Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1529-1540.doi: 10.3864/j.issn.0578-1752.2019.09.005

• PLANT PROTECTION • Previous Articles     Next Articles

Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera

LI WenXue1,XIAO RuiGang2,LÜ MiaoMiao1,DING Ning1,SHI HuaRong2,GU PeiWen1()   

  1. 1 School of Agriculture, Ningxia University, Yinchuan 750021
    2 Wine School, Ningxia University, Yinchuan 750021
  • Received:2018-12-04 Accepted:2019-01-17 Online:2019-05-01 Published:2019-05-16
  • Contact: PeiWen GU E-mail:gupeiwen2013@126.com

Abstract:

【Objective】Grape downy mildew caused by Plasmopara viticola is one of the most important monoetic diseases on Vitis vinifera. The objective of this study is to establish a real-time PCR detection system of P. viticola based on the pathogen sequence information, and to provide a scientific basis for early diagnosis and prediction of grape downy mildew.【Method】According to the cox2 gene sequence of P. viticola in GenBank, a pair of specific primers, F-cox-Pv/R-Pv, was designed to establish and optimize the conventional PCR and real-time PCR reaction system. The mycelium DNA of 14 species of grape and other crop pathogens and antagonistic fungus (including P. viticola, Colletotrichum gloeosporioides, Uncinula necator, Botrytis cinerea, Coniella diplodiella, Botryosphaeria dothidea, Alternaria brassicae, C. capsica, Fusarium solani, Sphaerotheca fuliginea, Sclerotinia sclerotiorum, F. equiseti, F. oxysporum, Trichoderma harzianum) were used to detect the specificity of conventional PCR and real-time PCR. The sensitivity and repeatability of the system were also evaluated. The pathogen DNA in the grape leaves during the latent infection period of artificial inoculation with P. viticola was quantitatively detected by the established real-time PCR system. The relationship between inoculation time and latent infection amount of P. viticola in the grape leaves was analyzed by SPSS 19.0 software. 【Result】 The primers designed in this study had high specificity. A 139 bp fragment of genome DNA was only amplified from P. viticola by conventional PCR. The detection results of real-time PCR assays showed that the primers had only one absorption peak for P. viticola, and no product absorption peak was detected for other test strains. The sensitivity of conventional PCR was 10 pg·μL -1 genomic DNA, while the sensitivity of real-time PCR was 0.1 pg·μL -1, which was 100 times higher than that of the conventional PCR. The linear relationship between real-time PCR cycle threshold (Ct) and template concentration was constructed by using recombinant plasmid containing cox2 gene fragment as standard material. The standard curve was y=42.27-3.36x, with the correlation coefficient of 0.997 and amplification efficiency of 98.50%. The linear range was up to 7 orders of magnitude, showing a good linear relationship at 2.4×10 3-2.4×10 9 copies/μL. The real-time PCR system was used to detect the pathogen DNA in the grape leaves during the latent infection period of artificial inoculation with P. viticola. The results showed that the latent infection of P. viticola in the grape leaves increased exponentially with the change of inoculation time, the curve equation was y=6.34×10 4·e 0.084 x, with the correlation coefficient of 0.936. The real-time PCR system could detect the P. viticola DNA 6 h after inoculation, and the DNA content was 5.68×10 4copies/μL.【Conclusion】The sensitivity of the established real-time PCR system for detection of grape downy mildew is much higher than that of conventional PCR, and the specificity and reproducibility of this real-time PCR system are good. There was a good linear relationship between Ct value and template concentration, and the amplification efficiency is high. This method can be used to quantitatively detect the latent infection of P. viticola.

Key words: Plasmopara viticola, cox2, real-time PCR, latent infection, quantitative detection

Table 1

Tested strains"

菌株编号
Number
拉丁学名
Latin name
寄主(品种)
Host (Variety)
菌株编号
Number
拉丁学名
Latin name
寄主(品种)
Host (Variety)
P1 P. viticola 葡萄(黑比诺)
Vitis vinifera (Pinot Noir)
6 S. fuliginea 西葫芦
Cucurbita pepo
P2 P. viticola 葡萄(霞多丽)
V. vinifera (Chardonnay)
7 C. diplodiella 葡萄(威代尔)
V. vinifera (Vidal)
P3 P. viticola 葡萄(赤霞珠)
V. vinifera (Cabernet Sauvignon)
8 B. cinerea 葡萄(红地球)
V. vinifera (Red Globe)
1 A. brassicae 白菜
Brassica pekinensis
9 S. sclerotiorum 番茄
Lycopersicon esculentum
2 C. gloeosporioides 葡萄(红地球)
V. vinifera (Red Globe)
10 F. equiseti 马铃薯
Solanum tuberosum
3 C. capsici 辣椒
Capsicum annuum
11 F. oxysporum 西瓜
Citrullus lanatus
4 F. solani 甘草
Glycyrrhiza uralensis
12 B. dothidea 葡萄(红地球)
V. vinifera (Red Globe)
5 U. necator 葡萄(赤霞珠)
V. vinifera (Cabernet Sauvignon)
13 T. harzianum 马铃薯
S. tuberosum

Fig. 1

Specificity detection of P. viticola primers F-Pv/R-Pv (A) and F-cox-Pv/ R-Pv (B) by using genomic DNA with conventional PCR"

Fig. 2

Melting curves of real-time PCR amplification"

Fig. 3

Sensitivity detection of P. viticola primers F-Pv/R-Pv (A) and F-cox-Pv/R-Pv (B) by using series genomic DNA dilutions with conventional PCR"

Fig. 4

Sensitivity detection of P. viticola primers with real-time PCR"

Fig. 5

Optimization of Tm value of real-time PCR assays"

Fig. 6

Construction of recombinant plasmid"

Fig. 7

Establishment of real-time PCR standard curve"

Fig. 8

Detection of leaf latent period of P. viticola (A) and its dynamic simulation (B)"

Table 2

Quantitative determination of P. viticola in latent infected leaves by real-time PCR"

接种后时间
Time after inoculation (h)
Ct值
Ct value
检测结果
Detection result (copies/μL)
6 32.36±0.57 (5.68±2.76) ×104c
12 31.04±0.81 (2.12±1.17) ×105c
24 28.89±1.06 (1.26±0.72) ×106c
48 26.33±0.40 (5.95±1.52) ×106c
72 23.77±0.21 (2.62±0.37) ×107b
96 20.15±0.29 (1.30±0.20) ×108a
[1] 刘延琳 . 葡萄霜霉病的流行病生物学. 葡萄栽培与酿酒, 1994(3):24-25.
LIU Y L . Epidemiological biology of grape downy mildew. Viticulture and Enology, 1994(3):24-25. (in Chinese)
[2] 王国珍, 樊仲庆, 麻冬梅, 张小波, 郭惠萍 . 贺兰山东麓酿酒葡萄霜霉病流行规律及测报技术. 植物保护, 2004,30(4):54-56.
WANG G Z, FAN Z Q, MA D M, ZHANG X B, GUO H P . Studies on the epidemical regularity and prediction technology of grape downy mildew disease in Eastern Helan Mountain. Plant Protection, 2004,30(4):54-56. (in Chinese)
[3] 雷百战, 李国英, 姚丽花 . 葡萄霜霉病发病情况的调查和研究. 新疆农业科学, 2004,41(5):381-384.
LEI B Z, LI G Y, YAO L H . Investigation and study on Plasmopara viticola of grape. Xinjiang Agricultural Sciences, 2004,41(5):381-384. (in Chinese)
[4] 吉丽丽, 李海强, 任毓忠, 祁立敏, 赵宝龙, 李国英, 李春 . 葡萄霜霉菌孢子囊扩散动态及与田间病情的相关性. 果树学报, 2012,29(1):94-98.
JI L L, LI H Q, REN Y Z, QI L M, ZHAO B L, LI G Y, LI C . Dynamics of sporangium diffusion of Plasmopara viticola and its correlation with disease incidence in vineyard. Journal of Fruit Science, 2012,29(1):94-98. (in Chinese)
[5] CAFFI T, GILARDI G, MONCHIERO M, ROSSI V . Production and release of asexual sporangia in Plasmopara viticola. Phytopathology, 2013,103(1):64-73.
[6] VERCESI A, TOFFOLATTI S L, ZOCCHI G, GUGLIELMANN R, IRONI L . A new approach to modelling the dynamics of oospore germination in Plasmopara viticola. European Journal of Plant Pathology, 2010,128(1):113-126.
[7] 金恭玺, 岳永亮, 宋玉萍, 魏新正, 任毓忠, 张莉, 李国英 . 葡萄霜霉病初次侵染来源和初侵染的特点及防治. 新疆农业科学, 2015,52(6):1105-1111.
JIN G X, YUE Y L, SONG Y P, WEI X Z, REN Y Z, ZHANG L, LI G Y . The first time infection source of grape downy mildew and its characteristics and some control approaches. Xinjiang Agricultural Sciences, 2015,52(6):1105-1111. (in Chinese)
[8] 于舒怡, 梁春浩, 刘丽, 刘长远, 傅俊范 . 沈阳地区葡萄霜霉病流行速率、空中孢子囊密度与环境因素的相关性. 植物保护学报, 2016,43(3):434-441.
YU S Y, LIANG C H, LIU L, LIU C Y, FU J F . Correlation among grape downy mildew epidemic rate, airborne sporangium density of Plasmopara viticola and environmental factors in Shenyang. Journal of Plant Protection, 2016,43(3):434-441. (in Chinese)
[9] 赵雪艳 . 中国境内部分区域葡萄霜霉病菌(Plasmopara viticola)的遗传分化[D]. 保定: 河北农业大学, 2014.
ZHAO X Y . Genetic differentiation of Plasmopara viticola causing grape downy mildew (GDM) in Chinese vineyards[D]. Baoding: Agricultural University of Hebei, 2014. (in Chinese)
[10] 石洁, 王喜娜, 孔繁芳, 梁丽莎, 王忠跃, 张昊 . 河北昌黎与广西资源两地区葡萄霜霉菌致病力分化分析. 植物保护, 2017,43(1):76-82.
SHI J, WANG X N, KONG F F, LIANG L S, WANG Z Y, ZHANG H . Virulence differentiation analysis of Plasmopara viticola in Changli, Hebei and Ziyuan, Guangxi. Plant Protection, 2017,43(1):76-82. (in Chinese)
[11] 黄晓庆, 孔祥久, 孔繁芳, 刘薇薇, 王玉倩, 王忠跃, 张昊 . 不同寄主来源的葡萄霜霉病菌致病力测定及孢子囊大小比较. 植物保护, 2015,41(3):178-182.
HUANG X Q, KONG X J, KONG F F, LIU W W, WANG Y Q, WANG Z Y, ZHANG H . Pathogenicity and sporangia size analysis of Plasmopara viticola from different grape varieties. Plant Protection, 2015,41(3):178-182. (in Chinese)
[12] 唐兴敏, 孙磊, 张玮, 李兴红 . 葡萄霜霉病抗病性鉴定方法及品种抗病性测定. 植物保护, 2018,44(1):166-169.
TANG X M, SUN L, ZHANG W, LI X H . Development of resistance identification method and determination of disease resistance of different grape cultivars to the grapevine downy mildew. Plant Protection, 2018,44(1):166-169. (in Chinese)
[13] 李卓, 周婷婷, 杨超, 李映程, 孙琦, 任毓忠, 赵宝龙, 张莉, 李国英 . 葡萄霜霉病菌侵染抗病和感病品种过程的组织学观察. 园艺学报, 2017,44(5):861-870.
LI Z, ZHOU T T, YANG C, LI Y C, SUN Q, REN Y Z, ZHAO B L, ZHANG L, LI G Y . Histological studies on the infection process of the grape downy mildew between susceptible cultivar and resistant cultivar. Acta Horticulturae Sinica, 2017,44(5):861-870. (in Chinese)
[14] 李荣 . 湖南省葡萄霜霉病的发生规律调查及病原菌遗传多样性研究[D]. 长沙: 湖南农业大学, 2014.
LI R . The occurrence investigation and genetic diversity of grape downy mildew in Hunan Province[D]. Changsha: Hunan Agricultural University, 2014. (in Chinese)
[15] 秦文韬, 黄晓庆, 孔繁芳, 王忠跃, 张昊 . 葡萄霜霉病菌PCR检测方法的建立与应用. 植物保护, 2014,40(2):99-102, 108.
QIN W T, HUANG X Q, KONG F F, WANG Z Y, ZHANG H . Establishment and application of PCR for detection of Plasmopara viticola. Plant Protection, 2014,40(2):99-102, 108. (in Chinese)
[16] 程海星, 郭月英, 任霆, 张静, 王乐, 张利霞, 靳烨 . 实时荧光定量PCR技术原理及在食品检测中的应用. 食品与发酵工业, 2015,41(3):243-247.
CHENG H X, GUO Y Y, REN T, ZHANG J, WANG L, ZHANG L X, JIN Y . Principle and application of fluorogenic real-time PCR in food detection. Food and Fermentation Industries, 2015,41(3):243-247. (in Chinese)
[17] ZHENG Y M, LUO Y, ZHOU Y L, ZENG X W, DUAN X Y, CAO X R, SONG Y L, WANG B T . Real-time PCR quantification of latent infection of wheat powdery mildew in the field. European Journal of Plant Pathology, 2013,136(3):565-575.
doi: 10.1007/s10658-013-0188-5
[18] 孙炳剑, 陈清清, 袁虹霞, 施艳, 李洪连 . SYBR Green I实时荧光定量PCR检测小麦纹枯病菌体系的建立和应用. 中国农业科学, 2015,48(1):55-62.
SUN B J, CHEN Q Q, YUAN H X, SHI Y, LI H L . Establishment of SYBR Green I real-time PCR for quantitatively detecting Rhizoctonia cerealis in winter wheat. Scientia Agricultura Sinica, 2015,48(1):55-62. (in Chinese)
[19] 贺字典, 宋士清, 高玉峰, 石延霞, 李宝聚 . 棘孢木霉Trichoderma asperellum在土壤中定殖量的荧光定量PCR检测. 植物保护学报, 2016,43(4):552-558.
HE Z D, SONG S Q, GAO Y F, SHI Y X, LI B J . Detection of Trichoderma asperellum colonization in soils by real-time fluorescent quantitative PCR. Journal of Plant Protection, 2016,43(4):552-558. (in Chinese)
[20] DUVIVIER M, DEDEURWAERDER G, BATAILLE C, DE PROFT M, LEGRÈVE A . Real-time PCR quantification and spatio-temporal distribution of airborne inoculum of Puccinia triticina in Belgium. European Journal of Plant Pathology, 2016,145(2):405-420.
[21] 谢学文, 程颖超, 王锟, 张红杰, 杨杰, 石延霞, 柴阿丽, 李宝聚 . 短密木霉菌RT-PCR检测体系的建立及其在南瓜根际的动态分析. 中国生物防治学报, 2018,34(4):574-581.
XIE X W, CHENG Y C, WANG K, ZHANG H J, YANG J, SHI Y X, CHAI A L, LI B J . Establishment of real-time fluorescent quantitative PCR for Trichoderma brevicompactum and its dynamic change in pumpkin rhizosphere. Chinese Journal of Biological Control, 2018,34(4):574-581. (in Chinese)
[22] VALSESIA G, GOBBIN D, PATOCCHI A, VECCHIONE A, PERTOT I, GESSLER C . Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology, 2005,95(6):672-678.
[23] LEE J H, PARK M H, LEE S . Identification of Pseudoperonospora cubensis using real-time PCR and high resolution melting (HRM) analysis. Journal of General Plant Pathology, 2016,82(2):110-115.
[24] 张娜, 乾义柯, 魏霜, 张维, 焦子伟, 张祥林 . 应用实时荧光PCR检测甜菜霜霉病菌. 新疆农业科学, 2016,53(11):2077-2082.
ZHANG N, QIAN Y K, WEI S, ZHANG W, JIAO Z W, ZHANG X L . Detection of Peronospora farinosa f. sp. betea Byford by real-time PCR. Xinjiang Agricultural Sciences, 2016,53(11):2077-2082. (in Chinese)
[25] 于舒怡, 傅俊范, 刘长远, 关天舒, 王辉, 刘丽 . 沈阳地区葡萄霜霉病流行时间动态及其气象影响因子分析. 植物病理学报, 2016,46(4):529-535.
YU S Y, FU J F, LIU C Y, GUAN T S, WANG H, LIU L . Epidemic temporal dynamic of grape downy mildew and its meteorological influencing factors in Shenyang, Liaoning. Acta Phytopathologica Sinica, 2016,46(4):529-535. (in Chinese)
[26] 李小龙, 王库, 马占鸿, 王海光 . 基于热红外成像技术的小麦病害早期检测. 农业工程学报, 2014,30(18):183-189.
LI X L, WANG K, MA Z H, WANG H G . Early detection of wheat disease based on thermal infrared imaging. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(18):183-189. (in Chinese)
[27] LEIMINGER J, BÄSSLER E, KNAPPE C, BAHNWEG G, HAUSLADEN H . Quantification of disease progression of Alternaria spp. on potato using real-time PCR. European Journal of Plant Pathology, 2015,141(2):295-309.
[28] 毛宇宁, 梁鹏, 刘文波, 林春花, 缪卫国, 郑服丛 . 橡胶树白粉病菌分子检测技术的建立. 植物保护, 2016,42(4):119-123.
MAO Y N, LIANG P, LIU W B, LIN C H, MIAO W G, ZHENG F C . PCR and nested-PCR for the molecular detection of Oidium heveae Steinm. Plant Protection, 2016,42(4):119-123. (in Chinese)
[29] 陈长军, 李俊, 赵伟, 王建新, 周明国 . 利用实时荧光定量PCR技术检测油菜菌核病菌. 植物病理学报, 2011,41(5):516-525.
CHEN C J, LI J, ZHAO W, WANG J X, ZHOU M G . Detection of Sclerotinia sclerotiorum by a quantitative real-time PCR. Acta Phytopathologica Sinica, 2011,41(5):516-525. (in Chinese)
[30] 程颖超, 康华军, 石延霞, 柴阿丽, 张红杰, 谢学文, 李宝聚 . 辣椒疫霉菌RT-PCR检测技术的建立及应用. 园艺学报, 2018,45(5):997-1006.
CHENG Y C, KANG H J, SHI Y X, CHAI A L, ZHANG H J, XIE X W, LI B J . Development and application of real-time fluorescent quantitative PCR for detection of Phytophthora capsici. Acta Horticulturae Sinica, 2018,45(5):997-1006. (in Chinese)
[31] 秦文韬 . 葡萄霜霉病菌快速分子检测方法研究[D]. 北京: 中国农业科学院, 2013.
QIN W T . Rapid detection Plasmopara viticola by molecular methods[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[32] PARIDA M, SANNARANGAIAH S, DASH P K, RAO P V L, MORITA K . Loop mediated isothermal amplification (LAMP): A new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Reviews in Medical Virology, 2008,18(6):407-421.
doi: 10.1002/rmv.v18:6
[33] MORI Y, NAGAMINE K, TOMITA N, NOTOMI T . Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 2001,289(1):150-154.
doi: 10.1006/bbrc.2001.5921
[34] 宋琼, 任佐华, 杨华, 刘二明 . 应用实时荧光定量PCR技术检测土壤中根肿病菌休眠孢子. 湖南农业大学学报 (自然科学版), 2015,41(6):631-635.
SONG Q, REN Z H, YANG H, LIU E M . Application of real-time fluorescent quantitative PCR for detection of resting spores of Plasmodiophora brassicae in field soil. Journal of Hunan Agricultural University (Natural Sciences), 2015,41(6):631-635. (in Chinese)
[35] 王英超, 甘琴华, 厉艳, 纪瑛, 吴兴海, 邵秀玲 . 基于gpd基因的大蒜黑腐病菌实时荧光定量PCR鉴定技术. 中国农业科学, 2015,48(2):390-397.
WANG Y C, GAN Q H, LI Y, JI Y, WU X H, SHAO X L . Detection of Embellisia allii using real-time quantitative PCR based on glyceraldehyde- 3-phosphate dehydrogenase gene. Scientia Agricultura Sinica, 2015,48(2):390-397. (in Chinese)
[36] 陈清清, 孙炳剑, 袁虹霞, 施艳, 李洪连 . 小麦根腐病菌索氏平脐蠕孢SYBR Green I实时荧光定量PCR检测技术研究. 菌物学报, 2014,33(3):690-696.
doi: 10.13346/j.mycosystema.130075
CHEN Q Q, SUN B J, YUAN H X, SHI Y, LI H L . Quantitative detection of Bipolaris sorokiniana in winter wheat based on SYBR Green I real-time PCR. Mycosystema, 2014,33(3):690-696. (in Chinese)
doi: 10.13346/j.mycosystema.130075
[37] 潘娟娟, 骆勇, 黄冲, 孙振宇, 赵磊, 闫佳会, 马占鸿 . 应用real-time PCR定量检测小麦条锈菌潜伏侵染量方法的建立. 植物病理学报, 2010,40(5):504-510.
PAN J J, LUO Y, HUANG C, SUN Z Y, ZHAO L, YAN J H, MA Z H . Quantification of latent infections of wheat stripe rust by using real-time PCR. Acta Phytopathologica Sinica, 2010,40(5):504-510. (in Chinese)
[38] LEISOVA L, KUCERA L, CHRPOVA J, SYKOROVA S, SIP V, OVASNA J . Quantification of Fusarium culmorum in wheat and barley tissues using real-time PCR in comparison with DON content. Journal of Phytopathology, 2006,154(10):603-611.
[39] MORETTI C, QUAGLIA M, CERRI M, NICOSIA D E, BUONAUIO R . A real-time PCR assay for detection and quantification of Botrytis cinerea in Pelargonium × hortorum plants, and its use for evaluation of plant resistance. European Journal of Plant Pathology, 2015,143(1):159-171.
[40] 年四季, 袁青, 殷幼平, 蔡俊, 王中康 . 实时荧光定量PCR鉴定小麦矮腥黑穗菌技术研究. 中国农业科学, 2009,42(12):4403-4410.
NIAN S J, YUAN Q, YIN Y P, CAI J, WANG Z K . Detection of Tilletia controversa Kuhn by real-time quantitative PCR. Scientia Agricultura Sinica, 2009,42(12):4403-4410. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!