Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1518-1528.doi: 10.3864/j.issn.0578-1752.2019.09.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Spectral Diagnosis of Leaf Area Density of Maize at Heading Stage Under Lodging Stress

ZHOU LongFei1,2,3,4,GU XiaoHe2,3,4(),CHENG Shu1,YANG GuiJun2,3,4,SUN Qian1,2,3,4,SHU MeiYan1,2,3,4   

  1. 1 College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong
    2 Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture/Beijing Research Center for Information Technology in Agriculture, Beijing 100097
    3 National Engineering Research Center for Information Technology in Agriculture, Beijing 100097
    4 Beijing Engineering Research Center for Agriculture Internet of Things, Beijing 100097
  • Received:2018-12-11 Accepted:2019-01-30 Online:2019-05-01 Published:2019-05-16
  • Contact: XiaoHe GU E-mail:guxh@nercita.org.cn

Abstract:

【Objective】 Leaf area density (LAD) reflects the difference of the total leaf area per volume in vertical direction and the distribution of the leaf area in the canopy with the change of height. The purpose of this study was to explore the characterization ability of maize leaf area density and its spectral response to lodging stress intensity. 【Method】 Taking lodging summer maize at heading stage as the research object, the multi-stage of LAD and canopy spectral data after lodging were obtained. The first-order differential and wavelet transform of the canopy spectrum of lodging maize were processed. Based on the correlation analysis between LAD, the first-order differential and wavelet decomposition coefficients of canopy spectrum, the sensitive bands of LAD and the optimal wavelet decomposition scale were screened. Partial least squares (PLS) method was used to construct the LAD spectral diagnosis model of lodging maize, and the accuracy of the model was verified by the measured samples.【Result】The LAD of maize increased with the increase of lodging stress, and LAD could effectively characterize the intensity of lodging stress and recovery ability of maize. After lodging, the canopy structure of maize changed greatly. The spectral reflectance of lodging maize canopy was higher than that of normal maize. The increase of near infrared band was higher than that of visible band. The stronger lodging intensity was, the higher spectral reflectance was. The sensitive bands of LAD were mainly distributed in the blue band 354-442 nm and 472-495 nm, the red band 649-829 nm, and the near infrared band 903-1 195 nm and 1 564-1 581 nm. Comparing with the first-order differential, the validation R 2 of LAD diagnostic model of maize lodging based on continuous wavelet transform increased by 6.08%-9.11%, and RMSE decreased by 23.08%-31.63%. The scale of wavelet decomposition had a certain influence on the diagnostic accuracy of LAD. The accuracy of the low- and medium-scale model was better than that of the high-scale model, and the model constructed by the fifth scale had the best fitting effect on LAD (R 2=0.898, RMSE=1.016). 【Conclusion】 The application of continuous wavelet transform to analyze the maize canopy hyperspectral could effectively diagnose maize leaf area density under lodging stress. It could provide necessary prior knowledge for remote sensing monitoring of maize lodging stress disaster.

Key words: heading stage, lodging stress, continuous wavelet transform, LAD, maize, hyperspectral

Fig. 1

Geographical location of the study area"

Fig. 2

Treatment of different lodging types (left-to-right: GD, JS, JD)"

Fig. 3

Test design"

Table 1

LAD statistics of continuous observation of maize lodging samples"

样本类型
Sample type
采样数
Sampling numbers
最大值
Maximum value
最小值
Minimum value
平均值
Average value
标准差
Standard deviation
GD 30 15.111 0.948 3.122 3.956
JS 30 10.751 1.313 3.096 2.746
JD 30 4.120 0.878 1.432 0.706
CK 18 1.279 0.749 1.061 0.139

Fig. 4

Dynamic changes of LAD under different lodging treatments"

Fig. 5

Spectral reflectance curves of canopy under different lodging treatments"

Fig. 6

Correlation coefficient between first order differential and LAD"

Fig. 7

Correlation coefficient between wavelet coefficients and LAD"

Fig. 8

The determination coefficient between LAD and wavelet coefficients"

Table 2

Modeling and verification of LAD based on spectral transformation"

光谱变换形式
Spectral transformation
尺度
Scale
模型
Model
建模Modeling 验证Verification
R2 RMSE R2 RMSE
一阶微分(R,) Y=196625×X407-5921573×X634-187548×X707-236231×X1130-2 0.653 1.408 0.823 1.486
CWT 2 Y=312.28×X357-5071.2×X493+710.68×X701+258.79×X760-4.1 0.724 1.219 0.873 1.143
4 Y=173.508×X365+176.319×X424+16.742×X700-49.675×X1161-3.233 0.703 1.264 0.884 1.094
5 Y=154.518×X418-5.031×X764+32.643×X913-26.993×X1451-2.034 0.702 1.266 0.898 1.016

Fig. 9

Validation of LAD model based on spectral transformation"

[1] 刘战东, 肖俊夫, 南纪琴, 冯跃华 . 倒伏对夏玉米叶面积、产量及其构成因素的影响. 中国农学通报, 2010,26(18):107-110.
LIU Z D, XIAO J F, NAN J Q, FENG Y H . Effect of different levels lodging on leaf area index, yield and its components of summer maize. Chinese Agricultural Science Bulletin, 2010,26(18):107-110. (in Chinese)
[2] 程富丽, 杜雄, 刘梦星, 靳小利, 崔彦宏 . 玉米倒伏及其对产量的影响. 玉米科学, 2011,19(1):105-108.
CHENG F L, DU X, LIU M X, JIN X L, CUI Y H . Lodging of summer maize and the effects on grain yield. Journal of Maize Sciences, 2011,19(1):105-108. (in Chinese)
[3] ELMORE R W, FERGUSON R B . Mid-season stalk breakage in corn: Hybrid and environmental factors. Journal of Production Agriculture, 1999,12(2):293-299.
doi: 10.2134/jpa1999.0293
[4] 勾玲, 赵明, 黄建军, 张宾, 李涛, 孙锐 . 玉米茎秆弯曲性能与抗倒能力的研究. 作物学报, 2008,34(4):653-661.
doi: 10.3724/SP.J.1006.2008.00653
GOU L, ZHAO M, HUANG J J, ZHANG B, LI T, SUN Y . Bending mechanical properties of stalk and lodging-resistance of maize. Acta Agronomica Sinica, 2008,34(4):653-661. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00653
[5] 黄璐, 乔江方, 刘京宝, 夏来坤, 朱卫红, 李川, 周庆伟 . 夏玉米不同密植群体抗倒性及机收指标探讨. 华北农学报, 2015,30(2):198-201.
doi: 10.7668/hbnxb.2015.02.034
HUANG L, QIAO J F, LIU J B, XIA L K, ZHU W H, LI C, ZHOU Q W . Research on the relationship between maize lodging resistance and grain mechanically harvesting qualities in different planting density. Acta Agriculturae Boreali-Sinica, 2015,30(2):198-201. (in Chinese)
doi: 10.7668/hbnxb.2015.02.034
[6] 曹庆军, 曹铁华, 杨粉团, LAMINE D, 李刚, 王立春 . 灌浆期风灾倒伏对玉米籽粒灌浆特性及品质的影响. 中国生态农业学报, 2013,21(9):1107-1113.
CAO Q J, CAO T H, YANG F T, LAMINE D, LI G, WANG L C . Effect of wind damage on grain-filling characteristics, grain quality and yield of spring maize (Zea mays L.). Chinese Journal of Eco-Agriculture, 2013,21(9):1107-1113. (in Chinese)
[7] 陈碧梅, 劳赏业 . 玉米倒伏类型及抗倒伏措施. 农业灾害研究, 2015,5(4):5-6.
CHEN B M, LAO S Y . Lodging types and lodging-resistant measures of corn. Journal of Agricultural Catastrophology, 2015,5(4):5-6. (in Chinese)
[8] 李树岩, 王宇翔, 胡程达, 闫瑛 . 抽雄期前后大风倒伏对夏玉米生长及产量的影响. 应用生态学报, 2015,26(8):2405-2413.
LI S Y, WANG X Y, HU C D, YAN Y . Effects of strong wind lodging at pre- and post-tasseling stages on growth and yield of summer maize. Chinese Journal of Applied Ecology, 2015,26(8):2405-2413. (in Chinese)
[9] 解飞, 齐雁冰, 常庆瑞 . 关中地区夏玉米抽穗期叶绿素含量的高光谱估算. 水土保持通报, 2016,36(2):176-180.
XIE F, QI Y B, CHANG Q R . Hyperspectral estimation of canopy chlorophyll content in summer corn in Guanzhong area. Bulletin of Soil and Water Conservation, 2016,36(2):176-180. (in Chinese)
[10] 井淑香, 郑以宏, 袁永胜, 黄迎光, 梁凤玲 . 不同生育时期倒伏对夏玉米生育性状和产量的影响. 山东农业科学, 2018,50(2):61-63, 67.
JING S X, ZHENG Y H, YUAN Y S, HUANG Y G, LIANG F L . Effects of lodging at different growing stages on growing characters and grain yield of summer maize. Shandong Agricultural Sciences, 2018,50(2):61-63, 67. (in Chinese)
[11] 李文莹 . 密度对玉米倒伏相关性状及产量的影响[D]. 长春: 吉林大学, 2018.
LI W Y . Effect of planting density on traits related to lodging and yield of maize[D]. Changchun: Jilin University, 2018. ( in Chinese)
[12] 陈艳君, 吴科斌, 张俊雄, 农克俭, 李建生, 李伟 . 玉米秸秆力学参数与抗倒伏性能关系研究. 农业机械学报, 2011,42(6):89-92.
CHEN Y J, WU K B, ZHANG J X, NONG K J, LI J S, LI W . Relationship between corn lodging resistance and mechanical parameters. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(6):89-92. (in Chinese)
[13] MI C, ZHANG X, LI S, YANG J, ZHU D, YANG Y . Assessment of environment lodging stress for maize using fuzzy synthetic evaluation. Math Comput Model, 2011,54(3):1053-1060.
doi: 10.1016/j.mcm.2010.11.035
[14] XUE J, GOU L, ZHAO Y, YAO M, TIAN J, ZHANG W . Effects of light intensity within the canopy on maize lodging. Field Crop Research, 2016,188:133-141.
doi: 10.1016/j.fcr.2016.01.003
[15] 杨扬, 杨建宇, 李绍明, 张晓东, 朱德海, 刘哲, 米春桥, 肖开能 . 玉米倒伏胁迫影响因子的空间回归分析. 农业工程学报, 2011,27(6):244-249.
YANG Y, YANG J Y, LI S M, ZHANG X D, ZHU D H, LIU Z, MI C Q, XIAO K N . Spatial regression analysis on influence factors of maize lodging stress. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(6):244-249. (in Chinese)
[16] 席吉龙, 张建诚, 姚景珍, 郝佳丽, 杨娜, 席凯鹏 . 夏玉米灌浆期倒伏对产量的影响模拟研究. 山西农业科学, 2015,43(6):705-708.
XI J L, ZHANG J C, YAO J Z, HAO J L, YANG N, XI K P . Simulation study on the influence of filling summer corn lodging on yield. Journal of Shanxi Agricultural Sciences, 2015,43(6):705-708. (in Chinese)
[17] 薛军, 王克如, 谢瑞芝, 勾玲, 张旺峰, 明博, 侯鹏, 李少昆 . 玉米生长后期倒伏研究进展. 中国农业科学, 2015,43(6):705-708.
XUE J, WANG K R, XIE R Z, GOU L, ZHANG W F, MING B, HOU P, LI S K . Research progress of maize lodging during late stage. Scientia Agricultura Sinica, 2015,43(6):705-708. (in Chinese)
[18] CHU T, STAREK M, BREWER M, MURRAY S, PRUTER L . Assessing lodging severity over an experimental maize (Zea mays L.) field using UAS images. Remote Sensing, 2017,9:923.
[19] HAN L, YANG G J, FENG H K, ZHOU C Q, YANG H, XU B, LI Z H, YANG X D . Quantitative identification of maize lodging-causing feature factors using unmanned aerial vehicle images and a nomogram computation. Remote Sensing, 2018,10:1528.
doi: 10.3390/rs10101528
[20] 王猛, 张杰, 梁守真, 侯学会, 姚慧敏, 隋学艳, 王勇 . 玉米倒伏后冠层光谱变化特征分析. 安徽农业科学, 2014,42(31):11187-11188, 11201.
WANG M, ZHANG J, LIANG S Z, HOU X H, YAO H M, SUI X Y, WANG Y . Character analysis of the canopy spectral changes after corn lodging. Journal of Anhui Agricultural Sciences, 2014,42(31):11187-11188, 11201. (in Chinese)
[21] ZHANG J C, GU X H, WANG J H, HUANG W J, DONG Y Y, LUO J H, YUAN L, LI Y F . Evaluating maize grain quality by continuous wavelet analysis under normal and lodging circumstances. NJAS-Wageningen Journal of Life Science, 2012,10(1/2):580-585.
[22] 李宗南, 陈仲新, 任国业, 李章成, 王昕 . 基于Worldview-2影像的玉米倒伏面积估算. 农业工程学报, 2016,32(2):1-5.
LI Z N, CHEN Z X, REN G Y, LI Z C, WANG X . Estimation of maize lodging area based on Worldview-2 image. Transactions of the Chinese Society of Agricultura Engineering, 2016,32(2):1-5. (in Chinese)
[23] 王立志, 顾晓鹤, 胡圣武, 杨贵军, 王磊, 范友波, 王艳杰 . 基于多时相HJ-1B CCD影像的玉米倒伏灾情遥感监测. 中国农业科学, 2016,49(21):4120-4129.
WANG L Z, GU X H, HU S W, YANG G J, WANG L, FAN Y B, WANG Y J . Remote sensing monitoring of maize lodging disaster with multi-temporal HJ-1B CCD image. Scientia Agricultura Sinica, 2016,49(21):4120-4129. (in Chinese)
[24] 王延仓, 张兰, 王欢, 勾玲, 顾晓鹤, 庄连英, 段龙方, 李佳俊, 林靖 . 连续小波变换定量反演土壤有机质含量. 光谱学与光谱分析, 2018,38(11):3521-3527.
WANG Y C, ZHANG L, WANG H, GOU L, GU X H, ZHUANG L Y, DUAN L F, LI J J, LIN J . Quantitative inversion of soil organic matter content based on continuous wavelet transform. Spectroscopy and Spectral Analysis, 2018,38(11):3521-3527. (in Chinese)
[25] 王立志 . 倒伏胁迫下的玉米群体生长指标高光谱响应机理解析[D]. 焦作: 河南理工大学, 2017.
WANG L Z . Hyperspectral response mechanism analysis of maize population growth index under lodging stress[D]. Jiaozuo: Henan Polytechnic University, 2017. (in Chinese)
[26] 赵佳佳, 冯美臣, 杨武德, 李广信, 王超, 王慧琴, 朱智慧 . 倒伏胁迫下冬小麦冠层光谱及红边特征. 山西农业科学, 2015,43(6):673-676.
ZHAO J J, FENG M C, YANG W D, LI G X, WANG C, WANG H Q, ZHU Z H . Canopy spectral and red edge characteristics of winter wheat under lodging stress. Journal of Shanxi Agricultural Sciences, 2015,43(6):673-676. (in Chinese)
[27] 胡宗杰, 张杰, 王召海 . 灌浆期小麦倒伏后光谱变化特征. 安徽农业科学, 2011,39(6):3190-3192.
HU Z J, ZHANG J, WANG Z H . Spectral variation characteristics of wheat lodging in the filling period. Journal of Anhui Agricultural Sciences, 2011,39(6):3190-3192. (in Chinese)
[28] CLOUTIS E A . Hyperspectral geological remote sensing: Evaluation of analytical techniques. International Journal Remote Sensing , 1996,17(12):2215-2242
doi: 10.1080/01431169608948770
[29] HUANG Z, TURNER B J, DURY S J, WALLIS L R, FOLEY W J . Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment, 2004,93:18-29.
doi: 10.1016/j.rse.2004.06.008
[30] 李梦洁, 张曼胤, 崔丽娟, 王贺年, 郭子良, 李伟, 魏圆云, 杨思, 龙颂元 . 基于连续小波变换和随机森林的芦苇叶片汞含量反演. 中国农业生态学报, 2018,26(11):1730-1738.
LI M J, ZHANG M Y, CUI L J, WANG H N, GUO Z L, LI W, WEI Y Y, YANG S, LONG S Y . Inversion of Hg content in reed leaf using continuous wavelet transformation and random forest. Chinese Journal of Eco-Agriculture, 2018,26(11):1730-1738. (in Chinese)
[31] 于雷, 洪永胜, 周勇, 朱强 . 连续小波变换高光谱数据的土壤有机质含量反演模型构建. 光谱学与光谱分析, 2016,36(5):1428-1433.
YU L, HONG Y S, ZHOU Y, ZHU Q . Inversion of soil organic matter content using hyperspectral data based on continuous wavelet transformation. Spectroscopy and Spectral Analysis, 2016,36(5):1428-1433. (in Chinese)
[32] 梁栋, 杨勤英, 黄文江, 彭代亮, 赵晋陵, 黄林生, 张东彦, 宋晓宇 . 基于小波变换与支持向量机回归的冬小麦叶面积指数估算. 红外与激光工程, 2015,44(1):335-340.
LIANG D, YANG Q Y, HUANG W J, PENG D L, ZHAO J L, HUANG L S, ZHANG D Y, SONG X Y . Estimation of leaf area index based on wavelet transform and support vector machine regression in winter wheat. Infrared and Laser Engineering, 2015,44(1):335-340. (in Chinese)
[33] 林鹏达, 佟志军, 张继权, 赵云升, 李向前, 朱晓萌 . 基于CWT的黑土有机质含量野外高光谱反演模型. 水土保持研究, 2018,25(2):46-57.
LIN P D, TONG Z J, ZHANG J Q, ZHAO Y S, LI X Q, ZHU X M . Inversion of black soil organic matter content with field hyperspectral reflectance based on continuous wavelet transformation. Research of Soil and Water Conservation. 2018,25(2):46-57. (in Chinese)
[34] 王亮, 丰光, 李妍妍, 景希强, 黄长玲 . 玉米倒伏与植株农艺性状和病虫害发生关系的研究. 作物杂志, 2016(2):83-88.
WANG L, FENG G, LI Y Y, JING X Q, HUANG C L . Relationship between maize lodging resistance and agronomic traits, plant diseases, and insect pests. Crops, 2016(2):83-88. (in Chinese)
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[4] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[11] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!