 生态学报, 2012, 32(10): 3240-3251. DOI: 10.5846/stxb201104090460.
doi: 10.5846/stxb201104090460
LI M G, LU E B, GUO Q, ZAN Q J, WEI P P, JIANG L, XU H L, ZHONG T K. Evaluation of the controlling methods and strategies for Mikania micrantha H. B. K. Acta Ecologica Sinica, 2012, 32(10): 3240-3251. DOI: 10.5846/stxb201104090460. (in Chinese)
doi: 10.5846/stxb201104090460
[10] 程汉亭, 范志伟, 黄乔乔, 李晓霞, 沈奕德, 刘丽珍. 薇甘菊在不同光环境下的生理生态研究. 热带作物学报, 2012, 33(3): 523-528.
CHENG H T, FAN Z W, HUANG Q Q, LI X X, SHEN Y D, LIU L Z. Ecophysiology of Mikania micrantha H.B.K under different light conditions. Chinese Journal of Tropical Crops, 2012, 33(3): 523-528. (in Chinese)
[11] 温达志, 叶万辉, 冯惠玲, 蔡楚雄. 外来入侵杂草薇甘菊及其伴生种基本光合特性的比较. 热带亚热带植物学报, 2000, 8(2): 139-146.
WEN D Z, YE W H, FENG H L, CAI C X. Comparison of basic photosynthetic characteristics of invasive alien weed Mikania micrantha and its companion species. Journal of Tropical and Subtropical Botany, 2000, 8(2): 139-146. (in Chinese)
[12] LIU B, YAN J, LI W, YIN L J, LI P, YU H X, XING L S, CAI M L, WANG H C, ZHAO M X, et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nature Communications, 2020, 11(1): 340. DOI: 10.1038/s41467-019-13926-4.
doi: 10.1038/s41467-019-13926-4
[13] DAY M D, CLEMENTS D R, GILE C, SENARATNE W K, SHEN S, WESTON L A, ZHANG F. Biology and impacts of Pacific Islands invasive species. 13. Mikania micrantha Kunth (Asteraceae). Pacific Science, 2016, 70(3): 257-285. DOI: 10.2984/70.3.1.
doi: 10.2984/70.3.1
[14] 陈新微, 魏子上, 刘红梅, 杨殿林, 王慧, 皇甫超河. 云南菊科入侵物种与本地共生物种光合特性比较. 环境科学研究, 2016, 29(4): 538-546. DOI: 10.13198/j.issn.1001-6929.2016.04.10.
doi: 10.13198/j.issn.1001-6929.2016.04.10
CHEN X W, WEI Z S, LIU H M, YANG D L, WANG H, HUANGFU C H. Comparison of photosynthetic characteristics between invasive and co-occuring native Asteraceae plants in Yunnan Province, China. Research of Environmental Sciences, 2016, 29(4): 538-546. DOI: 10.13198/j.issn.1001-6929.2016.04.10. (in Chinese)
doi: 10.13198/j.issn.1001-6929.2016.04.10
[15] 王文杰, 张衷华, 祖元刚, 贺海升, 关宇, 李文馨. 薇甘菊(Mikania micrantha)非同化器官光合特征及其生态学意义. 生态学报, 2009, 29(1): 28-36.
WANG W J, ZHANG Z H, ZU Y G, HE H S, GUAN Y, LI W X. Photosynthetic characteristics of the non-photosynthetic organs of Mikania micrantha and its ecological significance. Acta Ecologica Sinica, 2009, 29(1): 28-36. (in Chinese)
[16] CUI C, WANG Z, SU Y, WANG T. New insight into the rapid growth of the Mikania micrantha stem based on DIA proteomic and RNA-Seq analysis. Journal of Proteomics, 2021, 236: 104126. DOI: 10.1016/j.jprot.2021.104126.
doi: 10.1016/j.jprot.2021.104126
[17] 魏巍, 侯玉平, 彭少麟, 陈鹏东, 梁希平, 张静. 不同光照强度对入侵植物薇甘菊(Mikania micrantha)和飞机草(Chromolaena odorata)生长及生物量分配的影响. 生态学报, 2017, 37(18): 6021-6028. DOI: 10.5846/stxb201606301343.
doi: 10.5846/stxb201606301343
WEI W, HOU Y P, PENG S L, CHEN P D, LIANG X P, ZHANG J. Effects of light intensity on growth and biomass allocation of invasive plants Mikania micrantha and Chromolaena odorata. Acta Ecologica Sinica, 2017, 37(18): 6021-6028. DOI: 10.5846/stxb201606301343. (in Chinese)
doi: 10.5846/stxb201606301343
[18] 廖飞勇, 谢瑛, 何平, 范亚民. 不同光强对薇甘菊生长及光系统的影响. 生命科学研究, 2003, 7(4): 355-359. DOI: 10.16605/j.cnki.1007-7847.2003.04.014.
doi: 10.16605/j.cnki.1007-7847.2003.04.014
LIAO F Y, XIE Y, HE P, FAN Y M. The effect of different light intensity on the growth and photosystem of Mikania micrantha Kunth. Life Science Research, 2003(4): 355-359. DOI: 10.16605/j.cnki.1007-7847.2003.04.014. (in Chinese)
doi: 10.16605/j.cnki.1007-7847.2003.04.014
[19] 邓雄. 不同光环境下薇甘菊形态和生理可塑性及其响应研究. 生态环境学报, 2010, 19(5): 1170-1175. DOI: 10.16258/j.cnki.1674-5906.2010.05.037.
doi: 10.16258/j.cnki.1674-5906.2010.05.037
DENG X. Morphological and physiological plasticity responding to different light environments of the invasive plant, Mikania micrantha H. B. Kunth. Ecology and Environmental Sciences, 2010, 19(5): 1170-1175. DOI: 10.16258/j.cnki.1674-5906.2010.05.037. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2010.05.037
[20] PAL S K, LIPUT M, PIQUES M, ISHIHARA H, OBATA T, MARTINS M C, SULPICE R, DONGEN J T, FERNIE A R, YADAV U P, LUNN J E, USADEL B, STITT M. Diurnal changes of polysome loading track sucrose content in the rosette of wild-type Arabidopsis and the starchless pgm mutant. Plant Physiology, 2013, 162(3): 1246-1265. DOI: 10.1104/pp.112.212258.
doi: 10.1104/pp.112.212258
[21] BRAUNER K, BIRAMI B, BRAUNER H A, HEYER A G. Diurnal periodicity of assimilate transport shapes resource allocation and whole-plant carbon balance. The Plant Journal, 2018, 94(5): 776-789. DOI: 10.1111/tpj.13898.
doi: 10.1111/tpj.13898
[22] MORITA R, INOUE K, IKEDA K I, HATANAKA T, MISOO S, FUKAYAMA H. Starch content in leaf sheath controlled by CO2- responsive CCT protein is a potential determinant of photosynthetic capacity in rice. Plant and Cell Physiology, 2016, 57(11): 2334-2341. DOI: 10.1093/pcp/pcw142.
doi: 10.1093/pcp/pcw142
[23] LARKUM T, HOWE C J. Molecular aspects of light-harvesting processes in algae. Advances in Botanical Research, 1997, 27: 257-330. DOI: 10.1016/S0065-2296(08)60283-9.
doi: 10.1016/S0065-2296(08)60283-9
[24] TANAKA R, TANAKA A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011, 1807(8): 968-976. DOI: 10.1016/j.bbabio.2011.01.002.
doi: 10.1016/j.bbabio.2011.01.002
[25] MATSUMOTO F, OBAYASHI T, SASAKI-SEKIMOTO Y, OHTA H, TAKAMIYA K, MASUDA T. Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiology, 2004, 135(4): 2379-2391. DOI: 10.1104/pp.104.042408.
doi: 10.1104/pp.104.042408
[26] ZENG Z Q, LIN T Z, ZHAO J Y, ZHENG T H, XU L F, WANG Y H, LIU L L, JIANG L, CHEN S H, WAN J M. OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa). Journal of Integrative Agriculture, 2020, 19(3): 612-623. DOI: 10.1016/S2095-3119(19)62710-3.
doi: 10.1016/S2095-3119(19)62710-3
[27] HEY D, ROTHBART M, HERBST J, WANG P, MULLER J, WITTMANN D, GRUHL K, GRIMM B. LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiology, 2017, 174(2): 1037-1050. DOI: 10.1104/pp.17.00505.
doi: 10.1104/pp.17.00505
[28] TANAKA R, ROTHBART M, OKA S, TAKABAYASHI A, TAKABAYASHI K, SHIBATA M, MYOUGA F, MOTOHASHI R, SHINOZAKI K, GRIMM B, TANAKA A. LIL3, a light-harvesting- like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16721-16725. DOI: 10.1073/pnas.1004699107.
doi: 10.1073/pnas.1004699107
[29] 林植芳, 彭长连, 林桂珠. C3、C4植物叶片叶绿素荧光猝灭日变化和对光氧化作用的响应. 作物学报, 1999, 25(3): 284-290.
LIN Z F, PENG C L, LIN G Z. Diurnal changes of chlorophyll fluorescence quenching and the response to photooxidation in leaves of C3 and C4 plants. Acta Agronomica Sinica, 1999, 25(3): 284-290. (in Chinese)
[30] 刘良云, 关琳琳, 彭代亮, 胡勇, 刘玲玲. C3、C4作物的光保护机制差异的光谱探测研究. 遥感学报, 2012, 16(4): 783-795.
LIU L Y, GUAN L L, PENG D L, HU Y, LIU L L. Detection of the photosynthesis protective mechanisms of C3 and C4 crops from hyper spectral data. Journal of Remote Sensing, 2012, 16(4): 783-795. (in Chinese)
[31] 邹琦. 植物生理生化实验指导. 北京: 中国农业出版社, 1995.
ZOU Q. Experimental Guidance of Plant Physiology and Biochemistry. Beijing: China Agriculture Press, 1995. (in Chinese)
[32] EMMS D M, KELLY S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 2019, 20(1): 238. DOI: 10.1186/s13059-019-1832-y.
doi: 10.1186/s13059-019-1832-y
[33] PERTEA M, KIM D, PERTEA G M, LEEK J T, SALZBERG S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 2016, 11(9): 1650-1667. DOI: 10.1038/nprot.2016.095.
doi: 10.1038/nprot.2016.095
[34] BAILEY S, WALTER R G, JANSSON S, HORTON P. Acclimation of Arabidopsis thaliana to the light environment: The existence of separate low light and high light responses. Planta, 2001, 213(5): 794-801. DOI: 10.1007/s004250100556.
doi: 10.1007/s004250100556
[35] 刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响. 植物生态学报, 2012, 36(10): 1062-1074. DOI: 10.3724/SP.J.1258.2012.01062.
doi: 10.3724/SP.J.1258.2012.01062
LIU S L, MA M D, PAN Y Z, WEI L L, HE C X, YANG K M. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species. Chinese Journal of Plant Ecology, 2012, 36(10): 1062-1074. DOI: 10.3724/SP.J.1258.2012.01062. (in Chinese)
doi: 10.3724/SP.J.1258.2012.01062
[36] 薛瑞清, 王飞, 蔺宝军, 胡明国. 喷灌不同水肥处理下紫花苜蓿光合特性、叶绿素荧光参数及产量变化. 节水灌溉, 2021(10): 54-58.
XUE R Q, WANG F, LIN B J, HU M G. Changes of photosynthetic characteristics, chlorophyll fluorescence parameters and production of alfalfa under different water and fertilizer treatments under sprinkler irrigation. Water Saving Irrigation, 2021(10): 54-58. (in Chinese)
[37] WEBSTER R J, DRIEVER S M, KROMDIJK J, MCGRATH J, LEAKEY A D, SIEBKE K, DEMETRADES-SHAH T, BONNAGE S, PELOE T, LAWSON T, LONG S P. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax. Scientific Reports, 2016, 6: 20694. DOI: 10.1038/srep20694.
doi: 10.1038/srep20694
[38] 周文菲, 刘芙蓉, 姚甄业, 龚春梅. 猪毛菜属3种不同光合型物种的生长适应特征比较. 草业学报, 2019, 28(10): 78-90. DOI: 10.11686/cyxb2018204.
doi: 10.11686/cyxb2018204
ZHOU W F, LIU F R, YAO Z Y, GONG C M. Growth adaptation characteristics of three Salsola species with different photosynthetic systems. Acta Prataculturae Sinica, 2019, 28(10): 78-90. DOI: 10.11686/cyxb2018204. (in Chinese)
doi: 10.11686/cyxb2018204
[39] NIPPERT J B, FAY P A, KNAPP A K. Photosynthetic traits in C3 and C4 grassland species in mesocosm and field environments. Environmental and Experimental Botany, 2007, 60(3): 412-420. DOI: 10.1016/j.envexpbot.2006.12.012.
doi: 10.1016/j.envexpbot.2006.12.012
[40] 田艳丽, 种培芳, 陆文涛, 贾向阳. 不同光合途径植物红砂和珍珠猪毛菜幼苗对氮沉降及降水变化的光合响应. 草地学报, 2021, 29(1): 121-130. DOI: 10.11733/j.issn.1007-0435.2021.01.015.
doi: 10.11733/j.issn.1007-0435.2021.01.015
TIAN Y L, ZHONG P F, LU W T, JIA X Y. Photosynthetic responses of seedings of Reaumuria soongorica and Salsola passerina with different photosynthetic pathway to nitrogen deposition and precipitation changes. Acta Agrestia Sinica, 2021, 29(1): 121-130. DOI: 10.11733/j.issn.1007-0435.2021.01.015. (in Chinese)
doi: 10.11733/j.issn.1007-0435.2021.01.015
[41] 张雨斯. 叶绿素含量对C3、C4植物叶绿素荧光参数的影响. 草原与草业, 2021, 33(1): 17-22.
ZHANG Y S. Effects of chlorophyll content on chlorophyll fluorescence parameters of C3 and C4 plants. Grassland and Prataculture, 2021, 33(1): 17-22. (in Chinese)
[42] KOURIL R, ILIK P, NAUS J, ACHOEFS B. On the limits of applicability of spectrophotometric and spectrofluorimetric methods for the determination of chlorophyll a/b ratio. Photosynthesis Research, 1999, 62(1): 107-116. DOI: 10.1023/A:1006359213151.
doi: 10.1023/A:1006359213151
[43] MA X H, SONG L L, YU W W, HU Y Y, LIU Y, WU J S, YING Y Q. Growth, physiological, and biochemical responses of Camptotheca acuminata seedlings to different light environments. Frontiers in Plant Science, 2015, 6: 321. DOI: 10.3389/fpls.2015.00321.
doi: 10.3389/fpls.2015.00321
[44] SMITH A M, STITT M. Coordination of carbon supply and plant growth. Plant, Cell and Environment, 2007, 30(9): 1126-1149. DOI: 10.1111/j.1365-3040.2007.01708.x.
doi: 10.1111/j.1365-3040.2007.01708.x.
[45] MASUDA T, FUJITA Y. Regulation and evolution of chlorophyll metabolism. Photochemical & Photobiological Sciences, 2008, 7(10): 1131-1149. DOI: 10.1039/B807210H.
doi: 10.1039/B807210H
[46] CHEN M. Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry, 2014, 83: 317-340. DOI: 10.1146/annurev-biochem-072711-162943.
doi: 10.1146/annurev-biochem-072711-162943
[47] SHI D, LI L, ZHANG J, ZHAO P, XING L, XIE W, YAN J, JIN W. Genome-wide examination of chlorophyll metabolic genes in maize and phylogenetic analysis among different photosynthetic organisms. African Journal of Biotechnology, 2011, 10(29): 5559-5562. DOI: 10.5897/AJB10.2693.
doi: 10.5897/AJB10.2693
[48] ECHHARDT U, GRIMM B, HORTENSTEINER S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology, 2004, 56(1): 1-14. DOI: 10.1007/s11103-004-2331-3.
doi: 10.1007/s11103-004-2331-3
[49] HIRASHIMA M, SATOH S, TANAKA R, TANAKA A. Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. The Journal of Biological Chemistry, 2006, 281(22): 15385-15393. DOI: 10.1074/jbc.M602903200.
doi: 10.1074/jbc.M602903200
[50] TANAKA R, KOSHINO Y, SAWA S, ISHIGURO S, OKADA K, TANAKA A. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. The Plant Journal, 2001, 26(4): 365-373. DOI: 10.1046/j.1365-313X.2001.2641034.x.
doi: 10.1046/j.1365-313X.2001.2641034.x.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!